

INFERENCE IN BAYESIAN NETWORKS - BELIEF PROPAGATION

Instructor: Sael Lee

Combination of slides:

"Pearl's algorithm" by Tomas Singliar & Daniel Lowd's slide for UW CSE 573 & "B elief Propagation" by Jakob Metzler & "Generalized BP" by Jonathan Yedidia

OUTLINE

- × Motivation
- × Pearl's BP Algorithm
- **×** Generalized Belief Propagation

PROBABILISTIC INFERENCE

Computing the a posteriori belief of a variable in a general Bayesian Network is NP-hard

- × Approximate inference
 - + MCMC sampling
 - + Belief Propagation

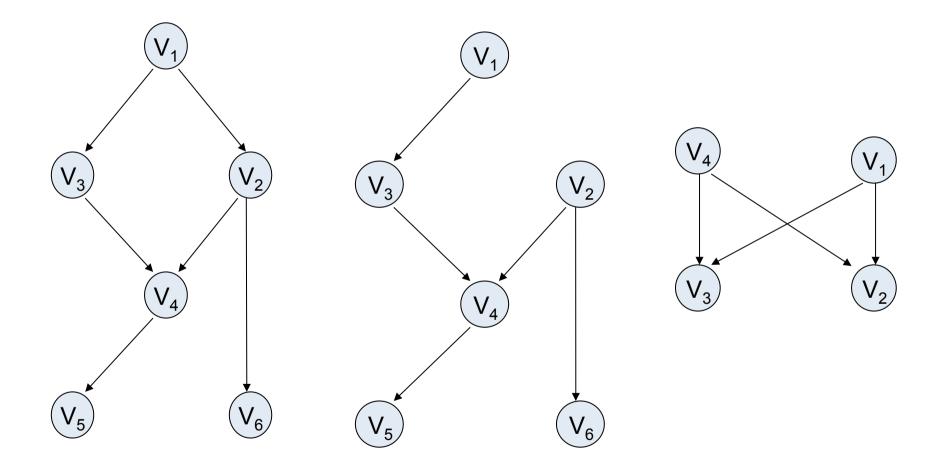
BELIEF PROPAGATION

- * BP is a message passing algorithm that solves approxi mate inference problems in graphical model, including Bayesian networks and Markov random fields.
- × Calculates marginal distribution for each of the unobs erved variable, conditional on any observed variables.
- It was first proposed by Judea Pearl in 1982 for trees (exact) and later extended to polytrees and general gra phs (approximate).

BAYESIAN BELIEF NETWORKS

- \times (G, P) directed acyclic graph with the joint p.d. P
- * each node is a variable of a multivariate distribution
- × links represent causal dependencies
 - + CPT in each node
- × Polytree
 - + What is a polytree?
 - × A Bayesian network graph is a *polytree* if (an only if) there is at most one path between any two nodes, V_i and V_k
 - implies each node separates the graph into two disjoint compone nts
 - + Why do we care about polytrees?
 - × Exact BN inference is NP-hard...
 - × ...but on polytrees, takes linear time.

EXAMPLES: POLYTREE OR NOT?



OUR INFERENCE TASK

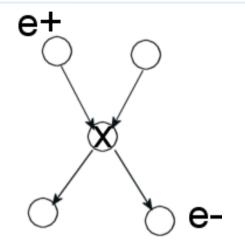
***** We know the values of some *evidence variables* E:

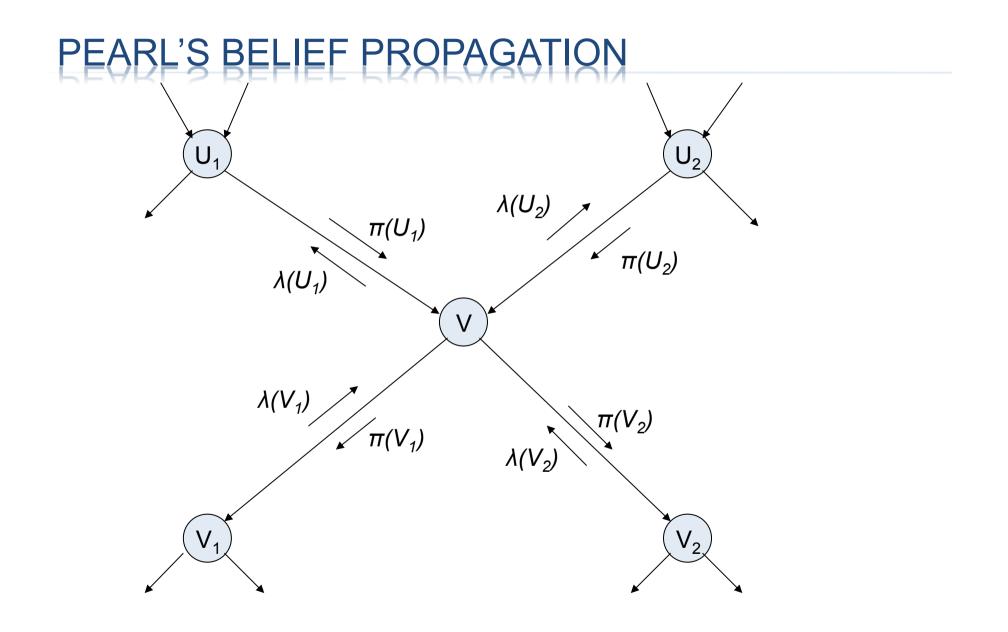
$$V_{e_1},...,V_{e_{|E|}}$$

• We wish to compute the posterior probability $P(X_i | E)$ for all non-evidence variables X_i .

PEARL'S BELIEF PROPAGATION

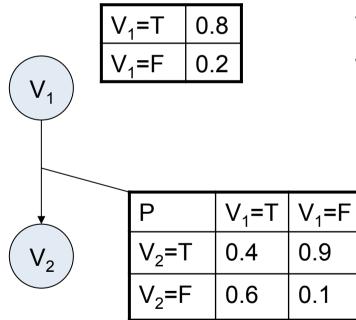
- × We have the evidence E
- × Local computation for one node V desired
- Information flows through the paths of G
 - + flows as messages of two types λ and π
- × **V** splits network into two *disjoint* parts
 - + Strong independence assumptions induced crucial!
- * Denote E_V^+ the part of evidence accessible through the parents of *V* (*causal*)
 - + passed downward in π messages
- × Analogously, let E_V^{-} be the *diagnostic* evidence
 - + passed upwards in **λ messages**





THE IT MESSAGES

- × What are the messages?
- × For simplicity, let the nodes be binary



The message passes on information. What information? Observe: $P(V_2) = P(V_2 | V_1=T)P(V_1=T)$ $+ P(V_2 | V_1=F)P(V_1=F)$

The information needed is the CPT of $V_1 = \pi_V(V_1)$

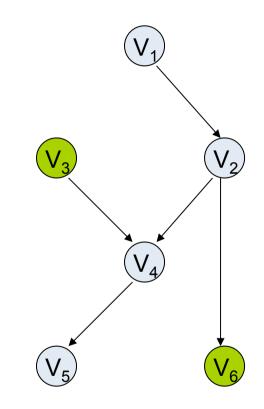
 π Messages capture information passed from parent to child

THE EVIDENCE

- Evidence values of observed nodes
 - + $V_3 = T, V_6 = 3$
- Our belief in what the value of V_i
 'should' be changes.
- * This belief is propagated
- × As if the CPTs became

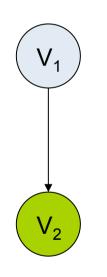
V ₃ =T	1.0
V ₃ =F	0.0

Р	V ₂ =T	V ₂ =F
V ₆ =1	0.0	0.0
V ₆ =2	0.0	0.0
V ₆ =3	1.0	1.0



THE A MESSAGES

- × We know what the π messages are
- × What about λ ?



Assume E = { V_2 } and compute by Bayes rule:

$$P(V_1 \mid V_2) = \frac{P(V_1)P(V_2 \mid V_1)}{P(V_2)} = \alpha P(V_1)P(V_2 \mid V_1)$$

The information not available at V_1 is the $P(V_2|V_1)$. To be passed upwards by a λ -message. Again, this is not in general exactly the CPT, but the *belief* based on evidence down the tree.

* The messages are $\pi(V)=P(V|E^+)$ and $\lambda(V)=P(E^-|V)$

COMBINATION OF EVIDENCE

× Let $E_V = E_V^+ \cup E_V^-$ and let us compute

 $P(V | E) = P(V | E_V^+, E_V^-) = \alpha' P(E_V^+, E_V^- | V) P(V) = \alpha' P(E_V^- | V) P(E_V^+ | V) P(V) = \alpha P(E_V^- | V) P(V | E_V^+) = \alpha \lambda(V) \pi(V) = BEL(V)$

- $\times \alpha$ is the normalization constant
- normalization is not necessary (can do it at the end)
- » but may prevent numerical underflow problems

MESSAGES

- × Assume X received λ-messages from neighbors
- × How to compute $\lambda(X) = p(E^{-}|X)$?
- × Let Y_1, \ldots, Y_c be the children of X
- × $\lambda_{XY}(x)$ denotes the λ -message sent between X and Y

$$\lambda(X) = \prod_{j=1}^{c} \lambda_{Y_j X}(X)$$

MESSAGES

- × Assume X received π -messages from neighbors
- × How to compute $\pi(X) = p(X | E^+)$?
- × Let U_1, \ldots, U_p be the parents of X
- × $\pi_{XY}(x)$ denotes the π -message sent between X and Y

× summation over the CPT

$$\pi(X) = \sum_{u_1,...,u_p} P(X | U_1,...,U_p) \prod_{j=1}^p \pi_{U_j X}(U_j)$$

MESSAGES TO PASS

× We need to compute $\pi_{XY}(x)$

$$\pi_{XY_J}(x) = \alpha \pi_X(x) \prod_{k \neq j} \lambda_{Y_k X}(x)$$

- × Similarly, $\lambda_{XY}(x)$, X is parent, Y child
- × Symbolically, group other parents of Y into $V = V_1, ..., V_q$

$$\lambda_{Y_{j}X}(x) = \sum_{y_{j}} \lambda_{Y_{j}}(y_{j}) \sum_{v_{1},...,v_{q}} p(y | v_{1},...,v_{q}) \prod_{k=1}^{q} \pi_{V_{k}Y_{j}}(v_{k})$$

PEARL'S BP ALGORITHM

× Initialization

- + For nodes with evidence e
 - $\times \lambda(x_i) = 1$ wherever $x_i = e_i$; 0 otherwise
 - $\times \pi(x_i) = 1$ wherever $x_i = e_i$; 0 otherwise
- + For nodes without parents

 $\times \pi(x_i) = p(x_i)$ - prior probabilities

+ For nodes without children

 $\times \lambda(x_i) = 1$ uniformly (normalize at end)

THE PEARL BELIEF PROPAGATION ALGORITHM

× Iterate until no change occurs

- + (For each node X) if X has received all the π messages from its parents, calculate $\pi(x)$
- + (For each node X) if X has received all the λ messages from its children, calculate $\lambda(x)$
- + (For each node X) if $\pi(x)$ has been calculated and X received all the λ -messages from all its children (except Y), calculate $\pi_{XY}(x)$ and send it to Y.
- + (For each node X) if $\lambda(x)$ has been calculated and X received all the π -messages from all parents (except U), calculate $\lambda_{XU}(x)$ an d send it to U.
- × Compute Belief BEL(X) = $\lambda(x)\pi(x)$
- × and normalize

PROPERTIES OF BP

- × Exact for polytrees
 - + Each node separates Graph into 2 disjoint components
- On a polytree, the BP algorithm converges in time proportio nal to diameter of network – at most linear
- * Work done in a node is proportional to the size of CPT
 - + Hence BP is linear in number of network parameters
- × For general BBNs
 - + Exact inference is NP-hard
 - + Approximate inference is NP-hard

LOOPY BELIEF PROPAGATION

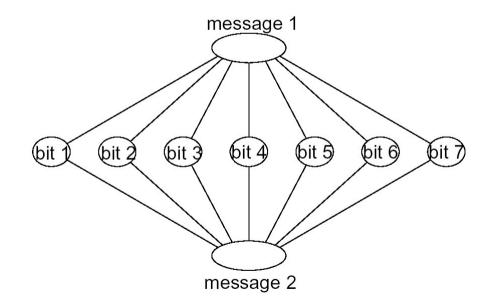
- × Most graphs are not polytrees
 - + Cutset conditioning
 - + Clustering
 - × Join Tree Method
 - + Approximate Inference
 - × Loopy BP

LOOPY BELIEF PROPAGATION

- If BP is used on graphs with loops, messages may circulate indefinitely
- * Empirically, a good approximation is still achievable
 - + Stop after fixed # of iterations
 - + Stop when no significant change in beliefs
 - + If solution is not oscillatory but converges, it usually is a good approximation

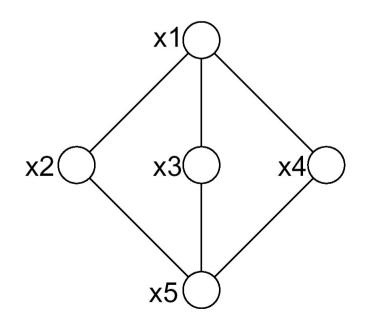
LOOPY BELIEF PROPAGATION

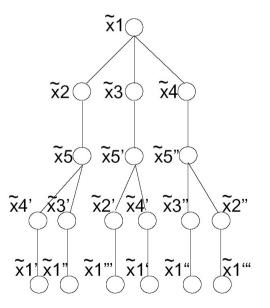
- × Just apply BP rules in spite of loops
- In each iteration, each node sends all messages in parallel
- × Seems to work for some applications



TROUBLE WITH LBP

- × May not converge
 - + A variety of tricks can help
- × Cycling Error old information is mistaken as new
- Convergence Error unlike in a tree, neighbors need not be independent. However, LBP treats them as if they were.





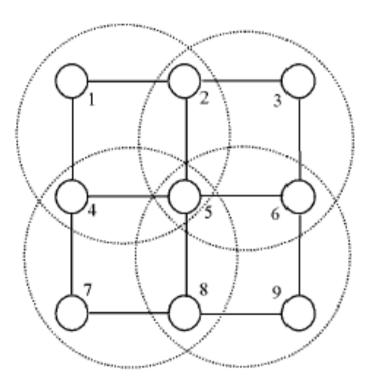
Bolt & Gaag "On the convergence error in loopy propagation" (2004).

GENERALIZED BP

- We can try to improve inference by taking into accoun t higher-order interactions among the variables
- An intuitive way to do this is to define messages that propagate between groups of nodes rather than just s ingle nodes
- This is the intuition in Generalized Belief Propagation (GPB)

1) Split the graph into basic clusters

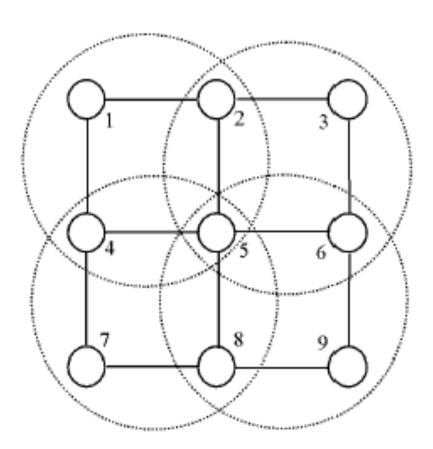
[1245],[2356], [4578],[5689]



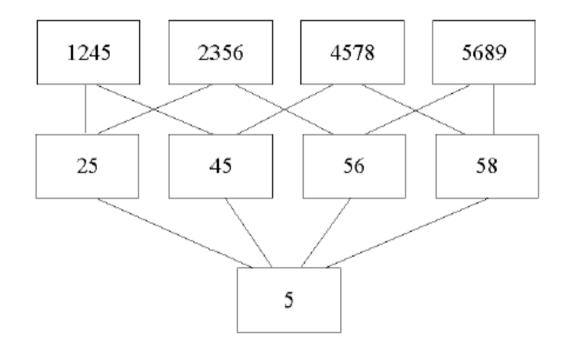
2) Find all intersection regions of the basic clusters, and all their intersections

[25], [45], [56], [58],

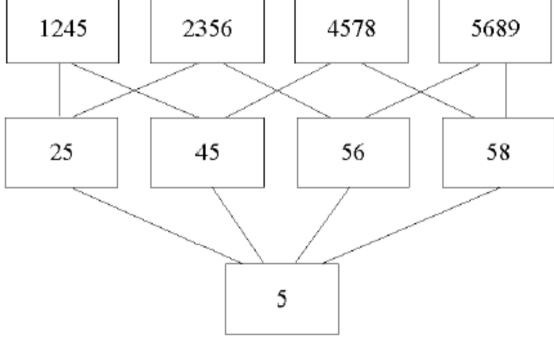
[5]



3) Create a hierarchy of regions and their direct sub-reg ions



4) Associate a message with each line in the graph e.g. message from [1245]->[25]: $m_{14->25}(x_2,x_5)$ 1245 2356 4578 568



- So

5) Setup equations for beliefs of regions

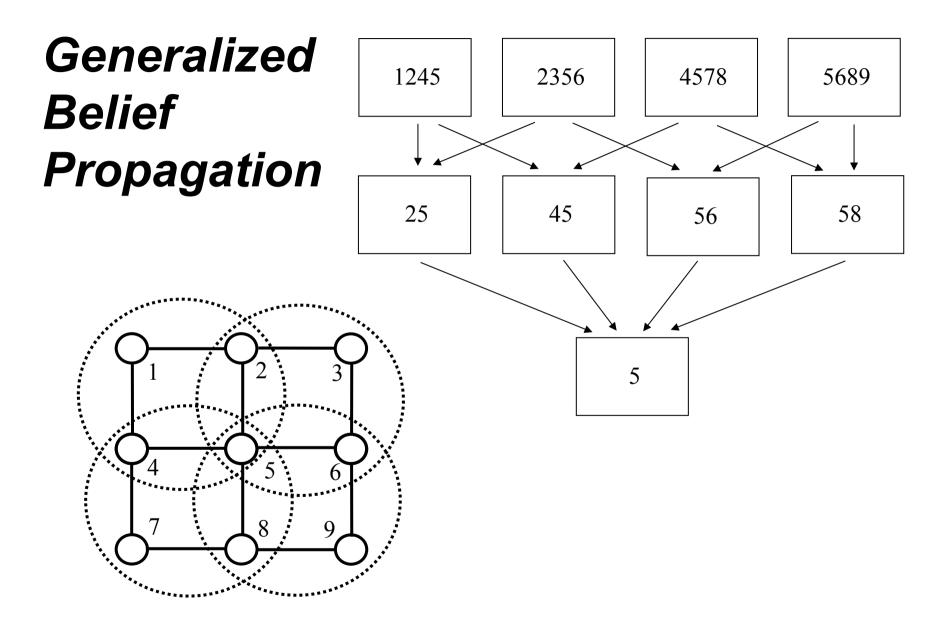
- remember from earlier:

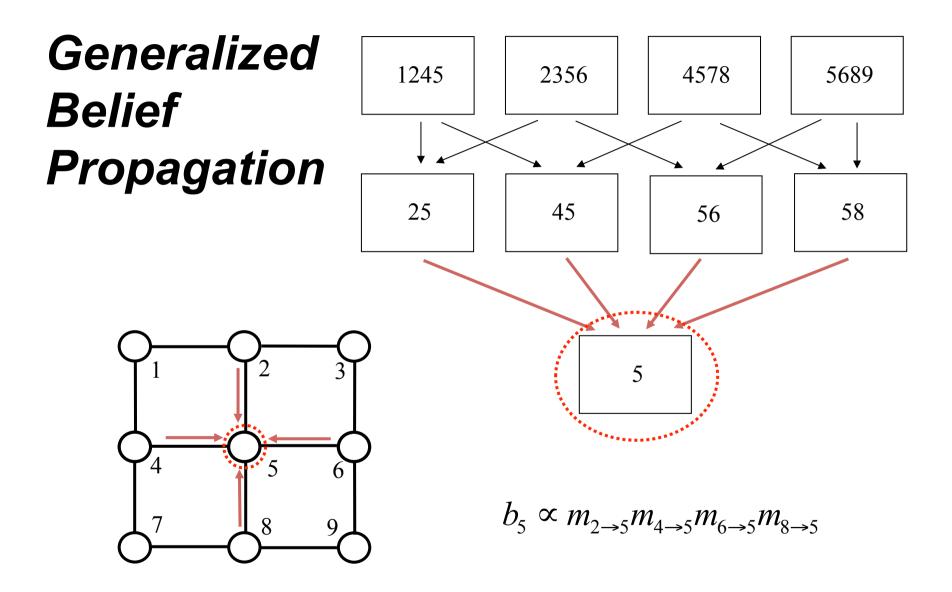
$$b_i(x_i) = k\phi_i(x_i) \prod_{\substack{j \in N(i) \\ [5] \text{ is:}}} m_{ji}(x_i)$$

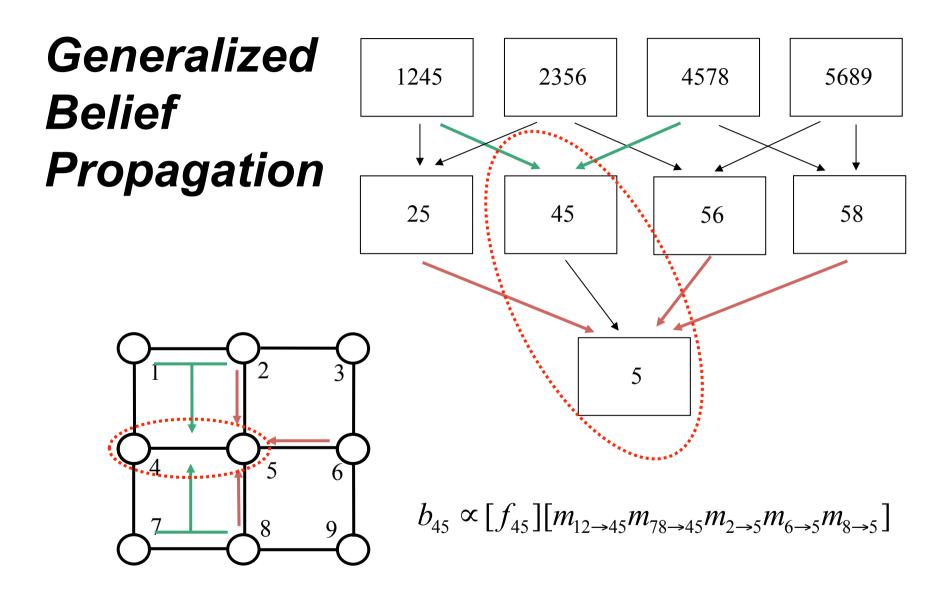
the belief for the region containing [5] is:

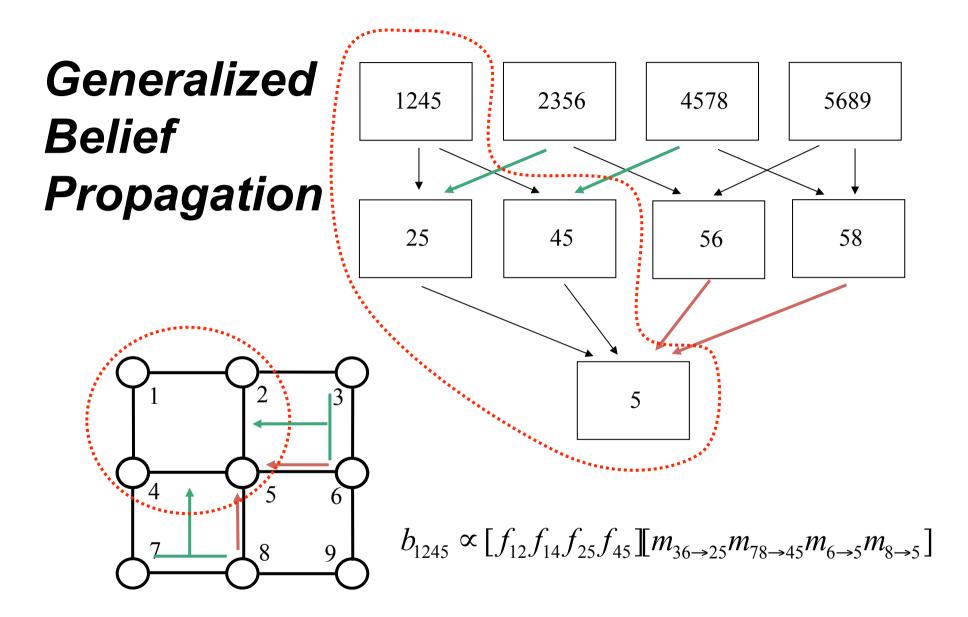
- for the
$$b_5 = k [\phi_5] [m_{2 \to 5} m_{4 \to 5} m_{6 \to 5} m_{8 \to 5}]$$

- etc. $b_{45} = k \left[\phi_4 \phi_5 \psi_{45} \right] \left[m_{12 \to 45} m_{78 \to 45} m_{2 \to 5} m_{6 \to 5} m_{8 \to 5} \right]$

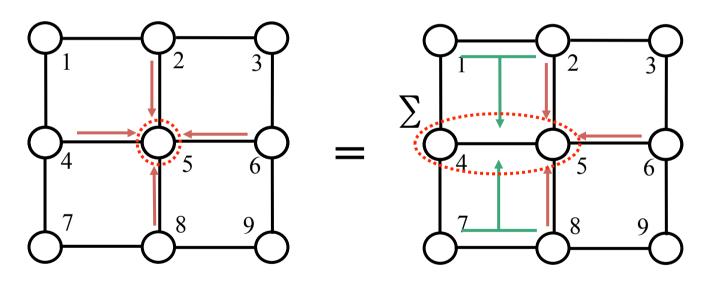






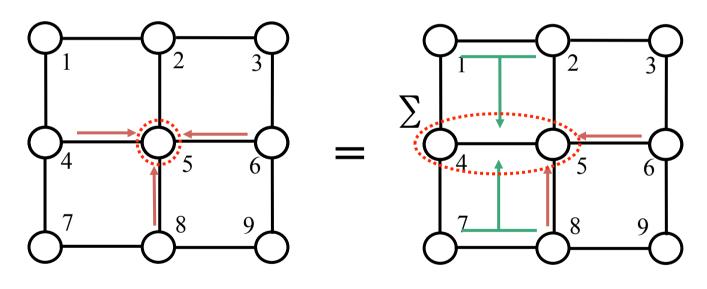


Use Marginalization Constraints to Derive Message-Update Rules



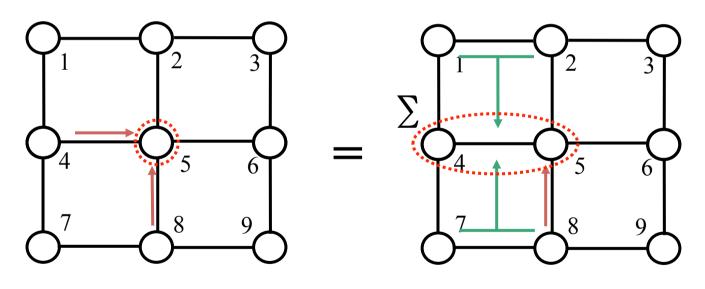
 $b_5(x_5) = \sum_{x_4} b_{45}(x_4, x_5)$

Use Marginalization Constraints to Derive Message-Update Rules



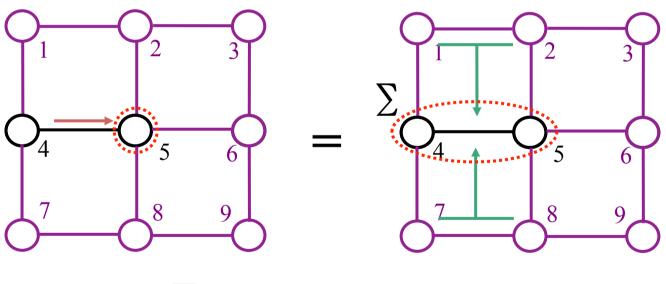
 $b_5(x_5) = \sum_{x_4} b_{45}(x_4, x_5)$

Use Marginalization Constraints to Derive Message-Update Rules



 $b_5(x_5) = \sum_{x_4} b_{45}(x_4, x_5)$

Use Marginalization Constraints to Derive Message-Update Rules



 $m_{4\to 5}(x_5) \propto \sum_{x_4} f_{45}(x_4, x_5) m_{12\to 45}(x_4, x_5) m_{78\to 45}(x_4, x_5)$

6) Setup equations for updating messages by enforcing marginalization conditions and combining them with the belief equations:

e.g. condition vields, with the previous two be $|_{b_5(x_5)} = \sum_{x_4} b_{45}(x_4, x_5)_{3}$ age update r ule

$$m_{4\to5}(x_5) \leftarrow k \sum_{4_2} \phi_4(x_4) \psi_{45}(x_4, x_5) m_{12\to45}(x_4, x_5) m_{78\to25}(x_2, x_5)$$

REFERENCES

- Pearl, J. : Probabilistic reasoning in intelligent systems Networks of plausib le inference, Morgan – Kaufmann 1988
- + Castillo, E., Gutierrez, J. M., Hadi, A. S. : Expert Systems and Probabilistic N etwork Models, Springer 1997
 - × Derivations shown in class are from this book, except that we worked with π inste ad of ρ messages. They are related by factor of p(e⁺).
- + <u>www.cs.kun.nl/~peterl/teaching/CS45Cl/bbn3-4.ps.gz</u>
- + Murphy, K.P., Weiss, Y., Jordan, M. : Loopy belief propagation for approximat e inference – an empirical study, UAI 99
- + reason.cs.uiuc.edu/eyal/classes/.../lec18-BeliefPropagation.ppt
- + <u>www.cs.pitt.edu/~tomas/cs3750/pearl.ppt</u>