INFERENCE IN BAYESIAN NETWORKS
 - BELIEF PROPAGATION

Instructor: Sael Lee

Combination of slides:
"Pearl's algorithm" by Tomas Singliar \& Daniel Lowd's slide for UW CSE 573 \& "B elief Propagation" by Jakob Metzler \& " Generalized BP" by Jonathan Yedidia

OUTLINE

* Motivation
* Pearl's BP Algorithm
* Generalized Belief Propagation

PROBABILISTIC INFERENCE

Computing the a posteriori belief of a variable in a general Bayesian Network is NP-hard

* Approximate inference
+ MCMC sampling
+ Belief Propagation

BELIEF PROPAGATION

* BP is a message passing algorithm that solves approxi mate inference problems in graphical model, including Bayesian networks and Markov random fields.
* Calculates marginal distribution for each of the unobs erved variable, conditional on any observed variables.
* It was first proposed by Judea Pearl in 1982 for trees (exact) and later extended to polytrees and general gra phs (approximate).

BAYESIAN BELIEF NETWORKS

* (G, P) directed acyclic graph with the joint p.d. P
* each node is a variable of a multivariate distribution
* links represent causal dependencies
+ CPT in each node
* Polytree
+ What is a polytree?
\times A Bayesian network graph is a polytree if (an only if) there is at most one path between any two nodes, V_{i} and V_{k}
\times implies each node separates the graph into two disjoint compone nts
+ Why do we care about polytrees?
× Exact BN inference is NP-hard...
\times...but on polytrees, takes linear time.

EXAMPLES: POLYTREE OR NOT?

OUR INFERENCE TASK

* We know the values of some evidence variables E :

$$
V_{e_{1}}, \ldots, V_{e_{E \mid}}
$$

* We wish to compute the posterior probability $P\left(X_{i} \mid E\right)$ for all non-evidence variables X_{i}.

PEARL'S BELIEF PROPAGATION

* We have the evidence E
* Local computation for one node V desired
* Information flows through the paths of G
+ flows as messages of two types $-\lambda$ and π

* V splits network into two disjoint parts
+ Strong independence assumptions induced - crucial!
* Denote $E_{V}{ }^{+}$the part of evidence accessible through the parents of V (causal)
+ passed downward in π messages
* Analogously, let E_{V} - be the diagnostic evidence
+ passed upwards in λ messages

PEARL'S BELIEF PROPAGATION

THE ח MESSAGES

* What are the messages?
* For simplicity, let the nodes be binary

The message passes on information.
What information? Observe:

$$
\begin{aligned}
P\left(V_{2}\right)= & P\left(V_{2} \mid V_{1}=T\right) P\left(V_{1}=T\right) \\
& +P\left(V_{2} \mid V_{1}=F\right) P\left(V_{1}=F\right)
\end{aligned}
$$

The information needed is the CPT of $\mathrm{V}_{1}=\pi_{\mathrm{V}}\left(\mathrm{V}_{1}\right)$
π Messages capture information passed from parent to child

THE EVIDENCE

* Evidence - values of observed nodes

$$
+V_{3}=T, V_{6}=3
$$

* Our belief in what the value of V_{i} ‘should' be changes.
* This belief is propagated
* As if the CPTs became

$\mathrm{V}_{3}=\mathrm{T}$	1.0
$\mathrm{~V}_{3}=\mathrm{F}$	0.0

P	$\mathrm{V}_{2}=\mathrm{T}$	$\mathrm{V}_{2}=\mathrm{F}$
$\mathrm{V}_{6}=1$	0.0	0.0
$\mathrm{~V}_{6}=2$	0.0	0.0
$\mathrm{~V}_{6}=3$	1.0	1.0

THE Λ MESSAGES

* We know what the π messages are
\times What about λ ?

Assume $\mathrm{E}=\left\{\mathrm{V}_{2}\right\}$ and compute by Bayes rule:

$$
P\left(V_{1} \mid V_{2}\right)=\frac{P\left(V_{1}\right) P\left(V_{2} \mid V_{1}\right)}{P\left(V_{2}\right)}=\alpha P\left(V_{1}\right) P\left(V_{2} \mid V_{1}\right)
$$

The information not available at V_{1} is the $P\left(V_{2} \mid V_{1}\right)$. To be passed upwards by a λ-message. Again, this is not in general exactly the CPT, but the belief based on evidence down the tree.

* The messages are $\pi(\mathrm{V})=P\left(V \mid E^{+}\right)$and $\lambda(\mathrm{V})=P\left(E^{-} \mid \mathrm{V}\right)$

COMBINATION OF EVIDENCE

* Let $\mathrm{E}_{\mathrm{V}}=\mathrm{E}_{\mathrm{V}}{ }^{+} \cup \mathrm{E}_{\mathrm{V}}$ and let us compute

$$
\begin{aligned}
& P(V \mid E)=P\left(V \mid E_{V}^{+}, E_{V}^{-}\right)=\alpha^{\prime} P\left(E_{V}^{+}, E_{V}^{-} \mid V\right) P(V)= \\
& \alpha^{\prime} P\left(E_{V}^{-} \mid V\right) P\left(E_{V}^{+} \mid V\right) P(V)=\alpha P\left(E_{V}^{-} \mid V\right) P\left(V \mid E_{V}^{+}\right)= \\
& \alpha \lambda(V) \pi(V)=B E L(V)
\end{aligned}
$$

* α is the normalization constant
* normalization is not necessary (can do it at the end)
* but may prevent numerical underflow problems

MESSAGES

\times Assume X received λ-messages from neighbors
\times How to compute $\lambda(X)=p\left(E^{-} \mid X\right)$?

* Let Y_{1}, \ldots, Y_{c} be the children of X
$* \lambda_{X Y}(X)$ denotes the λ-message sent between X and Y

$$
\lambda(X)=\prod_{j=1}^{c} \lambda_{Y_{j} X}(X)
$$

MESSAGES

* Assume X received π-messages from neighbors
\times How to compute $\pi(X)=p\left(X \mid E^{+}\right)$?
\times Let U_{1}, \ldots, U_{p} be the parents of X
$\times \pi_{X Y}(x)$ denotes the π-message sent between X and Y
* summation over the CPT

$$
\pi(X)=\sum_{u_{1}, \ldots, u_{p}} P\left(X \mid U_{1}, \ldots, U_{p}\right) \prod_{j=1}^{p} \pi_{U_{j} X}\left(U_{j}\right)
$$

MESSAGES TO PASS

* We need to compute $\pi_{x r}(x)$

$$
\pi_{X Y_{J}}(x)=\alpha \pi_{X}(x) \prod_{k \neq j} \lambda_{Y_{k} X}(x)
$$

* Similarly, $\lambda_{x Y}(x), X$ is parent, Y child
* Symbolically, group other parents of Y into $\mathrm{V}=\mathrm{V}_{1}, \ldots, \mathrm{~V}_{\mathrm{q}}$

$$
\lambda_{Y_{j} X}(x)=\sum_{y_{j}} \lambda_{Y_{j}}\left(y_{j}\right) \sum_{v_{1}, \ldots, v_{q}} p\left(y \mid v_{1}, \ldots, v_{q}\right) \prod_{k=1}^{q} \pi_{V_{k} Y_{j}}\left(v_{k}\right)
$$

PEARL'S BP ALGORITHM

* Initialization
+ For nodes with evidence e
$\times \lambda\left(x_{i}\right)=1$ wherever $x_{i}=e_{i} ; 0$ otherwise
$\times \pi\left(x_{i}\right)=1$ wherever $x_{i}=e_{i} ; 0$ otherwise
+ For nodes without parents
$\times \pi\left(x_{i}\right)=p\left(x_{i}\right)$ - prior probabilities
+ For nodes without children
$\lambda\left(x_{i}\right)=1$ uniformly (normalize at end)

THE PEARL BELIEF PROPAGATION ALGORITHM

* Iterate until no change occurs
+ (For each node X) if X has received all the π messages from its parents, calculate $\pi(x)$
+ (For each node X) if X has received all the λ messages from its children, calculate $\lambda(x)$
+ (For each node $X)$ if $\pi(x)$ has been calculated and X received all the λ-messages from all its children (except Y), calculate $\pi_{X Y}(X)$ and send it to Y.
+ (For each node X) if $\lambda(x)$ has been calculated and X received all the π-messages from all parents (except U), calculate $\lambda_{X U}(X)$ an d send it to U.
* Compute Belief BEL(X) $=\lambda(x) \pi(x)$
* and normalize

PROPERTIES OF BP

* Exact for polytrees
+ Each node separates Graph into 2 disjoint components
* On a polytree, the BP algorithm converges in time proportio nal to diameter of network - at most linear
* Work done in a node is proportional to the size of CPT
+ Hence BP is linear in number of network parameters
* For general BBNs
+ Exact inference is NP-hard
+ Approximate inference is NP-hard

LOOPY BELIEF PROPAGATION

Most graphs are not polytrees

+ Cutset conditioning
+ Clustering
\times Join Tree Method
+ Approximate Inference
Loopy BP

LOOPY BELIEF PROPAGATION

* If BP is used on graphs with loops, messages may circulate indefinitely
* Empirically, a good approximation is still achievable
+ Stop after fixed \# of iterations
+ Stop when no significant change in beliefs
+ If solution is not oscillatory but converges, it usually is a good approximation

LOOPY BELIEF PROPAGATION

* Just apply BP rules in spite of loops
* In each iteration, each node sends all messages in parallel
* Seems to work for some applications

TROUBLE WITH LBP

\times May not converge

+ A variety of tricks can help
* Cycling Error - old information is mistaken as new
* Convergence Error - unlike in a tree, neighbors need not be independent. However, LBP treats them as if they were.

GENERALIZED BP

* We can try to improve inference by taking into accoun t higher-order interactions among the variables
* An intuitive way to do this is to define messages that propagate between groups of nodes rather than just s ingle nodes
This is the intuition in Generalized Belief Propagation (GPB)

GBP ALGORITHM

1) Split the graph into basic clusters
[1245],[2356],
[4578],[5689]

GBP ALGORITHM

2) Find all intersection regions of the basic clusters, and all their intersections
[25], [45], [56], [58],
[5]

GBP ALGORITHM

3) Create a hierarchy of regions and their direct sub-reg ions

GBP ALGORITHM

4) Associate a message with each line in the graph e.g. message from
[1245]->[25]:
$\mathrm{m}_{14-25}\left(\mathrm{x}_{2}, \mathrm{x}_{5}\right)$

GBP ALGORITHM

5) Setup equations for beliefs of regions

- remember from earlier:

$$
b_{i}\left(x_{i}\right)=k \phi_{i}\left(x_{i}\right) \prod_{j \in N(i)} m_{j i}\left(x_{i}\right)
$$

- So the belief for the region containing [5] is:
- for the ${ }^{b_{5}}=k\left[\phi_{5}\right]\left[m_{2 \rightarrow 5} m_{4 \rightarrow 5} m_{6 \rightarrow 5} m_{8 \rightarrow 5}\right]$
- etc. $\quad b_{45}=k\left[\phi_{4} \phi_{5} \psi_{45}\right]\left[m_{12 \rightarrow 45} m_{78 \rightarrow 45} m_{2 \rightarrow 5} m_{6 \rightarrow 5} m_{8 \rightarrow 5}\right]$

Generalized Belief
 Propagation

$b_{5} \propto m_{2 \rightarrow 5} m_{4 \rightarrow 5} m_{6 \rightarrow 5} m_{8 \rightarrow 5}$

Generalized Belief

Generalized Belief

Generalized Belief

Generalized Belief
 Propagation

Use Marginalization Constraints to Derive Message-Update Rules

GBP ALGORITHM

6) Setup equations for updating messages by enforcing marginalization conditions and combining them with the belief equations:
e.g. condition \quad vields, with the previous two bel ${ }^{b_{5}\left(x_{5}\right)}=\sum_{x_{4}} b_{45}\left(x_{4}, x_{5}\right)$ sage update r ule

$$
m_{4 \rightarrow 5}\left(x_{5}\right) \leftarrow k \sum_{4_{2}} \phi_{4}\left(x_{4}\right) \psi_{45}\left(x_{4}, x_{5}\right) m_{12 \rightarrow 45}\left(x_{4}, x_{5}\right) m_{78 \rightarrow 25}\left(x_{2}, x_{5}\right)
$$

REFERENCES

+ Pearl, J. : Probabilistic reasoning in intelligent systems - Networks of plausib le inference, Morgan - Kaufmann 1988
+ Castillo, E., Gutierrez, J. M., Hadi, A. S. : Expert Systems and Probabilistic N etwork Models, Springer 1997
\times Derivations shown in class are from this book, except that we worked with π inste ad of ρ messages. They are related by factor of $p\left(e^{+}\right)$.
+ www.cs.kun.nl/~peterl/teaching/CS45CI/bbn3-4.ps.gz
+ Murphy, K.P., Weiss, Y., Jordan, M. : Loopy belief propagation for approximat e inference - an empirical study, UAI 99
+ reason.cs.uiuc.edu/eyal/classes/.../lec18-BeliefPropagation.ppt
+ www.cs.pitt.edu/~tomas/cs3750/pearl.ppt

