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Outline

♦ Syntax

♦ Semantics

♦ Parameterized distributions

Chapter 14.1–3 2



Bayesian networks

A simple, graphical notation for conditional independence assertions
and hence for compact specification of full joint distributions

Syntax:
a set of nodes, one per random variable
a directed acyclic graph (DAG)(link ≈ “directly influences”)
a conditional distribution for each node given its parents:

P(Xi|Parents(Xi))

In the simplest case, conditional distribution represented as
a conditional probability table (CPT) giving the
distribution over Xi for each combination of parent values
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Example

Topology of network encodes conditional independence assertions:

Weather Cavity

Toothache Catch

Weather is independent of the other variables

Toothache and Catch are conditionally independent given Cavity
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Example

I’m at work, neighbor John calls to say my alarm is ringing, but neighbor
Mary doesn’t call. Sometimes it’s set off by minor earthquakes. Is there a
burglar?

Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls
Network topology reflects “causal” knowledge:

– A burglar can set the alarm off
– An earthquake can set the alarm off
– The alarm can cause Mary to call
– The alarm can cause John to call
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Example contd.
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Compactness of Bayesian Network

Each node is represented with a conditional probability table (CPT). A CPT
for BooleanXi with k Boolean parents has
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2k rows for the combinations of parent values called
conditioning cases.

Each row requires one number p for Xi= true
(the number for Xi= false is just 1− p ¡- information is implied)

If each variable has no more than k parents,
the complete network requires O(n · 2k) numbers

I.e., grows linearly with n, vs. O(2n) for the full joint distribution

For burglary net, 1 + 1 + 4 + 2 + 2= 10 numbers (vs. 25 − 1 = 31)
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Global semantics

Two view of Bayesian Netwroks:
representation of the joint probability distribution (how to construct net-

works)
encoding of a collection of conditional independence statements. (de-

signing inference procedure)

Lets look at it as representation of the joint probability distribution
“Global” semantics defines the full joint distribution

B E

J

A

M

as the product of the local conditional distributions:

P (x1, . . . , xn) = Πn
i=1P (xi|parents(Xi))

e.g., P (j ∧m ∧ a ∧ ¬b ∧ ¬e)

= P (j|a)P (m|a)P (a|¬b,¬e)P (¬b)P (¬e)
= 0.9× 0.7× 0.001× 0.999× 0.998

≈ 0.00063
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Local semantics

Local semantics: each node is conditionally independent
of its nondescendants given its parents
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Theorem: Local semantics ⇔ global semantics
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Markov blanket

Each node is conditionally independent of all others given its
Markov blanket: parents + children + children’s parents
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Constructing Bayesian networks

Need a method such that a series of locally testable assertions of
conditional independence guarantees the required global semantics

1. Choose an ordering of variables X1, . . . , Xn

2. For i = 1 to n
add Xi to the network
select parents from X1, . . . , Xi−1 such that

P(Xi|Parents(Xi)) = P(Xi|X1, . . . , Xi−1)

This choice of parents guarantees the global semantics:

P(X1, . . . , Xn) = Πn
i=1P(Xi|X1, . . . , Xi−1) (chain rule)

= Πn
i=1P(Xi|Parents(Xi)) (by construction)
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Example

Suppose we choose the ordering M , J , A, B, E

MaryCalls

JohnCalls

P (J |M) = P (J)?
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Example

Suppose we choose the ordering M , J , A, B, E

MaryCalls

Alarm

JohnCalls

P (J |M) = P (J)? No
P (A|J,M) = P (A|J)? P (A|J,M) = P (A)?
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Example

Suppose we choose the ordering M , J , A, B, E

MaryCalls

Alarm

Burglary

JohnCalls

P (J |M) = P (J)? No
P (A|J,M) = P (A|J)? P (A|J,M) = P (A)? No
P (B|A, J,M) = P (B|A)?
P (B|A, J,M) = P (B)?
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Example

Suppose we choose the ordering M , J , A, B, E

MaryCalls

Alarm

Burglary

Earthquake

JohnCalls

P (J |M) = P (J)? No
P (A|J,M) = P (A|J)? P (A|J,M) = P (A)? No
P (B|A, J,M) = P (B|A)? Yes
P (B|A, J,M) = P (B)? No
P (E|B,A, J,M) = P (E|A)?
P (E|B,A, J,M) = P (E|A,B)?
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Example

Suppose we choose the ordering M , J , A, B, E

MaryCalls

Alarm

Burglary

Earthquake

JohnCalls

P (J |M) = P (J)? No
P (A|J,M) = P (A|J)? P (A|J,M) = P (A)? No
P (B|A, J,M) = P (B|A)? Yes
P (B|A, J,M) = P (B)? No
P (E|B,A, J,M) = P (E|A)? No
P (E|B,A, J,M) = P (E|A,B)? Yes
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Example contd.

MaryCalls

Alarm

Burglary

Earthquake

JohnCalls

Deciding conditional independence is hard in noncausal directions

(Causal models and conditional independence seem hardwired for humans!)

Assessing conditional probabilities is hard in noncausal directions

Network is less compact: 1 + 2 + 4 + 2 + 4= 13 numbers needed
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Does the order matter?

JohnCalls

MaryCalls

Alarm

Burglary

Earthquake

MaryCalls

Alarm

Earthquake

Burglary

JohnCalls

(a) (b)

Yes, If we try to build a diagnostic model with links from symptoms to causes,
we end up having to specify additional dependincies between otherwise inde-
pendent causes. If we stick o a causal model (order node s.t. cause variables
comes first ), we end up having to specify fewer numbers.
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Compact conditional distributions

CPT grows exponentially with number of parents
CPT becomes infinite with continuous-valued parent or child

Solution: canonical distributions that are defined compactly

Deterministic nodes are the simplest case:
X = f(Parents(X)) for some function f

E.g., Boolean functions
NorthAmerican ⇔ Canadian ∨ US ∨Mexican

E.g., numerical relationships among continuous variables

∂Level

∂t
= inflow + precipitation - outflow - evaporation
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Compact conditional distributions contd.

Noisy-OR distributions model multiple noninteracting causes
1) Parents U1 . . . Uk include all causes (can add leak node)
2) Independent failure probability qi for each cause alone

⇒ P (X|U1 . . . Uj,¬Uj+1 . . .¬Uk) = 1−Πj
i=1qi

Cold F lu Malaria P (Fever) P (¬Fever)
F F F 0.0 1.0
F F T 0.9 0.1

F T F 0.8 0.2

F T T 0.98 0.02 = 0.2× 0.1
T F F 0.4 0.6

T F T 0.94 0.06 = 0.6× 0.1
T T F 0.88 0.12 = 0.6× 0.2
T T T 0.988 0.012 = 0.6× 0.2× 0.1

Number of parameters linear in number of parents
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Hybrid (discrete+continuous) networks

Discrete (Subsidy? and Buys?); continuous (Harvest and Cost)

Buys?

HarvestSubsidy?

Cost

Option 1: discretization—possibly large errors, large CPTs
Option 2: finitely parameterized canonical families

1) Continuous variable, discrete+continuous parents (e.g., Cost)
2) Discrete variable, continuous parents (e.g., Buys?)
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Continuous child variables

Need one conditional density function for child variable given continuous
parents, for each possible assignment to discrete parents

Most common is the linear Gaussian model, e.g.,:

P (Cost= c|Harvest=h, Subsidy?= true)

= N(ath + bt, σt)(c)

=
1

σt
√
2π

exp
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Mean Cost varies linearly with Harvest, variance is fixed

Linear variation is unreasonable over the full range
but works OK if the likely range of Harvest is narrow
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Continuous child variables
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Figure 14.6 FILES: . The graphs in (a) and (b) show the probability distribution over as a

function of size, with true and false, respectively. Graph (c) shows the distribution

, obtained by summing over the two subsidy cases.

All-continuous network with LG distributions
⇒ full joint distribution is a multivariate Gaussian

Discrete+continuous LG network is a conditional Gaussian network i.e., a
multivariate Gaussian over all continuous variables for each combination of
discrete variable values
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Discrete variable w/ continuous parents

Probability of Buys? given Cost should be a “soft” threshold:
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Probit distribution uses integral of Gaussian:
Φ(x) = ∫x

−∞N(0, 1)(x)dx
P (Buys?= true | Cost= c) = Φ((−c + µ)/σ)
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Why the probit?

1. It’s sort of the right shape

2. Can view as hard threshold whose location is subject to noise

Buys?

Cost Cost Noise
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Discrete variable contd.

Sigmoid (or logit) distribution also used in neural networks:

P (Buys?= true | Cost= c) =
1

1 + exp(−2−c+µ
σ )

Sigmoid has similar shape to probit but much longer tails:

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12

P(
Bu

ys
?=

fa
lse

|C
os

t=
c)

Cost c

Chapter 14.1–3 27



Summary

Bayes nets provide a natural representation for (causally induced)
conditional independence

Topology + CPTs = compact representation of joint distribution

Generally easy for (non)experts to construct

Canonical distributions (e.g., noisy-OR) = compact representation of CPTs

Continuous variables ⇒ parameterized distributions (e.g., linear Gaussian)
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