LOGICAL AGENTS

AIMA.3RD CHAPTER 7.4-6

Outline

\diamond Propositional (Boolean) logic
\diamond Equivalence, validity, satisfiability
\diamond Inference rules and theorem proving

- forward chaining
- backward chaining
- resolution

Propositional logic: Syntax

Propositional logic is the simplest logic—illustrates basic ideas
The syntax of propositional logic defines the allowable sentences.
The atomic sentences consist of a single proposition symbol, e.g., P_{1}, P_{2}.
A literal is either an atomic sentence (a positive literal) or a negated atomic sentence (a negative literal)

Propositional logic: Syntax

Complex sentences are constructed from simpler sentences, using parentheses and logical connectives.

There are five connectives in common use:
$-\neg$ (not): If S is a sentence, $\neg S$ is a sentence (negation)

- \wedge (and): If S_{1} and S_{2} are sentences, $S_{1} \wedge S_{2}$ is a sentence (conjunction)
- \vee (or): If S_{1} and S_{2} are sentences, $S_{1} \vee S_{2}$ is a sentence (disjunction)
$\mathbf{-} \Rightarrow$ (implies): A sentence such as $\left(W_{1,3} \wedge P_{3,1}\right) \Rightarrow \neg W_{2,2}$ are called implication (a.k.a. rules or if-then statements) Its premise is ($W_{1,3} \wedge P_{3,1}$), and its conclusion is $\neg W_{2,2}$.
- \Leftrightarrow (iff): If S_{1} and S_{2} are sentences, $S_{1} \Leftrightarrow S_{2}$ is a sentence called (biconditional)

Propositional logic: Semantics

The semantics defines the rules for determining the truth of a sentence with respect to a particular model.
In propositional logic, a model fixes the truth value true or false for every proposition symbol

Rules for evaluating truth with respect to a model m :

$\neg S$	is true iff	S	is false	
$S_{1} \wedge S_{2}$	is true iff	S_{1}	is true and	S_{2}
is true				
$S_{1} \vee S_{2}$	is true iff	S_{1}	is true or	S_{2}
$S_{1} \Rightarrow S_{2}$	is true iff	S_{1}	is false or	S_{2}
is true				
i.e., is false iff	S_{1}	is true and	S_{2}	is false
$S_{1} \Leftrightarrow S_{2}$	is true iff	$S_{1} \Rightarrow S_{2}$	is true and $S_{2} \Rightarrow S_{1}$	is true

Truth tables for connectives

P	Q	$\neg P$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

* Truth table for $P \Rightarrow Q$ may not quite fit ones intuitive understanding of "P implies Q " or "if P then Q ."
You can think of the $P \Rightarrow Q$ as "If P is true, then I am claiming that Q is true. Otherwise I am making no claim."
* Propositional logic does not require any relation of causation or relevance between P and Q .

Propositional logic: example semantics

$$
\begin{aligned}
\text { E.g. } m_{1}= & P_{1,2} \quad P_{2,2} \\
& P_{3,1} \\
& \text { true true false }
\end{aligned}
$$

(With these symbols, 8 possible models, can be enumerated automatically.)
Simple recursive process evaluates an arbitrary sentence, e.g.,
$\neg P_{1,2} \wedge\left(P_{2,2} \vee P_{3,1}\right)=$ true $\wedge($ false \vee true $)=$ true \wedge true $=$ true

Wumpus world sentences

Let $P_{i, j}$ be true if there is a pit in $[i, j]$.
Let $B_{i, j}$ be true if there is a breeze in $[i, j]$.
"There is no pit in $[1,1]$ "

$$
R_{1}: \neg P_{1,1}
$$

"Pits cause breezes in adjacent squares"

$$
\begin{aligned}
& R_{2}: B_{1,1} \Leftrightarrow\left(P_{1,2} \vee P_{2,1}\right) \\
& R_{3}: B_{2,1} \Leftrightarrow\left(P_{1,1} \vee P_{2,2} \vee P_{3,1}\right)
\end{aligned}
$$

"A square is breezy if and only if there is an adjacent pit"

$$
\begin{aligned}
& R_{4}: \neg B_{1,1} \\
& R_{5}: B_{2,1}
\end{aligned}
$$

Model checking vs theorem proving

Model checking enumerates all models and showing that the sentence must hold in all models.

Theorem proving applys rules of inference directly to the sentences in KB to construct a proof of the desired sentence without consulting models.

If the number of models is large but the length of the proof is short, then theorem proving is more efficient than model checking.

Truth tables for inference

Goal of inference now is to decide whether $K B \models \alpha$ for some sentence α. Truth table inference: Enumerate the models (truth assignment to every proposition symbols), and check that α is true in every model in which $K B$ is true.

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	KB
false	true	true	true	true	false	false						
false	false	false	false	false	false	true	true	true	false	true	false	false
\vdots												
false	true	false	false	false	false	false	true	true	false	true	true	false
false	true	false	false	false	false	true						
false	true	false	false	false	true	false	true	true	true	true	true	true
false	true	false	false	false	true							
false	true	false	false	true	false	false	true	false	false	true	true	false
\vdots												
true	false	true	true	false	true	false						

Inference by enumeration
The following depth-first truth-table enumeration algorithm for deciding propositional entailment is sound and complete

```
function TT-Entails?(KB, \alpha) returns true or false
    inputs: KB, the knowledge base, a sentence in propositional logic
            \alpha, the query, a sentence in propositional logic
    symbols }\leftarrow\textrm{a}\mathrm{ list of the proposition symbols in KB and }
    return TT-Check-All(KB, \alpha, symbols,[])
```

function TT-Check-All(KB, α, symbols, model) returns true or false
if Empty?(symbols) then
if PL-True? (KB, model) then return PL-True? (α, model)
else return true
else do
$P \leftarrow \operatorname{FIRST}($ symbols); rest $\leftarrow \operatorname{REST}($ symbols $)$
return TT-Check-All($K B, \alpha$, rest, $\operatorname{Extend}(P$, true, model $)$) and
TT-Check-All($K B, \alpha$, rest, $\operatorname{Extend}(P$, false, model $)$)

PL-TRUE? return true if a sentence holds within a model. The variable model represents a partial model. and is a logical operation on its two arguments, returning true or false.

Inference by enumeration: Model checking

The TT-ENTAILS? algorithm is sound because it implements directly the definition of entailment, and complete because it works for any $K B$ and α and always terminates there are only finitely many models to examine.

Time complexity is $O\left(2^{n}\right)$ when $K B$ and α contain n symbols; problem is co-NP-complete

foncepts in theorem proving: Logical equivalence

Two sentences are logically equivalent iff they are true in the same set of models:

$$
\alpha \equiv \beta \text { if and only if } \alpha \models \beta \text { and } \beta \models \alpha
$$

$$
\begin{aligned}
&(\alpha \wedge \beta) \equiv(\beta \wedge \alpha) \quad \text { commutativity of } \wedge \\
&(\alpha \vee \beta) \equiv(\beta \vee \alpha) \quad \text { commutativity of } \vee \\
&((\alpha \wedge \beta) \wedge \gamma) \equiv(\alpha \wedge(\beta \wedge \gamma)) \quad \text { associativity of } \wedge \\
&((\alpha \vee \beta) \vee \gamma) \equiv(\alpha \vee(\beta \vee \gamma)) \quad \text { associativity of } \vee \\
& \neg(\neg \alpha) \equiv \alpha \text { double-negation elimination } \\
&(\alpha \Rightarrow \beta) \equiv(\neg \beta \Rightarrow \neg \alpha) \text { contraposition } \\
&(\alpha \Rightarrow \beta) \equiv(\neg \alpha \vee \beta) \text { implication elimination } \\
&(\alpha \Leftrightarrow \beta) \equiv((\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow \alpha)) \quad \text { biconditional elimination } \\
& \neg(\alpha \wedge \beta) \equiv(\neg \alpha \vee \neg \beta) \quad \text { De Morgan } \\
& \neg(\alpha \vee \beta) \equiv(\neg \alpha \wedge \neg \beta) \quad \text { De Morgan } \\
&(\alpha \wedge(\beta \vee \gamma)) \equiv((\alpha \wedge \beta) \vee(\alpha \wedge \gamma)) \text { distributivity of } \wedge \text { over } \vee \\
&(\alpha \vee(\beta \wedge \gamma)) \equiv((\alpha \vee \beta) \wedge(\alpha \vee \gamma)) \text { distributivity of } \vee \text { over } \wedge \\
& \hline
\end{aligned}
$$

Concepts cont.: Validity

A sentence is valid if it is true in all models,

$$
\text { e.g., True, } \quad A \vee \neg A, \quad A \Rightarrow A, \quad(A \wedge(A \Rightarrow B)) \Rightarrow B
$$

Validity is connected to inference via the Deduction Theorem:
For any sentence α and $\beta, \alpha \models \beta$ iff $(\alpha \Rightarrow \beta)$ is valid
From this, we can decide if $\alpha \models \beta$ by checking that $(\alpha \Rightarrow \beta)$ is True in every model (TT inference) by proving $(\alpha \Rightarrow \beta)$ is True.

Concepts cont.: Satisfiability

A sentence is satisfiable if it is true in some model
e.g., $A \vee B$,

A sentence is unsatisfiable if it is true in no models
e.g., $A \wedge \neg A$

Validity and satisfiability are connected:

- α is valid iff $\neg \alpha$ is unsatisfiable
- α is satisfiable iff $\neg \alpha$ is not valid.

Satisfiability is connected to inference via the following:
$\alpha \models \beta$ if and only if $(\alpha \wedge \neg \beta)$ is unsatisfiable
i.e., proof by contradiction: One assumes a sentence β to be false and shows that this leads to a contradiction with known axioms $\alpha((\alpha \wedge \neg \beta))$.

* Note: The problem of determining the satisfiability of sentences in propositional logic the SAT problem was the first problem proved to be NPcomplete.

Proof methods summary

Proof methods divide into (roughly) two kinds:

Theorem proving: Application of inference rules

- Legitimate (sound) generation of new sentences from old
- Proof = a sequence of inference rule applications

Can use inference rules as operators in a standard search alg.

- Typically require translation of sentences into a normal form

Model checking: Enumeration of models
truth table enumeration (always exponential in n)
improved backtracking, e.g., Davis-Putnam-Logemann-Loveland heuristic search in model space (sound but incomplete)
e.g., min-conflicts-like hill-climbing algorithms

Forward and backward chaining

Horn Form (restricted)
$K B=$ conjunction of Horn clauses
Horn clause $=$
\diamond disjunction of literals of which at most one is positive; or
\diamond (conjunction of symbols) \Rightarrow symbol
E.g., $C \wedge(B \Rightarrow A) \wedge(C \wedge D \Rightarrow B)$

Modus Ponens (for Horn Form): complete for Horn KBs

$$
\frac{\alpha_{1}, \ldots, \alpha_{n}, \quad \alpha_{1} \wedge \cdots \wedge \alpha_{n} \Rightarrow \beta}{\beta}
$$

("whenever any sentences of the form $\alpha_{1}, \ldots, \alpha_{n}$, and $\alpha_{1} \wedge \cdots \wedge \alpha_{n} \Rightarrow \beta$ are given, then the sentence β can be inferred.") Can be used with forward chaining or backward chaining.
These algorithms are very natural and run in linear time

Forward chaining

Idea: fire any rule whose premises are satisfied in the $K B$, add its conclusion to the $K B$, until query is found

$$
\begin{aligned}
& P \Rightarrow Q \\
& L \wedge M \Rightarrow P \\
& B \wedge L \Rightarrow M \\
& A \wedge P \Rightarrow L \\
& A \wedge B \Rightarrow L \\
& A \\
& B
\end{aligned}
$$

Goal: determines if a proposition symbol q (i.e. query) is entailed by a KB

Forward chaining algorithm

function PL-FC-Entails? $(K B, q)$ returns true or false

inputs: $K B$, the knowledge base, a set of propositional Horn clauses
q, the query, a proposition symbol
local variables: count, a table, indexed by clause, initially the number of premises inferred, a table, indexed by symbol, each entry initially false agenda, a list of symbols, initially the symbols known in $K B$
while agenda is not empty do
$p \leftarrow \operatorname{PoP}($ agenda $)$
unless inferred $[p]$ do
inferred $[p] \leftarrow$ true
for each Horn clause c in whose premise p appears do
decrement count $[c]$
if $\operatorname{count}[c]=0$ then do
if $\operatorname{HEAD}[c]=q$ then return true
$\operatorname{Push}(\operatorname{Head}[c]$, agenda)
return false

Forward chaining example

It begins from known facts (positive literals) in the knowledge base.

Forward chaining example

If all the premises of an implication are known, then its conclusion is added to the set of known facts.

Forward chaining example

If all the premises of an implication are known, then its conclusion is added to the set of known facts.

Forward chaining example

The known leaves (here, A and B) are set, and inference propagates up the graph as far as possible.

Forward chaining example

Wherever a conjunction appears, the propagation waits until all the conjuncts are known before proceeding.
\square

\square

\square

FC is sound: every inference is essentially an application of Modus Ponens

Proof of completeness

FC derives every atomic sentence that is entailed by $K B$

1. FC reaches a fixed point where no new atomic sentences are derived
2. Consider the final state as a model m, assigning true to each symbols inferred during the FC and false for all other symbols
3. Every clause in the original $K B$ is true in m

Proof by contradiction: Suppose a clause $a_{1} \wedge \ldots \wedge a_{k} \Rightarrow b$ is false in m

Then $a_{1} \wedge \ldots \wedge a_{k}$ is true in m and b is false in m
This contradicts our assumption that the algorithm has reached a fixed point
4. Hence m is a model of $K B$
5. If $K B \models q, q$ is true in every model of $K B$, including m

General idea: construct any model of $K B$ by sound inference, check α

Backward chaining

Idea: work backwards from the query q :
to prove q by BC, check if q is known already, or prove by BC all premises of some rule concluding q

Avoid loops: check if new subgoal is already on the goal stack
Avoid repeated work: check if new subgoal

1) has already been proved true, or
2) has already failed

The algorithm is essentially identical to the And-Or-Graph-SEARCH algorithm

Backward chaining example

Forward vs. backward chaining
FC is data-driven, cf. automatic, unconscious processing, e.g., object recognition, routine decisions

May do lots of work that is irrelevant to the goal: an efficient implementation runs in linear time.
$B C$ is goal-driven, appropriate for problem-solving, e.g., Where are my keys? How do I get into a PhD program?

Complexity of $B C$ can be much less than linear in size of $K B$ the process touches only relevant facts.

Summary

Logical agents apply inference to a knowledge base
to derive new information and make decisions
Basic concepts of logic:

- syntax: formal structure of sentences
- semantics: truth of sentences wrt models
- entailment: necessary truth of one sentence given another
- inference: deriving sentences from other sentences
- soundess: derivations produce only entailed sentences
- completeness: derivations can produce all entailed sentences

Wumpus world requires the ability to represent partial and negated information, reason by cases, etc.

Forward, backward chaining are linear-time, complete for Horn clauses Resolution is complete for propositional logic

Propositional logic lacks expressive power

