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Outline

♦ Inference: filtering, prediction, smoothing

♦ Hidden Markov models
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Hidden Markov models

Xt is a single, discrete variable (usually Et is too)
Domain of Xt is {1, . . . , S}

Transition matrix Tij = P (Xt= j|Xt−1= i), e.g.,
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Sensor(Emission) matrixOt for each time step, diagonal elements P (et|Xt= i)

e.g., with U1= true, O1 =
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Forward and backward messages as column vectors:

f1:t+1 = αOt+1T
"f1:t

bk+1:t = TOk+1bk+2:t

Forward-backward algorithm needs time O(S2t) and space O(St)
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Improve Inference 1: Country dance algorithm

Allows smoothing to be carried out in constant space, independently of se-
quence length. Can avoid storing all forward messages in smoothing by
running
forward algorithm backwards:

f1:t+1 = αOt+1T
!f1:t

O−1
t+1f1:t+1 = αT!f1:t

α′(T!)−1O−1
t+1f1:t+1 = f1:t

Algorithm: for a sequence of length t, the forward pass computes ft:t (forget-
ting all intermediate results), backward pass computes fi, bi simultaneously
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Country dance algorithm

forward pass computes ft:t
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Country dance algorithm

backward pass computes fi, bi simultaneously
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Improve Inference 2: Fixed-lag smoothing

t−d t−d+1 t t+1
f
b

f
b

Obvious method runs forward–backward for d steps each time

When new observatio arrives, recursively compute αf1:t−d+1xbt−d+2:t+1 for
slice t− d + 1 from αf1:t−dxbt−d+1:t.

Forward message f1:t−d+1 from, f1:t−d using standard filtering process.
Backward message not directly obtainable
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Online fixed-lag smoothing contd.

Define Bj:k = Πk
i= jTOi, so

bt−d+1:t = Bt−d+1:t1

bt−d+2:t+1 = Bt−d+2:t+11

Now we can get a recursive update for B:

Bt−d+2:t+1 = O−1
t−d+1T

−1Bt−d+1:tTOt+1

Hence update cost is constant, independent of lag d
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Online fixed-lag smoothing algorithm

function FIXED-LAG-SMOOTHING( , , ) returns a distribution over X

inputs: , the current evidence for time step

, a hidden Markov model with transition matrix T

, the length of the lag for smoothing

persistent: , the current time, initially 1

f, the forward message P , initially PRIOR

B, the -step backward transformation matrix, initially the identity matrix

, double-ended list of evidence from to , initially empty

local variables: O O , diagonal matrices containing the sensor model information

add to the end of

O diagonal matrix containing P

if then

f FORWARD f

remove from the beginning of

O diagonal matrix containing P

B O T BTO

else B BTO

if then return NORMALIZE f B1 else return null

Figure 15.6 An algorithm for smoothing with a fixed time lag of steps, implemented as an online

algorithm that outputs the new smoothed estimate given the observation for a new time step. Notice

that the final output NORMALIZE f B1 is just f b, by Equation ( 1 5 . 1 4 )
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HMM example: Localization

(a) Posterior distribution over robot location after E1 = NSW

(b) Posterior distribution over robot location after E1 = NSW,E2 = NS
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Outline

♦ Kalman filters

♦ Dynamic Bayes network

♦ Partical filtering
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Kalman filters

“The Kalman filter, also known as linear quadratic estimation (LQE), is an
algorithm which uses a series of measurements observed over time, that
containing noise, and produces estimates of unknown variables that tend to
be more precise than single measurement alone.” (wikipedia)

Modelling systems described by a set of continuous variables,
e.g., tracking a bird flying—Xt=X,Y, Z, Ẋ, Ẏ , Ż.
Airplanes, robots, ecosystems, economies, chemical plants, planets, . . .

tZ t+1Z

tX t+1X

tX t+1X

Gaussian prior, linear Gaussian transition model and sensor model
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Updating Gaussian distributions

Prediction step: if current P(Xt|e1:t) is Gaussian and transition model
P(Xt+1|xt) is linear Gaussian, then one step prediction

P(Xt+1|e1:t) =
∫
xt
P(Xt+1|xt)P (xt|e1:t) dxt

is Gaussian.
If prediction P(Xt+1|e1:t) is Gaussian and the sensor mdoel P(et+1|Xt+1) is
linear Gaussian, then the updated distribution

P(Xt+1|e1:t+1) = αP(et+1|Xt+1)P(Xt+1|e1:t)

is Gaussian

Hence P(Xt|e1:t) is multivariate Gaussian N(µt,Σt) for all t

General (nonlinear, non-Gaussian) process: description of posterior grows
unboundedly as t → ∞

* linear Gaussian: linear model with Gaussian noise Y = aX +N(µ, σ)
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Simple 1-D example

Gaussian random walk on X–axis, s.d. σx, sensor s.d. σz

Prior: P(x0) = N(µ0,σ0)
Transition model: P(xt+1|xt) = N(xt, σx)
Sensor model: P(zt+1|xt+1) = N(xt+1, σz)
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General Kalman update

Transition and sensor models:

P (xt+1|xt) = N(Fxt,Σx)(xt+1)
P (zt|xt) = N(Hxt,Σz)(zt)

F is the matrix for the transition; Σx the transition noise covariance
H is the matrix for the sensors; Σz the sensor noise covariance

Filter computes the following update:

µt+1 = Fµt +Kt+1(zt+1 −HFµt)
Σt+1 = (I−Kt+1)(FΣtF

% +Σx)

where Kt+1= (FΣtF
% +Σx)H

%(H(FΣtF
% +Σx)H

% +Σz)−1

is the Kalman gain matrix

Σt and Kt are independent of observation sequence, so compute offline
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2-D tracking example: filtering
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2-D tracking example: smoothing

8 10 12 14 16 18 20 22 24 26
6

7

8

9

10

11

12

X

Y

2D smoothing

true
observed
smoothed

Chapter 15, Sections 4–5 8



Where it breaks

Cannot be applied if the transition model is nonlinear

Extended Kalman Filter models transition as locally linear around xt=µt

Fails if systems is locally unsmooth
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Dynamic Bayesian networks

Xt, Et contain arbitrarily many variables in a replicated Bayes net
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DBNs vs. HMMs

Every HMM is a single-variable DBN; every discrete DBN is an HMM

X t Xt+1

tY t+1Y

tZ t+1Z

Sparse dependencies ⇒ exponentially fewer parameters;
e.g., 20 state variables, three parents each
DBN has 20× 23=160 parameters, HMM has 220× 220 ≈ 1012
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DBNs vs Kalman filters

Every Kalman filter model is a DBN, but few DBNs are KFs;
real world requires non-Gaussian posteriors

E.g., where are my keys?
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Constructing DBNs

requires:
♦ prior distribution over stat variables: P(X0)
♦ transition model: P(Xt+1|Xt)
♦ sensor model: P(Et|Xt)

* If we assume the models are stationary, they need to be specified only
once.

Sensor model in more detail:
♦ Perfect sensor
♦ Sensor with noisy reading: Gaussian error model
♦ Temporal failure in sensor: Transient failure model

For the system to handle sensor failur properly , the sensor model must in-
clude the possibility of failure: ex. P(BMetert = 0)|Batteryt = 5) = 0.03
prob. larger than prob. of Gaussian error model
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Constructing DBNs cont.

Gaussian error model vs Transient failure model
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Constructing DBNs cont.

♦ Persistant failure in sensor: Persistant failure model

Transient failure model vs Persistant failure model
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Exact inference in DBNs

Naive method: unroll the network and run any exact algorithm
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problem: inference cost for each update grows with t

Rollup filtering: add slice t + 1, “sum out” slice t using variable elimination

Largest factor is O(dn+1), update cost O(dn+2)
(cf. HMM update cost O(d2n))
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Likelihood weighting analysis review(14.5)

Sample the nonevidence nodes of the network in topological order, weighting
each sample by the likelihood it accords to the observed evidence variables.
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Weighted sampling probability is
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= Πl
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Likelihood weighting for DBNs

Set of weighted samples approximates the belief state
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LW samples pay no attention to the evidence!
⇒ fraction “agreeing” falls exponentially with t
⇒ number of samples required grows exponentially with t
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Moditication to likelihood weight

Basic idea:
♦ 1) run all N samples together thorugh the DBN , one slice at at time
♦ 2) use the samples themselves as an approximate reprresenation of

the current state distribution.
♦ 3) ensure that the population of samples (“particles”) tracks the

high-likelihood regions of the state-space
by focusing the set of samples in the high-probability regions of the state

space.
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Particle filtering

Replicate particles proportional to likelihood for et

true

false

(a) Propagate (b) Weight (c) Resample

Raint Raint +1Raint +1Raint +1

Widely used for tracking nonlinear systems, esp. in vision

Also used for simultaneous localization and mapping in mobile robots
105-dimensional state space
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Particle filtering contd.

Assume consistent at time t: N(xt|e1:t)/N = P (xt|e1:t)

Propagate forward: populations of xt+1 are

N(xt+1|e1:t) = ΣxtP (xt+1|xt)N(xt|e1:t)

Weight samples by their likelihood for et+1:

W (xt+1|e1:t+1) = P (et+1|xt+1)N(xt+1|e1:t)

Resample to obtain populations proportional to W :

N(xt+1|e1:t+1)/N = αW (xt+1|e1:t+1) = αP (et+1|xt+1)N(xt+1|e1:t)

= αP (et+1|xt+1)ΣxtP (xt+1|xt)N(xt|e1:t)

= α′P (et+1|xt+1)ΣxtP (xt+1|xt)P (xt|e1:t)

= P (xt+1|e1:t+1)
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Particle filtering algorithm

function PARTICLE-FILTERING(e, , ) returns a set of samples for the next time step

inputs: e, the new incoming evidence

, the number of samples to be maintained

, a DBN with prior P X , transition model P X X , sensor model P E X

persistent: , a vector of samples of size , initially generated from P X

local variables: , a vector of weights of size

for = 1 to do

[ ] sample from P X X /* step 1 */

[ ] P e X /* step 2 */

WEIGHTED-SAMPLE-WITH-REPLACEMENT( , , ) /* step 3 */

return

Figure 15.17 The particle filtering algorithm implemented as a recursive update operation with state

(the set of samples). Each of the sampling operations involves sampling the relevant slice variables

in topological order, much as in PRIOR-SAMPLE. The WEIGHTED-SAMPLE-WITH-REPLACEMENT

operation can be implemented to run in expected time. The step numbers refer to the description

in the text.
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Particle filtering performance

Approximation error of particle filtering remains bounded over time,
at least empirically—theoretical analysis is difficult
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Summary

Temporal models use state and sensor variables replicated over time

Markov assumptions and stationarity assumption, so we need
– transition modelP(Xt|Xt−1)
– sensor model P(Et|Xt)

Tasks are filtering, prediction, smoothing, most likely sequence;
all done recursively with constant cost per time step

Hidden Markov models have a single discrete state variable; used
for speech recognition

Kalman filters allow n state variables, linear Gaussian, O(n3) update

Dynamic Bayes nets subsume HMMs, Kalman filters; exact update intractable

Particle filtering is a good approximate filtering algorithm for DBNs
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