TEMPORAL PROBABILITY MODELS

CHAPTER 15, SECTIONS 4-5

Chapter 15, Sections 4-5 1

Outline

> Inference: filtering, prediction, smoothing

> Hidden Markov models

Chapter 15, Sections 2.2-3

2

Hidden Markov models

X, is a single, discrete variable (usually E; is too)
Domain of X;is {1,...,5}

Transition matrix T, = P(X, =j| X, | =1), eg, (0'7 0'3)

0.3 0.7

Sensor(Emission) matrix O, for each time step, diagonal elements P(e;| X; =)

e.g., with Uy =true, O, = (069 002)

Forward and backward messages as column vectors:

T
fl:t+1 — OéOtHT fl:t
bk—i—l:t — Tok:+1bk:+2:t

Forward-backward algorithm needs time O(5*¢) and space O(S?)

Chapter 15, Sections 2.2-3 13

Improve Inference 1: Country dance algorithm

Allows smoothing to be carried out in constant space, independently of se-
quence length. Can avoid storing all forward messages in smoothing by
running

forward algorithm backwards:

T
1441 = a0 T 1y
—1 T
Ot_|_1f1:t+1 = aT fl:t
/ =1 —1
OC(T) Ot_|_1f1:t+1 — fl:t

Algorithm: for a sequence of length ¢, the forward pass computes f;.; (forget-
ting all intermediate results), backward pass computes f;, b; simultaneously

Chapter 15, Sections 2.2-3 14

Country dance algorithm

forward pass computes f;.,

00 P—-OP-OP—-00—O
0 P—-OP—-0O—-O0P—0
P00 P—-0O—-0P—-0P—0
PO o0 Pp—-0P—-0P—-0
0 o000

Country dance algorithm

aQ
<

backward pass computes f;, b, simultaneou
OO

O-PO-P
O—-PO—P o

O—DO—-PO—-PO—D 0P

O—D
o—d

o—bo—bo—bHo—@ P
o—bo—do—do—D O

Chapter 15, Sections 2.2-3 16

Improve Inference 2: Fixed-lag smoothing

)
FE S SO

Obvious method runs forward—backward for d steps each time

When new observatio arrives, recursively compute af.; ;. 1xb;_ .01 for
slicet —d+ 1 from af.,_ ;xb;_ ...

Forward message f;., ;.1 from, f;.,_; using standard filtering process.
Backward message not directly obtainable

Chapter 15, Sections 2.2-3 17

Online fixed-lag smoothing contd.

k

Define B, = II;_ . TO,, so

b gi1+ = By_gi141
b giosr1 = By_gropi1l

Now we can get a recursive update for B:

—1 —1
Bt—d+2:t+1 — Ot_d+1T Bt—(i+1:tTOt+1

Hence update cost is constant, independent of lag d

Chapter 15, Sections 2.2-3

18

Online fixed-lag smoothing algorithm

function FIXED-LAG-SMOOTHING(e;, hmm, d) returns a distribution over X; 4
inputs: €, the current evidence for time step t
hmm, a hidden Markov model with S X S transition matrix T
d, the length of the lag for smoothing
persistent: t, the current time, initially 1
f, the forward message P(X ¢ |e1:t), initially hmm.PRIOR
B, the d-step backward transformation matrix, initially the identity matrix
€t —d:t, double-ended list of evidence from t — d to t, initially empty
local variables: O -4, O, diagonal matrices containing the sensor model information

add et to the end of & —g:t
O; < diagonal matrix containing P(e; [X)
ift > d then
f — FORWARD(f, &)
remove e;—4—1 from the beginning of &;— 4:t
O — 4 < diagonal matrix containing P(e;—4 X {—4)
B< O,_,T"'BTO
else B < BTO¢
te—t+1
if t > d then return NORMALIZE(f X B1) else return null

Figure 15.6 An algorithm for smoothing with a fixed time lag of d steps, implemented as an online
algorithm that outputs the new smoothed estimate given the observation for a new time step. Notice
that the final output NORMALIZE(f X B1) is just a f X b, by Equation (15.14)

Chapter 15, Sections 2.2-3 19

HMM example: Localization

(b) Posterior distribution over robot location after E1 = NSW,Eo= NS

Chapter 15, Sections 2.2-3 20

Outline

> Kalman filters
> Dynamic Bayes network

> Partical filtering

Chapter 15, Sections 4-5

2

Kalman filters

“The Kalman filter, also known as linear quadratic estimation (LQE), is an
algorithm which uses a series of measurements observed over time, that
containing noise, and produces estimates of unknown variables that tend to
be more precise than single measurement alone.” (wikipedia)

Modelling systems described by a set of continuous variables,
e.g., tracking a bird flying—X, = X. Y, 7, X YV Z.
Airplanes, robots, ecosystems, economies, chemical plants, planets, . ..

::
e
& &

Gaussian prior, linear Gaussian transition model and sensor model

Chapter 15, Sections 4-5 3

Updating (Gaussian distributions

Prediction step: if current P(X;|e;,;) is Gaussian and transition model
P(X,.1|x;) is linear Gaussian, then one step prediction

P<Xt+1‘el:t) - /X P(XHHXOP(XJGM) dx;
t

is Gaussian.
If prediction P (X, |e|) is Gaussian and the sensor mdoel P(e; | X,) is
linear Gaussian, then the updated distribution

P(Xii1lers1) = aP(ep1| X)) P(Xiialers)
Is Gaussian
Hence P(X;|e;) is multivariate Gaussian N (s, >2;) for all ¢

General (nonlinear, non-Gaussian) process: description of posterior grows
unboundedly as t — oo

* linear Gaussian: linear model with Gaussian noise Y = aX + N(u, o)

Chapter 15, Sections 4-5 4

Simple 1-D example

Gaussian random walk on X —axis, s.d. o,, sensor s.d. o.

Prior: P(x¢) = N (g, o)
Transition model: P(x;,1|2;) = N(x;,0,)
Sensor model: P (2, (|x1) = N(x/11,0.)

2 2 2 2 2\ 2
<O-t + O:}:)’Zt—i-l T 0, Ut 2 <Jt + O-x)o-z
2 2 2 t+1 — 9 2 2

Oy + 02+ 0% oy +0:z+ 0:

Hi+1 =

045 —

04t -
035 | . -
03 L ":: P(x112z1=2.5) |
025 | |
02 |
015 |
01}
005 |

P(X)

X position

Chapter 15, Sections 4-5

General Kalman update

Transition and sensor models:

P<Xt+1‘Xt> - N(Fxt,ExKXm)
P(zi|x;) = N(Hxy, 3:)(z¢)

F' is the matrix for the transition; >, the transition noise covariance
H is the matrix for the sensors; >.. the sensor noise covariance

Filter computes the following update:

pi1 = Fry + Ki(ze — HE py)
Y= [-Ki)(FEF' +3%,)

where K, = (FE,F' + 3, H (HFX,F' + 3,)H' +3.)"!
is the Kalman gain matrix

>.; and K, are independent of observation sequence, so compute offline

Chapter 15, Sections 4-5 6

2-D tracking example: filtering

12

11

10

2D filtering

— & true

* observed
e filtered

10 12 14 16 18 20 22 24 26

Chapter 15, Sections 4-5

7

2-D tracking example: smoothing

12

11

10

2D smoothing

—8— true
* observed
i > smoothed
| | | | | | | | |
10 12 14 16 18 20 22 24 26
X

Chapter 15, Sections 4-5

8

Where it breaks

Cannot be applied if the transition model is nonlinear

Extended Kalman Filter models transition as locally linear around x; = p,
Fails if systems is locally unsmooth

Chapter 15, Sections 4-5 9

Dynamic Bayesian networks

Xy, E; contain arbitrarily many variables in a replicated Bayes net

P(Ry)

P(Ry)

Chapter 15, Sections 4-5

10

DBNs vs. HM Ms

Every HMM is a single-variable DBN; every discrete DBN is an HMM

E I

\

e @ N /

Sparse dependencies = exponentially fewer parameters;

e.g., 20 state variables, three parents each
DBN has 20 x 27 = 160 parameters, HMM has 2% x 22 ~ 10'*

Lo

Chapter 15, Sections 4-5 11

DBNs vs Kalman filters

Every Kalman filter model is a DBN, but few DBNs are KFs;

real world requires non-Gaussian posteriors

E.g., where are my keys?

Chapter 15, Sections 4-5 12

Constructing DBNs

requires:
{> prior distribution over stat variables: P (X))
{ transition model: P (X, 1|X})
{ sensor model: P(F;|X})

* If we assume the models are stationary, they need to be specified only
once.

Sensor model in more detail:
> Perfect sensor
> Sensor with noisy reading: Gaussian error model
{»> Temporal failure in sensor: Transient failure model

For the system to handle sensor failur properly , the sensor model must in-
clude the possibility of failure: ex. P(BMeter; = 0)|Battery; = 5) = 0.03
prob. larger than prob. of Gaussian error model

Chapter 15, Sections 4-5 13

Constructing DBNs cont.

Gaussian error model vs Transient failure model
E(Battery, |...5555005555...) E(Battery,|...5555005555...)
5 5 FHK KRR A————————+—
4 4 - \\
~ ~ X
§3 §3 x
S 2 R 2 '\
S g |
1 - 1 A |
X
0 M= 5 K=K =X K- - -X 0 - 3 = X- = X X - 2 X=X
E(Battery, |...5555000000...) E(Battery, |...5555000000...)
'1 T T T -1 T T T T
15 20 25 30 15 20 25 30
Time step ¢ Time step
(a) (b)

Chapter 15, Sections 4-5 14

Constructing DBNs cont.

{> Persistant failure in sensor: Persistant failure model

Transient failure model vs Persistant failure model

B, | P(By
t 1.000
f | 0.001

5 9 el A\t o A
BMBroken BMBroken e
4 r E(Batteryl...5555000000..j
23t]
g 2t |
82}

= O Y O e A=Y e

P(BMBrokenI .5555000000.. ?

0% 88 8 B B 8B B8

—"""

P(BMBrokenl...5555005555..

-1 I I
15 20 25 30

Time step

Battery,

Chapter 15, Sections 4-5 15

Exact inference in DBNs

Naive method: unroll the network and run any exact algorithm

Ry

P(R,)

PRy| [

0.7 f

0.7
0.3

Ry | P(U;)
1 0.9
S 1 02

Ro | PR | | Ry | PR2)| | Ry

P(R3)

P(Ry)

t 0.7 t 0.7 t
3 3

0.7
3

0.7 f 1o f

e

S 10
(Raing)

Ry | P(U,y) R, | P(U,) R5 | P(U3)
t 09 t 09) 0.9
f 1 02 f 1 02 S 1 02

problem: inference cost for each update grows with ¢

Rollup filtering: add slice # 4+ 1, “sum out” slice ¢ using variable elimination

Largest factor is O(d"""), update cost O(d" ")
(cf. HMM update cost O(d*"))

Chapter 15, Sections 4-5

16

Likelihood weighting analysis review(14.5)

Sample the nonevidence nodes of the network in topological order, weighting
each sample by the likelihood it accords to the observed evidence variables.

P(C)
50
C [PsIO) C |P(RIC)
T| .10 T| 80
F| 50 F| 20

P(WIS.R)
99

90
90
01

™™= 3w
o= T

w=1.0x0.1x0.99 = 0.099

Weighted sampling probability is
Sws(z,e)w(z,e)
= HE_IP(zi\parent{S(Zi)) H;n’:lP(ei\parents(Ei))

Chapter 15, Sections 4-5 17

Likelihood weighting for DBNs

Set of weighted samples approximates the belief state

LW samples pay no attention to the evidence!
= fraction “agreeing” falls exponentially with ¢
= number of samples required grows exponentially with ¢

T ++¥ﬂ¥ﬁ¥+ﬁ‘;‘#
A LW —~—
/ LW(60) —x"
08 A LW(1900) =
LW(18000) -
e/ x
8 °
.6 4
£
° 3
2] / 7
53.4 F y ?
+ ul X
Y.
*4" M o B
02+ { *}’H*m,ﬂ ! s
" n B s
-+ BDEEXQ
0 ﬁgé"gee'xxxf L L L L L L L
0O 5 10 15 20 25 30 35 40 45 50
Time step

Chapter 15, Sections 4-5

18

Moditication to likelihood weight

Basic idea:

¢ 1) run all N samples together thorugh the DBN , one slice at at time

{ 2) use the samples themselves as an approximate reprresenation of
the current state distribution.

{> 3) ensure that the population of samples (“particles”) tracks the
high-likelihood regions of the state-space

by focusing the set of samples in the high-probability regions of the state
space.

Chapter 15, Sections 4-5 19

Particle filtering

Replicate particles proportional to likelihood for e,

Rain;, Rain, Rain; Rain;
0000 00 eeoo ®
true 0000 00 oooe @
@ e o0 o000
false e ee o0 eoeo

(a) Propagate (b) Weight (c) Resample
Widely used for tracking nonlinear systems, esp. in vision

Also used for simultaneous localization and mapping in mobile robots
10°-dimensional state space

Chapter 15, Sections 4-5 20

Particle filtering contd.

Assume consistent at time 7: N(x;|ej;)/N = P(x/|e1;)
Propagate forward: populations of x;,; are

N(xpr1lers) = 2x, P(Xpr1[x) N (x¢]ei)
Weight samples by their likelihood for e, :

W (xer1leri) = Pler[xe1) N (Xit1]e1)

Resample to obtain populations proportional to I1:

N(x¢r1lere41)/N = aW(xp1lers1) = aP(er1|xe1) N (Xer1]€e1:)
— OéP<et+1|Xt+1)thP<Xt+1’Xt)N<Xt’elzt>
= O/P(etﬂ’Xt+1>2xtp(xt+1|Xt)P<Xt’elzt)

P(x¢y1]€1:441)

Chapter 15, Sections 4-5

21

Particle filtering algorithm

function PARTICLE-FILTERING(e, N , dbn) returns a set of samples for the next time step
inputs: e, the new incoming evidence
N, the number of samples to be maintained
dbn a DBN with prior P(Xo), transition model P(X; [Xo), sensor model P(E+ [X1)
persistent: S, a vector of samples of size N , initially generated from P(Xo)
local variables: W , a vector of weights of size N

fori =1toN do
S[i]< sample from P(X;s | Xo= S[i]) /*step1*/

W[i]<Ple| X;= S[i]) /* step 2 */
S <~ WEIGHTED-SAMPLE-WITH-REPLACEMENT(N , S, W) /* step 3 */
return S

Figure 15.17 The particle filtering algorithm implemented as a recursive update operation with state
(the set of samples). Each of the sampling operations involves sampling the relevant slice variables
in topological order, much as in PRIOR-SAMPLE. The WEIGHTED-SAMPLE-WITH-REPLACEMENT
operation can be implemented to run in O(N) expected time. The step numbers refer to the description
in the text.

Chapter 15, Sections 4-5

22

Particle filtering performance

Approximation error of particle filtering remains bounded over time,

at least empirically—theoretical analysis is difficult

1 T T T T **J—qﬁ#-\ﬁﬁﬁ@:‘?ﬁ—'@ﬂ
LW(25) ¢ oo v . /
LW(100) / o
LW(1000) = . ;
0.8 r Lw(10000) « f o i *
% ; X
. ER/SOF(25) -+ { 7 o x
e} / | o
= ? e 3
by
g 0 6 E'Bé X
E]
E S ‘
72} ¥
e / 4 X
= 0.4 : i
o0 ’ & X/
> o X %
< _ S x
B A Boee S
L
X x X
0.2 VIR y
2 pd o BT . 'KEAAAﬁA&A&A.A,AAﬁMA&AAAéaﬁ,ﬁ#&&ﬁ PPN
0 E T] I]] I 1 1 1

O 5 10 15 20 25 30 35 40 45 50
Time step

Chapter 15, Sections 4-5

23

Summary

Temporal models use state and sensor variables replicated over time

Markov assumptions and stationarity assumption, so we need
— transition modelP (X,|X;)
— sensor model P(E;|X;)

Tasks are filtering, prediction, smoothing, most likely sequence;
all done recursively with constant cost per time step

Hidden Markov models have a single discrete state variable; used
for speech recognition

Kalman filters allow n state variables, linear Gaussian, O(nS) update
Dynamic Bayes nets subsume HMMs, Kalman filters; exact update intractable

Particle filtering is a good approximate filtering algorithm for DBNs

Chapter 15, Sections 4-5 24

