
Temporal probability models

Chapter 15, Sections 4–5

Chapter 15, Sections 4–5 1

Outline

♦ Inference: filtering, prediction, smoothing

♦ Hidden Markov models

Chapter 15, Sections 2.2–3 2

Hidden Markov models

Xt is a single, discrete variable (usually Et is too)
Domain of Xt is {1, . . . , S}

Transition matrix Tij = P (Xt= j|Xt−1= i), e.g.,

0.7 0.3
0.3 0.7

Sensor(Emission) matrixOt for each time step, diagonal elements P (et|Xt= i)

e.g., with U1= true, O1 =

0.9 0
0 0.2

Forward and backward messages as column vectors:

f1:t+1 = αOt+1T
"f1:t

bk+1:t = TOk+1bk+2:t

Forward-backward algorithm needs time O(S2t) and space O(St)

Chapter 15, Sections 2.2–3 13

Improve Inference 1: Country dance algorithm

Allows smoothing to be carried out in constant space, independently of se-
quence length. Can avoid storing all forward messages in smoothing by
running
forward algorithm backwards:

f1:t+1 = αOt+1T
!f1:t

O−1
t+1f1:t+1 = αT!f1:t

α′(T!)−1O−1
t+1f1:t+1 = f1:t

Algorithm: for a sequence of length t, the forward pass computes ft:t (forget-
ting all intermediate results), backward pass computes fi, bi simultaneously

Chapter 15, Sections 2.2–3 14

Country dance algorithm

forward pass computes ft:t

Chapter 15, Sections 2.2–3 15

Country dance algorithm

backward pass computes fi, bi simultaneously

Chapter 15, Sections 2.2–3 16

Improve Inference 2: Fixed-lag smoothing

t−d t−d+1 t t+1
f
b

f
b

Obvious method runs forward–backward for d steps each time

When new observatio arrives, recursively compute αf1:t−d+1xbt−d+2:t+1 for
slice t− d + 1 from αf1:t−dxbt−d+1:t.

Forward message f1:t−d+1 from, f1:t−d using standard filtering process.
Backward message not directly obtainable

Chapter 15, Sections 2.2–3 17

Online fixed-lag smoothing contd.

Define Bj:k = Πk
i= jTOi, so

bt−d+1:t = Bt−d+1:t1

bt−d+2:t+1 = Bt−d+2:t+11

Now we can get a recursive update for B:

Bt−d+2:t+1 = O−1
t−d+1T

−1Bt−d+1:tTOt+1

Hence update cost is constant, independent of lag d

Chapter 15, Sections 2.2–3 18

Online fixed-lag smoothing algorithm

function FIXED-LAG-SMOOTHING(, ,) returns a distribution over X

inputs: , the current evidence for time step

, a hidden Markov model with transition matrix T

, the length of the lag for smoothing

persistent: , the current time, initially 1

f, the forward message P , initially PRIOR

B, the -step backward transformation matrix, initially the identity matrix

, double-ended list of evidence from to , initially empty

local variables: O O , diagonal matrices containing the sensor model information

add to the end of

O diagonal matrix containing P

if then

f FORWARD f

remove from the beginning of

O diagonal matrix containing P

B O T BTO

else B BTO

if then return NORMALIZE f B1 else return null

Figure 15.6 An algorithm for smoothing with a fixed time lag of steps, implemented as an online

algorithm that outputs the new smoothed estimate given the observation for a new time step. Notice

that the final output NORMALIZE f B1 is just f b, by Equation (1 5 . 1 4)

Chapter 15, Sections 2.2–3 19

HMM example: Localization

(a) Posterior distribution over robot location after E1 = NSW

(b) Posterior distribution over robot location after E1 = NSW,E2 = NS

Chapter 15, Sections 2.2–3 20

Outline

♦ Kalman filters

♦ Dynamic Bayes network

♦ Partical filtering

Chapter 15, Sections 4–5 2

Kalman filters

“The Kalman filter, also known as linear quadratic estimation (LQE), is an
algorithm which uses a series of measurements observed over time, that
containing noise, and produces estimates of unknown variables that tend to
be more precise than single measurement alone.” (wikipedia)

Modelling systems described by a set of continuous variables,
e.g., tracking a bird flying—Xt=X,Y, Z, Ẋ, Ẏ , Ż.
Airplanes, robots, ecosystems, economies, chemical plants, planets, . . .

tZ t+1Z

tX t+1X

tX t+1X

Gaussian prior, linear Gaussian transition model and sensor model

Chapter 15, Sections 4–5 3

Updating Gaussian distributions

Prediction step: if current P(Xt|e1:t) is Gaussian and transition model
P(Xt+1|xt) is linear Gaussian, then one step prediction

P(Xt+1|e1:t) =
∫
xt
P(Xt+1|xt)P (xt|e1:t) dxt

is Gaussian.
If prediction P(Xt+1|e1:t) is Gaussian and the sensor mdoel P(et+1|Xt+1) is
linear Gaussian, then the updated distribution

P(Xt+1|e1:t+1) = αP(et+1|Xt+1)P(Xt+1|e1:t)

is Gaussian

Hence P(Xt|e1:t) is multivariate Gaussian N(µt,Σt) for all t

General (nonlinear, non-Gaussian) process: description of posterior grows
unboundedly as t → ∞

* linear Gaussian: linear model with Gaussian noise Y = aX +N(µ, σ)

Chapter 15, Sections 4–5 4

Simple 1-D example

Gaussian random walk on X–axis, s.d. σx, sensor s.d. σz

Prior: P(x0) = N(µ0,σ0)
Transition model: P(xt+1|xt) = N(xt, σx)
Sensor model: P(zt+1|xt+1) = N(xt+1, σz)

µt+1 =
(σ2

t + σ2
x)zt+1 + σ2

zµt

σ2
t + σ2

x + σ2
z

σ2
t+1 =

(σ2
t + σ2

x)σ
2
z

σ2
t + σ2

x + σ2
z

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

-8 -6 -4 -2 0 2 4 6 8

P(
X

)

X position

P(x0)

P(x1)

P(x1 | z1=2.5)

*z1

Chapter 15, Sections 4–5 5

General Kalman update

Transition and sensor models:

P (xt+1|xt) = N(Fxt,Σx)(xt+1)
P (zt|xt) = N(Hxt,Σz)(zt)

F is the matrix for the transition; Σx the transition noise covariance
H is the matrix for the sensors; Σz the sensor noise covariance

Filter computes the following update:

µt+1 = Fµt +Kt+1(zt+1 −HFµt)
Σt+1 = (I−Kt+1)(FΣtF

% +Σx)

where Kt+1= (FΣtF
% +Σx)H

%(H(FΣtF
% +Σx)H

% +Σz)−1

is the Kalman gain matrix

Σt and Kt are independent of observation sequence, so compute offline

Chapter 15, Sections 4–5 6

2-D tracking example: filtering

8 10 12 14 16 18 20 22 24 26
6

7

8

9

10

11

12

X

Y

2D filtering

true
observed
filtered

Chapter 15, Sections 4–5 7

2-D tracking example: smoothing

8 10 12 14 16 18 20 22 24 26
6

7

8

9

10

11

12

X

Y

2D smoothing

true
observed
smoothed

Chapter 15, Sections 4–5 8

Where it breaks

Cannot be applied if the transition model is nonlinear

Extended Kalman Filter models transition as locally linear around xt=µt

Fails if systems is locally unsmooth

Chapter 15, Sections 4–5 9

Dynamic Bayesian networks

Xt, Et contain arbitrarily many variables in a replicated Bayes net

0.3f
0.7t

0.9t
0.2f

Rain0 Rain1

Umbrella1

P(U)1R1

P(R)1R0

0.7

P(R)0

Z1

X1

X1tXX 0

X 0

1BatteryBattery 0

1BMeter

Chapter 15, Sections 4–5 10

DBNs vs. HMMs

Every HMM is a single-variable DBN; every discrete DBN is an HMM

X t Xt+1

tY t+1Y

tZ t+1Z

Sparse dependencies ⇒ exponentially fewer parameters;
e.g., 20 state variables, three parents each
DBN has 20× 23=160 parameters, HMM has 220× 220 ≈ 1012

Chapter 15, Sections 4–5 11

DBNs vs Kalman filters

Every Kalman filter model is a DBN, but few DBNs are KFs;
real world requires non-Gaussian posteriors

E.g., where are my keys?

Chapter 15, Sections 4–5 12

Constructing DBNs

requires:
♦ prior distribution over stat variables: P(X0)
♦ transition model: P(Xt+1|Xt)
♦ sensor model: P(Et|Xt)

* If we assume the models are stationary, they need to be specified only
once.

Sensor model in more detail:
♦ Perfect sensor
♦ Sensor with noisy reading: Gaussian error model
♦ Temporal failure in sensor: Transient failure model

For the system to handle sensor failur properly , the sensor model must in-
clude the possibility of failure: ex. P(BMetert = 0)|Batteryt = 5) = 0.03
prob. larger than prob. of Gaussian error model

Chapter 15, Sections 4–5 13

Constructing DBNs cont.

Gaussian error model vs Transient failure model

-1

0

1

2

3

4

5

15 20 25 30

E
(B
a
tt
er
y t

)

Time step t

E(Batteryt |...5555005555...)

E(Batteryt |...5555000000...)
-1

0

1

2

3

4

5

15 20 25 30

E
(B
a
tt
er
y t

)

Time step

E(Batteryt |...5555005555...)

E(Batteryt |...5555000000...)

(a) (b)

Chapter 15, Sections 4–5 14

Constructing DBNs cont.

♦ Persistant failure in sensor: Persistant failure model

Transient failure model vs Persistant failure model

1BatteryBattery0

1BMeter

0BMBroken 1BMBroken

f
t
0B 1P(B)

1.000
0.001

-1

0

1

2

3

4

5

15 20 25 30
E(

Ba
tte

ry
)

Time step

E(Battery|...5555005555...)

E(Battery|...5555000000...)

P(BMBroken|...5555000000...)

P(BMBroken|...5555005555...)

Chapter 15, Sections 4–5 15

Exact inference in DBNs

Naive method: unroll the network and run any exact algorithm

0.3f
0.7t

P(R)1R0

0.7

P(R0)

0.2f
0.9t

P(U)1R1

Umbrella1

Rain0 Rain1

0.7

P(R0)

4

0.2f
0.9t

P(U)R4

f
t

0.3
0.7

P(R)4R3

Umbrella4

Rain4

0.2f
0.9t

P(U)3R3

f
t

R

0.3
0.7

P(R)32

Umbrella3

Rain3

0.2f
0.9t

P(U)2R2

f
t

R

0.3
0.7

P(R)21

Umbrella2

Rain2

0.2f
0.9t

P(U)1R1

f
t

R

0.3
0.7

P(R)10

Umbrella1

Rain0 Rain1

problem: inference cost for each update grows with t

Rollup filtering: add slice t + 1, “sum out” slice t using variable elimination

Largest factor is O(dn+1), update cost O(dn+2)
(cf. HMM update cost O(d2n))

Chapter 15, Sections 4–5 16

Likelihood weighting analysis review(14.5)

Sample the nonevidence nodes of the network in topological order, weighting
each sample by the likelihood it accords to the observed evidence variables.

Cloudy

RainSprinkler

 Wet
Grass

C
T
F

.80

.20

P(R|C)C
T
F

.10

.50

P(S|C)

S R
T T
T F
F T
F F

.90

.90

.99
P(W|S,R)

P(C)
.50

.01

w = 1.0× 0.1× 0.99 = 0.099

Weighted sampling probability is
SWS(z, e)w(z, e)

= Πl
i=1P (zi|parents(Zi)) Πm

i=1P (ei|parents(Ei))

Chapter 15, Sections 4–5 17

Likelihood weighting for DBNs

Set of weighted samples approximates the belief state

Rain1

Umbrella1

Rain0

Umbrella2

Rain3

Umbrella3

Rain4

Umbrella4

Rain5

Umbrella5

Rain2

LW samples pay no attention to the evidence!
⇒ fraction “agreeing” falls exponentially with t
⇒ number of samples required grows exponentially with t

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

RM
S

er
ro

r

Time step

LW(10)
LW(100)

LW(1000)
LW(10000)

Chapter 15, Sections 4–5 18

Moditication to likelihood weight

Basic idea:
♦ 1) run all N samples together thorugh the DBN , one slice at at time
♦ 2) use the samples themselves as an approximate reprresenation of

the current state distribution.
♦ 3) ensure that the population of samples (“particles”) tracks the

high-likelihood regions of the state-space
by focusing the set of samples in the high-probability regions of the state

space.

Chapter 15, Sections 4–5 19

Particle filtering

Replicate particles proportional to likelihood for et

true

false

(a) Propagate (b) Weight (c) Resample

Raint Raint +1Raint +1Raint +1

Widely used for tracking nonlinear systems, esp. in vision

Also used for simultaneous localization and mapping in mobile robots
105-dimensional state space

Chapter 15, Sections 4–5 20

Particle filtering contd.

Assume consistent at time t: N(xt|e1:t)/N = P (xt|e1:t)

Propagate forward: populations of xt+1 are

N(xt+1|e1:t) = ΣxtP (xt+1|xt)N(xt|e1:t)

Weight samples by their likelihood for et+1:

W (xt+1|e1:t+1) = P (et+1|xt+1)N(xt+1|e1:t)

Resample to obtain populations proportional to W :

N(xt+1|e1:t+1)/N = αW (xt+1|e1:t+1) = αP (et+1|xt+1)N(xt+1|e1:t)

= αP (et+1|xt+1)ΣxtP (xt+1|xt)N(xt|e1:t)

= α′P (et+1|xt+1)ΣxtP (xt+1|xt)P (xt|e1:t)

= P (xt+1|e1:t+1)

Chapter 15, Sections 4–5 21

Particle filtering algorithm

function PARTICLE-FILTERING(e, ,) returns a set of samples for the next time step

inputs: e, the new incoming evidence

, the number of samples to be maintained

, a DBN with prior P X , transition model P X X , sensor model P E X

persistent: , a vector of samples of size , initially generated from P X

local variables: , a vector of weights of size

for = 1 to do

[] sample from P X X /* step 1 */

[] P e X /* step 2 */

WEIGHTED-SAMPLE-WITH-REPLACEMENT(, ,) /* step 3 */

return

Figure 15.17 The particle filtering algorithm implemented as a recursive update operation with state

(the set of samples). Each of the sampling operations involves sampling the relevant slice variables

in topological order, much as in PRIOR-SAMPLE. The WEIGHTED-SAMPLE-WITH-REPLACEMENT

operation can be implemented to run in expected time. The step numbers refer to the description

in the text.

Chapter 15, Sections 4–5 22

Particle filtering performance

Approximation error of particle filtering remains bounded over time,
at least empirically—theoretical analysis is difficult

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

A
vg

 a
bs

ol
ut

e
er

ro
r

Time step

LW(25)
LW(100)

LW(1000)
LW(10000)

ER/SOF(25)

Chapter 15, Sections 4–5 23

Summary

Temporal models use state and sensor variables replicated over time

Markov assumptions and stationarity assumption, so we need
– transition modelP(Xt|Xt−1)
– sensor model P(Et|Xt)

Tasks are filtering, prediction, smoothing, most likely sequence;
all done recursively with constant cost per time step

Hidden Markov models have a single discrete state variable; used
for speech recognition

Kalman filters allow n state variables, linear Gaussian, O(n3) update

Dynamic Bayes nets subsume HMMs, Kalman filters; exact update intractable

Particle filtering is a good approximate filtering algorithm for DBNs

Chapter 15, Sections 4–5 24

