Name: \qquad

1. Assuming the following recurrence.

$$
\begin{array}{cc}
T(n)=c \quad \text { if } \mathrm{n}<7 \\
T(n)=2 T([\mathrm{n} / 7\rfloor\rfloor)+T([2 n / 5\rceil)+c n & \text { if } n \geq 7
\end{array}
$$

Find and prove a good bound on $T(n)$.
2. Let there be a sequence of numbers with the following properties:

$$
\begin{gathered}
L(0)=0, L(1)=1 \\
L(n)=3 L(n-1)+L(n-2) \quad \text { if } n>2,
\end{gathered}
$$

where $L(n)$ denotes the nth number. Obvious method for computing the series of numbers with the above properties is by computing each value in the sequence $L(0), L(1), \ldots, L(n)$ in turn, taking constant time per value, by using previously-computed values.

We claim that sequence of numbers has the following property:

$$
L(n)=L(a+1) L(n-a)+L(a) L(n-1-a)
$$

for $\mathrm{a} \geq 0$ and $n \geq a+1$.
Prove that this is true by induction on \boldsymbol{a}.
Basis (a = 0)

Induction step (a>0)

Assume that the claim holds for a-1

$$
L(n)=L((a-1)+1) L(n-(a-1))+L(a-1) L(n-1-(a-1))
$$

