
Logical agents

AIMA.3rd Chapter 7.4-6

AIMA.3rd Chapter 7.4-6 1

Outline

♦ Propositional (Boolean) logic

♦ Equivalence, validity, satisfiability

♦ Inference rules and theorem proving
– forward chaining
– backward chaining
– resolution

AIMA.3rd Chapter 7.4-6 2

Propositional logic: Syntax

Propositional logic is the simplest logic—illustrates basic ideas

The syntax of propositional logic defines the allowable sentences.

The atomic sentences consist of a single proposition symbol, e.g., P1, P2.

A literal is either an atomic sentence (a positive literal) or a negated atomic
sentence (a negative literal)

AIMA.3rd Chapter 7.4-6 3

Propositional logic: Syntax

Complex sentences are constructed from simpler sentences, using parentheses
and logical connectives.

There are five connectives in common use:

– ¬ (not): If S is a sentence, ¬S is a sentence (negation)

– ∧ (and): If S1 and S2 are sentences, S1 ∧ S2 is a sentence (conjunction)

– ∨ (or): If S1 and S2 are sentences, S1 ∨ S2 is a sentence (disjunction)

– ⇒ (implies): A sentence such as (W1,3 ∧ P3,1) ⇒ ¬W2,2

are called implication (a.k.a. rules or if-then statements)
Its premise is (W1,3 ∧ P3,1), and its conclusion is ¬W2,2.

– ⇔ (iff): If S1 and S2 are sentences, S1 ⇔ S2 is a sentence
called (biconditional)

AIMA.3rd Chapter 7.4-6 4

Propositional logic: Semantics

The semantics defines the rules for determining the truth of a sentence with
respect to a particular model.
In propositional logic, a model fixes the truth value true or false for every
proposition symbol

Rules for evaluating truth with respect to a model m:

¬S is true iff S is false
S1 ∧ S2 is true iff S1 is true and S2 is true
S1 ∨ S2 is true iff S1 is true or S2 is true

S1 ⇒ S2 is true iff S1 is false or S2 is true
i.e., is false iff S1 is true and S2 is false

S1 ⇔ S2 is true iff S1 ⇒ S2 is true and S2 ⇒ S1 is true

AIMA.3rd Chapter 7.4-6 5

Truth tables for connectives

P Q ¬P P ∧Q P ∨Q P⇒Q P⇔Q

false false true false false true true

false true true false true true false

true false false false true false false

true true false true true true true

* Truth table for P ⇒ Q may not quite fit ones intuitive understanding of
“P implies Q” or “if P then Q.”
You can think of the P ⇒ Q as “If P is true, then I am claiming that Q is
true. Otherwise I am making no claim.”

* Propositional logic does not require any relation of causation or relevance
between P and Q.

AIMA.3rd Chapter 7.4-6 6

Propositional logic: example semantics

E.g. m1 = P1,2 P2,2 P3,1

true true false

(With these symbols, 8 possible models, can be enumerated automatically.)

Simple recursive process evaluates an arbitrary sentence, e.g.,

¬P1,2 ∧ (P2,2 ∨ P3,1) = true ∧ (false ∨ true) = true ∧ true= true

AIMA.3rd Chapter 7.4-6 7

Wumpus world sentences

Let Pi,j be true if there is a pit in [i, j].
Let Bi,j be true if there is a breeze in [i, j].

“There is no pit in [1,1]”
R1: ¬P1,1

“Pits cause breezes in adjacent squares”
R2 : B1,1 ⇔ (P1,2 ∨ P2,1)
R3 : B2,1 ⇔ (P1,1 ∨ P2,2 ∨ P3,1)

“A square is breezy if and only if there is an adjacent pit”
R4 : ¬B1,1

R5 : B2,1

AIMA.3rd Chapter 7.4-6 8

Model checking vs theorem proving

Model checking enumerates all models and showing that the sentence must
hold in all models.

Theorem proving applys rules of inference directly to the sentences in KB to
construct a proof of the desired sentence without consulting models.

If the number of models is large but the length of the proof is short, then
theorem proving is more efficient than model checking.

AIMA.3rd Chapter 7.4-6 9

Truth tables for inference

Goal of inference now is to decide whether KB |= α for some sentence α.
Truth table inference: Enumerate the models (truth assignment to every
proposition symbols), and check that α is true in every model in which KB

is true.

B1,1 B2,1 P1,1 P1,2 P2,1 P2,2 P3,1 R1 R2 R3 R4 R5 KB

false false false false false false false true true true true false false

false false false false false false true true true false true false false
...

false true false false false false false true true false true true false

false true false false false false true true true true true true true

false true false false false true false true true true true true true

false true false false false true true true true true true true true

false true false false true false false true false false true true false
...

true true true true true true true false true true false true false

AIMA.3rd Chapter 7.4-6 10

Inference by enumeration

The following depth-first truth-table enumeration algorithm for deciding propo-
sitional entailment is sound and complete

AIMA.3rd Chapter 7.4-6 11

function TT-Entails?(KB,α) returns true or false

inputs: KB, the knowledge base, a sentence in propositional logic

α, the query, a sentence in propositional logic

symbols← a list of the proposition symbols in KB and α

return TT-Check-All(KB,α, symbols, [])

function TT-Check-All(KB,α, symbols,model) returns true or false

if Empty?(symbols) then

if PL-True?(KB,model) then return PL-True?(α,model)

else return true

else do

P ←First(symbols); rest←Rest(symbols)

return TT-Check-All(KB,α, rest,Extend(P , true,model)) and

TT-Check-All(KB,α, rest,Extend(P , false,model))

PL-True? return true if a sentence holds within a model. The variable
model represents a partial model. and is a logical operation on its two
arguments, returning true or false.

AIMA.3rd Chapter 7.4-6 12

Inference by enumeration: Model checking

The TT-ENTAILS? algorithm is sound because it implements directly the
definition of entailment,
and complete because it works for any KB and α and always terminates
there are only finitely many models to examine.

Time complexity is O(2n) when KB and α contain n symbols; problem is
co-NP-complete

AIMA.3rd Chapter 7.4-6 13

Concepts in theorem proving: Logical equivalence

Two sentences are logically equivalent iff they are true in the same set of
models:

α ≡ β if and only if α |= β and β |= α

(α ∧ β) ≡ (β ∧ α) commutativity of ∧
(α ∨ β) ≡ (β ∨ α) commutativity of ∨

((α ∧ β) ∧ γ) ≡ (α ∧ (β ∧ γ)) associativity of ∧
((α ∨ β) ∨ γ) ≡ (α ∨ (β ∨ γ)) associativity of ∨

¬(¬α) ≡ α double-negation elimination
(α ⇒ β) ≡ (¬β ⇒ ¬α) contraposition
(α ⇒ β) ≡ (¬α ∨ β) implication elimination
(α ⇔ β) ≡ ((α ⇒ β) ∧ (β ⇒ α)) biconditional elimination
¬(α ∧ β) ≡ (¬α ∨ ¬β) De Morgan
¬(α ∨ β) ≡ (¬α ∧ ¬β) De Morgan

(α ∧ (β ∨ γ)) ≡ ((α ∧ β) ∨ (α ∧ γ)) distributivity of ∧ over ∨
(α ∨ (β ∧ γ)) ≡ ((α ∨ β) ∧ (α ∨ γ)) distributivity of ∨ over ∧

AIMA.3rd Chapter 7.4-6 14

Concepts cont.: Validity

A sentence is valid if it is true in all models,
e.g., True, A ∨ ¬A, A ⇒ A, (A ∧ (A ⇒ B)) ⇒ B

Validity is connected to inference via the Deduction Theorem:
For any sentence α and β, α |= β iff (α ⇒ β) is valid

From this, we can decide if α |= β by
checking that (α ⇒ β) is True in every model (TT inference)
by proving (α ⇒ β) is True.

AIMA.3rd Chapter 7.4-6 15

Concepts cont.: Satisfiability

A sentence is satisfiable if it is true in some model
e.g., A ∨ B, C

A sentence is unsatisfiable if it is true in no models
e.g., A ∧ ¬A

Validity and satisfiability are connected:
- α is valid iff ¬α is unsatisfiable
- α is satisfiable iff ¬α is not valid.

Satisfiability is connected to inference via the following:
α |= β if and only if (α ∧ ¬β) is unsatisfiable

i.e., proof by contradiction: One assumes a sentence β to be false and
shows that this leads to a contradiction with known axioms α ((α∧¬β)).

* Note: The problem of determining the satisfiability of sentences in propo-
sitional logic the SAT problem was the first problem proved to be NP-
complete.

AIMA.3rd Chapter 7.4-6 16

Proof methods summary

Proof methods divide into (roughly) two kinds:

Theorem proving: Application of inference rules
– Legitimate (sound) generation of new sentences from old
– Proof = a sequence of inference rule applications

Can use inference rules as operators in a standard search alg.
– Typically require translation of sentences into a normal form

Model checking: Enumeration of models
truth table enumeration (always exponential in n)
improved backtracking, e.g., Davis–Putnam–Logemann–Loveland
heuristic search in model space (sound but incomplete)

e.g., min-conflicts-like hill-climbing algorithms

AIMA.3rd Chapter 7.4-6 17

Forward and backward chaining

Horn Form (restricted)
KB = conjunction of Horn clauses

Horn clause =
♦ disjunction of literals of which at most one is positive; or
♦ (conjunction of symbols) ⇒ symbol

E.g., C ∧ (B ⇒ A) ∧ (C ∧D ⇒ B)

Modus Ponens (for Horn Form): complete for Horn KBs

α1, . . . , αn, α1 ∧ · · · ∧ αn ⇒ β

β

(“whenever any sentences of the form α1, . . . , αn, and α1 ∧ · · · ∧ αn ⇒ β

are given, then the sentence β can be inferred.”) Can be used with forward
chaining or backward chaining.
These algorithms are very natural and run in linear time

AIMA.3rd Chapter 7.4-6 18

Forward chaining

Idea: fire any rule whose premises are satisfied in the KB,
add its conclusion to the KB, until query is found

P ⇒ Q

L ∧M ⇒ P

B ∧ L ⇒ M

A ∧ P ⇒ L

A ∧B ⇒ L

A

B

Q

P

M

L

BA

Goal: determines if a proposition symbol q (i.e. query) is entailed by a KB

AIMA.3rd Chapter 7.4-6 19

Forward chaining algorithm

function PL-FC-Entails?(KB, q) returns true or false

inputs: KB, the knowledge base, a set of propositional Horn clauses

q, the query, a proposition symbol

local variables: count, a table, indexed by clause, initially the number of premises

inferred, a table, indexed by symbol, each entry initially false

agenda, a list of symbols, initially the symbols known in KB

while agenda is not empty do

p←Pop(agenda)

unless inferred[p] do

inferred[p]← true

for each Horn clause c in whose premise p appears do

decrement count[c]

if count[c] = 0 then do

if Head[c] = q then return true

Push(Head[c],agenda)

return false

AIMA.3rd Chapter 7.4-6 20

Forward chaining example

Q

P

M

L

BA

2 2

2

2

1

It begins from known facts (positive
literals) in the knowledge base.

AIMA.3rd Chapter 7.4-6 21

Forward chaining example

Q

P

M

L

B

2

1

A

1 1

2

If all the premises of an implica-
tion are known, then its conclusion
is added to the set of known facts.

AIMA.3rd Chapter 7.4-6 22

Forward chaining example

Q

P

M

2

1

A

1

B

0

1
L

If all the premises of an implica-
tion are known, then its conclusion
is added to the set of known facts.

AIMA.3rd Chapter 7.4-6 23

Forward chaining example

Q

P

M

1

A

1

B

0

L
0

1
The known leaves (here, A and B)
are set, and inference propagates up
the graph as far as possible.

AIMA.3rd Chapter 7.4-6 24

Forward chaining example

Q

1

A

1

B

0

L
0

M

0

P

Wherever a conjunction appears, the
propagation waits until all the con-
juncts are known before proceeding.

AIMA.3rd Chapter 7.4-6 25

Forward chaining example

Q

A B

0

L
0

M

0

P

0

0

AIMA.3rd Chapter 7.4-6 26

Forward chaining example

Q

A B

0

L
0

M

0

P

0

0

AIMA.3rd Chapter 7.4-6 27

Forward chaining example

A B

0

L
0

M

0

P

0

0

Q

FC is sound: every inference is
essentially an application of Modus

Ponens

AIMA.3rd Chapter 7.4-6 28

Proof of completeness

FC derives every atomic sentence that is entailed by KB

1. FC reaches a fixed point where no new atomic sentences are derived

2. Consider the final state as a model m, assigning true to each symbols
inferred during the FC and false for all other symbols

3. Every clause in the original KB is true in m

Proof by contradiction: Suppose a clause a1∧ . . .∧ak ⇒ b is false
in m

Then a1 ∧ . . . ∧ ak is true in m and b is false in m

This contradicts our assumption that the algorithm has reached a fixed
point

4. Hence m is a model of KB

5. If KB |= q, q is true in every model of KB, including m

General idea: construct any model of KB by sound inference, check α

AIMA.3rd Chapter 7.4-6 29

Backward chaining

Idea: work backwards from the query q:
to prove q by BC,

check if q is known already, or
prove by BC all premises of some rule concluding q

Avoid loops: check if new subgoal is already on the goal stack

Avoid repeated work: check if new subgoal
1) has already been proved true, or
2) has already failed

The algorithm is essentially identical to the And-Or-Graph-Search

algorithm

AIMA.3rd Chapter 7.4-6 30

Backward chaining example

Q

P

M

L

A B

−→

P

M

L

A

Q

B

AIMA.3rd Chapter 7.4-6 31

Backward chaining example

P

M

L

A

Q

B

−→ M

L

A

Q

P

B

AIMA.3rd Chapter 7.4-6 32

Backward chaining example

M

A

Q

P

L

B

−→ M

L

A

Q

P

B

AIMA.3rd Chapter 7.4-6 33

Backward chaining example

M

A

Q

P

L

B

−→ M

A

Q

P

L

B

AIMA.3rd Chapter 7.4-6 34

Backward chaining example

A

Q

P

L

B

M −→

A

Q

P

L

B

M

AIMA.3rd Chapter 7.4-6 35

Backward chaining example

A

Q

P

L

B

M −→

A

Q

P

L

B

M

AIMA.3rd Chapter 7.4-6 36

Forward vs. backward chaining

FC is data-driven, cf. automatic, unconscious processing,
e.g., object recognition, routine decisions

May do lots of work that is irrelevant to the goal:
an efficient implementation runs in linear time.

BC is goal-driven, appropriate for problem-solving,
e.g., Where are my keys? How do I get into a PhD program?

Complexity of BC can be much less than linear in size of KB
the process touches only relevant facts.

AIMA.3rd Chapter 7.4-6 37

Summary

Logical agents apply inference to a knowledge base
to derive new information and make decisions

Basic concepts of logic:
– syntax: formal structure of sentences
– semantics: truth of sentences wrt models
– entailment: necessary truth of one sentence given another
– inference: deriving sentences from other sentences
– soundess: derivations produce only entailed sentences
– completeness: derivations can produce all entailed sentences

Wumpus world requires the ability to represent partial and negated informa-
tion, reason by cases, etc.

Forward, backward chaining are linear-time, complete for Horn clauses
Resolution is complete for propositional logic

Propositional logic lacks expressive power

AIMA.3rd Chapter 7.4-6 38

