TEMPORAL PROBABILITY MODELS

Chapter 15, Sections 4-5

Chapter 15, Sections 4–5 1

Outline

- \diamondsuit Inference: filtering, prediction, smoothing
- \diamond Hidden Markov models

Hidden Markov models

 \mathbf{X}_t is a single, discrete variable (usually \mathbf{E}_t is too) Domain of X_t is $\{1, \ldots, S\}$

Transition matrix $\mathbf{T}_{ij} = P(X_t = j | X_{t-1} = i)$, e.g., $\begin{pmatrix} 0.7 & 0.3 \\ 0.3 & 0.7 \end{pmatrix}$

Sensor(Emission) matrix O_t for each time step, diagonal elements $P(e_t|X_t = i)$ e.g., with $U_1 = true$, $O_1 = \begin{pmatrix} 0.9 & 0 \\ 0 & 0.2 \end{pmatrix}$

Forward and backward messages as column vectors:

$$\mathbf{f}_{1:t+1} = \alpha \mathbf{O}_{t+1} \mathbf{T}^{\top} \mathbf{f}_{1:t}$$
$$\mathbf{b}_{k+1:t} = \mathbf{T} \mathbf{O}_{k+1} \mathbf{b}_{k+2:t}$$

Forward-backward algorithm needs time $O(S^2t)$ and space O(St)

Improve Inference 1: Country dance algorithm

Allows smoothing to be carried out in constant space, independently of sequence length. Can avoid storing all forward messages in smoothing by running

forward algorithm backwards:

$$\mathbf{f}_{1:t+1} = \alpha \mathbf{O}_{t+1} \mathbf{T}^{\top} \mathbf{f}_{1:t}$$
$$\mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} = \alpha \mathbf{T}^{\top} \mathbf{f}_{1:t}$$
$$\alpha'(\mathbf{T}^{\top})^{-1} \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} = \mathbf{f}_{1:t}$$

Algorithm: for a sequence of length t, the forward pass computes $\mathbf{f}_{t:t}$ (forgetting all intermediate results), backward pass computes \mathbf{f}_i , \mathbf{b}_i simultaneously

Country dance algorithm

forward pass computes $\mathbf{f}_{t:t}$

Country dance algorithm

Improve Inference 2: Fixed-lag smoothing

Obvious method runs forward-backward for d steps each time

When new observatio arrives, recursively compute $\alpha \mathbf{f}_{1:t-d+1} \mathbf{x} \mathbf{b}_{t-d+2:t+1}$ for slice t - d + 1 from $\alpha \mathbf{f}_{1:t-d} \mathbf{x} \mathbf{b}_{t-d+1:t}$.

Forward message $\mathbf{f}_{1:t-d+1}$ from, $\mathbf{f}_{1:t-d}$ using standard filtering process. Backward message not directly obtainable

Online fixed-lag smoothing contd.

Define $\mathbf{B}_{j:k} = \prod_{i=j}^{k} \mathbf{TO}_i$, so $\mathbf{b}_{t-d+1:t} = \mathbf{B}_{t-d+1:t} \mathbf{1}$ $\mathbf{b}_{t-d+2:t+1} = \mathbf{B}_{t-d+2:t+1} \mathbf{1}$

Now we can get a recursive update for \mathbf{B} :

 $\mathbf{B}_{t-d+2:t+1} = \mathbf{O}_{t-d+1}^{-1} \mathbf{T}^{-1} \mathbf{B}_{t-d+1:t} \mathbf{T} \mathbf{O}_{t+1}$

Hence update cost is constant, independent of lag d

Online fixed-lag smoothing algorithm

```
function FIXED-LAG-SMOOTHING(e_t, hmm, d) returns a distribution over X_{t-d}
   inputs: e_t, the current evidence for time step t
              hmm, a hidden Markov model with S \times S transition matrix T
              d, the length of the lag for smoothing
   persistent: t, the current time, initially 1
                   f, the forward message \mathbf{P}(X_{t} | \mathbf{e}_{1:t}), initially hmm.PRIOR
                   B, the d-step backward transformation matrix, initially the identity matrix
                   e_{t-d:t}, double-ended list of evidence from t – d to t, initially empty
   local variables: O_{t-d}, O_t, diagonal matrices containing the sensor model information
   add e_t to the end of e_{t-d:t}
   \mathbf{O}_{t} \leftarrow \text{diagonal matrix containing } \mathbf{P}(\mathbf{e}_{t} | X_{t})
   if t > d then
        \mathbf{f} \leftarrow \text{FORWARD}(\mathbf{f}, \mathbf{e})
        remove e_{t-d-1} from the beginning of e_{t-d:t}
        \mathbf{O}_{t-d} \leftarrow \text{diagonal matrix containing } \mathbf{P}(\mathbf{e}_{t-d} | \mathbf{X}_{t-d})
        \mathbf{B} \leftarrow \mathbf{O}_{t-d}^{-1} \mathbf{T}^{-1} \mathbf{B} \mathbf{T} \mathbf{O}_{t}
   else \mathbf{B} \leftarrow \mathbf{BTO}_{\mathsf{t}}
   \uparrow \leftarrow \uparrow + 1
   if t > d then return NORMALIZE(f \times B1) else return null
```

Figure 15.6 An algorithm for smoothing with a fixed time lag of d steps, implemented as an online algorithm that outputs the new smoothed estimate given the observation for a new time step. Notice that the final output NORMALIZE($\mathbf{f} \times \mathbf{B1}$) is just $\alpha \mathbf{f} \times \mathbf{b}$, by Equation (15.14)

HMM example: Localization

0	0	0	0		0	ο	0	0	0		0	0	0		ο
		0	0		0			0		0		0			
	0	0	0		0			0	0	0	0	0			0
0	0		0	0	0		0	0	0	0		0	0	0	0

(a) Posterior distribution over robot location after $E_1 = NSW$

(b) Posterior distribution over robot location after $E_1 = NSW$, $E_2 = NS$

Outline

- \diamondsuit Kalman filters
- \diamondsuit Dynamic Bayes network
- \diamond Partical filtering

Kalman filters

"The Kalman filter, also known as linear quadratic estimation (LQE), is an algorithm which uses a series of measurements observed over time, that containing noise, and produces estimates of unknown variables that tend to be more precise than single measurement alone." (wikipedia)

Modelling systems described by a set of continuous variables,

- e.g., tracking a bird flying— $\mathbf{X}_t = X, Y, Z, \dot{X}, \dot{Y}, \dot{Z}$.
- Airplanes, robots, ecosystems, economies, chemical plants, planets,

Gaussian prior, linear Gaussian transition model and sensor model

Updating Gaussian distributions

Prediction step: if current $\mathbf{P}(\mathbf{X}_t | \mathbf{e}_{1:t})$ is Gaussian and transition model $\mathbf{P}(\mathbf{X}_{t+1} | \mathbf{x}_t)$ is linear Gaussian, then one step prediction

 $\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t}) = \int_{\mathbf{x}_t} \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_t) P(\mathbf{x}_t|\mathbf{e}_{1:t}) \, d\mathbf{x}_t$

is Gaussian.

If prediction $\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t})$ is Gaussian and the sensor mdoel $\mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1})$ is linear Gaussian, then the updated distribution

 $\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1})\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t})$

is Gaussian

Hence $\mathbf{P}(\mathbf{X}_t | \mathbf{e}_{1:t})$ is multivariate Gaussian $N(\boldsymbol{\mu}_t, \boldsymbol{\Sigma}_t)$ for all t

General (nonlinear, non-Gaussian) process: description of posterior grows unboundedly as $t \to \infty$

* linear Gaussian: linear model with Gaussian noise $Y = aX + N(\mu, \sigma)$

Simple 1-D example

Gaussian random walk on X-axis, s.d. σ_x , sensor s.d. σ_z

Prior: $\mathbf{P}(x_0) = N(\mu_0, \sigma_0)$ Transition model: $\mathbf{P}(x_{t+1}|x_t) = N(\mathbf{x}_t, \sigma_x)$ Sensor model: $\mathbf{P}(z_{t+1}|x_{t+1}) = N(\mathbf{x}_{t+1}, \sigma_z)$

General Kalman update

Transition and sensor models:

 $P(\mathbf{x}_{t+1}|\mathbf{x}_t) = N(\mathbf{F}\mathbf{x}_t, \mathbf{\Sigma}_x)(\mathbf{x}_{t+1})$ $P(\mathbf{z}_t|\mathbf{x}_t) = N(\mathbf{H}\mathbf{x}_t, \mathbf{\Sigma}_z)(\mathbf{z}_t)$

F is the matrix for the transition; Σ_x the transition noise covariance **H** is the matrix for the sensors; Σ_z the sensor noise covariance

Filter computes the following update:

 $\boldsymbol{\mu}_{t+1} = \mathbf{F}\boldsymbol{\mu}_t + \mathbf{K}_{t+1}(\mathbf{z}_{t+1} - \mathbf{H}\mathbf{F}\boldsymbol{\mu}_t)$ $\boldsymbol{\Sigma}_{t+1} = (\mathbf{I} - \mathbf{K}_{t+1})(\mathbf{F}\boldsymbol{\Sigma}_t\mathbf{F}^\top + \boldsymbol{\Sigma}_x)$

where $\mathbf{K}_{t+1} = (\mathbf{F} \boldsymbol{\Sigma}_t \mathbf{F}^\top + \boldsymbol{\Sigma}_x) \mathbf{H}^\top (\mathbf{H} (\mathbf{F} \boldsymbol{\Sigma}_t \mathbf{F}^\top + \boldsymbol{\Sigma}_x) \mathbf{H}^\top + \boldsymbol{\Sigma}_z)^{-1}$ is the Kalman gain matrix

 Σ_t and \mathbf{K}_t are independent of observation sequence, so compute offline

2-D tracking example: filtering

Chapter 15, Sections 4–5 7

2-D tracking example: smoothing

Chapter 15, Sections 4–5 8

Where it breaks

Cannot be applied if the transition model is nonlinear

Extended Kalman Filter models transition as locally linear around $\mathbf{x}_t = \boldsymbol{\mu}_t$ Fails if systems is locally unsmooth

Dynamic Bayesian networks

 \mathbf{X}_t , \mathbf{E}_t contain arbitrarily many variables in a replicated Bayes net

DBNs vs. HMMs

Every HMM is a single-variable DBN; every discrete DBN is an HMM

Sparse dependencies \Rightarrow exponentially fewer parameters; e.g., 20 state variables, three parents each DBN has $20 \times 2^3 = 160$ parameters, HMM has $2^{20} \times 2^{20} \approx 10^{12}$

DBNs vs Kalman filters

Every Kalman filter model is a DBN, but few DBNs are KFs; real world requires non-Gaussian posteriors

E.g., where are my keys?

Constructing DBNs

requires:

- \diamondsuit prior distribution over stat variables: $\mathbf{P}(X_0)$
- \diamondsuit transition model: $\mathbf{P}(X_{t+1}|X_t)$
- \diamondsuit sensor model: $\mathbf{P}(E_t|X_t)$

* If we assume the models are stationary, they need to be specified only once.

Sensor model in more detail:

- \diamondsuit Perfect sensor
- \diamondsuit Sensor with noisy reading: Gaussian error model
- \diamond Temporal failure in sensor: Transient failure model

For the system to handle sensor failur properly, the sensor model must include the possibility of failure: ex. $P(BMeter_t = 0)|Battery_t = 5) = 0.03$ prob. larger than prob. of Gaussian error model

Constructing DBNs cont.

Gaussian error model vs Transient failure model

Constructing DBNs cont.

 \diamondsuit Persistant failure in sensor: Persistant failure model

Transient failure model vs Persistant failure model

Exact inference in DBNs

Naive method: unroll the network and run any exact algorithm

problem: inference cost for each update grows with t

Rollup filtering: add slice t + 1, "sum out" slice t using variable elimination

Largest factor is $O(d^{n+1})$, update cost $O(d^{n+2})$ (cf. HMM update cost $O(d^{2n})$) Likelihood weighting analysis review(14.5)

Sample the nonevidence nodes of the network in topological order, weighting each sample by the likelihood it accords to the observed evidence variables.

 $w = 1.0 \times 0.1 \times 0.99 = 0.099$

Weighted sampling probability is $S_{WS}(\mathbf{z}, \mathbf{e})w(\mathbf{z}, \mathbf{e})$ $= \prod_{i=1}^{l} P(z_i | parents(Z_i)) \quad \prod_{i=1}^{m} P(e_i | parents(E_i))$

Likelihood weighting for DBNs

Set of weighted samples approximates the belief state

LW samples pay no attention to the evidence! \Rightarrow fraction "agreeing" falls exponentially with t \Rightarrow number of samples required grows exponentially with t undersecond definition of the evidence!<math>undersecond definition of the evidence definition of the

5

0

10 15 20 25 30 35 40 45 50 Time step

Moditication to likelihood weight

Basic idea:

 $\diamondsuit\,$ 1) run all N samples together thorugh the DBN , one slice at at time

 \diamond 2) use the samples themselves as an approximate representation of the current state distribution.

 \diamond 3) ensure that the population of samples ("particles") tracks the high-likelihood regions of the state-space

by focusing the set of samples in the high-probability regions of the state space.

Particle filtering

Replicate particles proportional to likelihood for \mathbf{e}_t

Widely used for tracking nonlinear systems, esp. in vision

Also used for simultaneous localization and mapping in mobile robots $10^5 \mbox{-dimensional state space}$

Particle filtering contd.

Assume consistent at time t: $N(\mathbf{x}_t | \mathbf{e}_{1:t}) / N = P(\mathbf{x}_t | \mathbf{e}_{1:t})$

Propagate forward: populations of \mathbf{x}_{t+1} are

 $N(\mathbf{x}_{t+1}|\mathbf{e}_{1:t}) = \sum_{\mathbf{x}_t} P(\mathbf{x}_{t+1}|\mathbf{x}_t) N(\mathbf{x}_t|\mathbf{e}_{1:t})$

Weight samples by their likelihood for \mathbf{e}_{t+1} :

 $W(\mathbf{x}_{t+1}|\mathbf{e}_{1:t+1}) = P(\mathbf{e}_{t+1}|\mathbf{x}_{t+1})N(\mathbf{x}_{t+1}|\mathbf{e}_{1:t})$

Resample to obtain populations proportional to W:

$$N(\mathbf{x}_{t+1}|\mathbf{e}_{1:t+1})/N = \alpha W(\mathbf{x}_{t+1}|\mathbf{e}_{1:t+1}) = \alpha P(\mathbf{e}_{t+1}|\mathbf{x}_{t+1})N(\mathbf{x}_{t+1}|\mathbf{e}_{1:t})$$

$$= \alpha P(\mathbf{e}_{t+1}|\mathbf{x}_{t+1})\Sigma_{\mathbf{x}_{t}}P(\mathbf{x}_{t+1}|\mathbf{x}_{t})N(\mathbf{x}_{t}|\mathbf{e}_{1:t})$$

$$= \alpha' P(\mathbf{e}_{t+1}|\mathbf{x}_{t+1})\Sigma_{\mathbf{x}_{t}}P(\mathbf{x}_{t+1}|\mathbf{x}_{t})P(\mathbf{x}_{t}|\mathbf{e}_{1:t})$$

$$= P(\mathbf{x}_{t+1}|\mathbf{e}_{1:t+1})$$

Particle filtering algorithm

```
function PARTICLE-FILTERING(e, N, dbn) returns a set of samples for the next time step

inputs: e, the new incoming evidence

N, the number of samples to be maintained

dbn, a DBN with prior P(X_0), transition model P(X_1 | X_0), sensor model P(E_1 | X_1)

persistent: S, a vector of samples of size N, initially generated from P(X_0)

local variables: W, a vector of weights of size N

for i = 1 to N do

S[i] \leftarrow sample from P(X_1 | X_0 = S[i]) /* step 1 */

W [i] \leftarrow P(e | X_1 = S[i]) /* step 2 */

S \leftarrow WEIGHTED-SAMPLE-WITH-REPLACEMENT(N, S, W) /* step 3 */

return S
```

Figure 15.17 The particle filtering algorithm implemented as a recursive update operation with state (the set of samples). Each of the sampling operations involves sampling the relevant slice variables in topological order, much as in PRIOR-SAMPLE. The WEIGHTED-SAMPLE-WITH-REPLACEMENT operation can be implemented to run in O(N) expected time. The step numbers refer to the description in the text.

Particle filtering performance

Approximation error of particle filtering remains bounded over time, at least empirically—theoretical analysis is difficult

Summary

Temporal models use state and sensor variables replicated over time

Markov assumptions and stationarity assumption, so we need

- transition model $\mathbf{P}(\mathbf{X}_t | \mathbf{X}_{t-1})$
- sensor model $\mathbf{P}(\mathbf{E}_t | \mathbf{X}_t)$

Tasks are filtering, prediction, smoothing, most likely sequence; all done recursively with constant cost per time step

Hidden Markov models have a single discrete state variable; used for speech recognition

Kalman filters allow n state variables, linear Gaussian, ${\cal O}(n^3)$ update

Dynamic Bayes nets subsume HMMs, Kalman filters; exact update intractable

Particle filtering is a good approximate filtering algorithm for DBNs