Instructor: Sael Lee
CS549 Spring - Computational Biology
LECTURE 3 \& 4
INTRODUCTION TO INFORMATION THEORY

Chapter 2 of Elements of Information Theory, $2^{\text {nd }}$ ed.

ENTROPY, RELATIVE ENTROPY, AND MUTUAL INFORMATION

OUTLINE

* Probability Review
* Entropy
* Joint entropy, conditional entropy
* Relative entropy, mutual information
* Chain rules
* Jensen's inequality
* Data processing inequality

Fano's inequality

PROBABILITY REVIEWED

A discrete random variable X takes on values x from the discrete alphabet χ. The probability mass function (pmf) is described by

$$
p_{X}(x)=p(x)=\operatorname{Pr}\{X=x\}, \text { for } x \in \chi
$$

The joint probability mass function of two random variables X and Y taking on values in alphabets χ and ψ.

$$
p_{X, Y}(x, y)=p(x, y)=\operatorname{Pr}\{X=x, Y=y\}, \text { for } x, y \in \chi \times \psi
$$

If $p_{X}(X=x)>0$, the conditional probability that the outcome $\mathrm{Y}=\mathrm{y}$ given that $\mathrm{X}=x$ is defined as:

$$
p_{Y \mid X}(Y=y \mid X=x)=\frac{p_{X, Y}(x, y)}{p_{X}(x)} \quad \square
$$

Product Rule

BASIC PROBABILITY RULES

Marginalization

$$
\begin{aligned}
& p(y)=\sum_{x} p(x, y)=\sum_{x} p(y \mid x) p(x) \\
& p(y)=\int_{x} p(x, y)=\int_{x} p(y \mid x) p(x)
\end{aligned}
$$

Bayes' Rule

$$
p(x \mid y)=\frac{p(y \mid x) p(x)}{p(y)}
$$

Product Rule

$$
\begin{aligned}
p_{X, Y}(x, y) & =p_{Y \mid X}(y \mid x) p_{X}(x) \\
& =p_{X \mid Y}(x \mid y) p_{Y}(y)
\end{aligned}
$$

Convention

- $0 \log 0=0$
- a $\log \frac{a}{0}=\infty$, if $a>0$
- $0 \log \frac{0}{0}=0$

INDEPENDENCE REVIEWED

The events $X=x$ and $Y=y$ are statistically independent if

$$
p(x, y)=p(x) p(y)
$$

The random variables X and Y defined over the alphabets χ and ψ, resp. are statistically independent if

$$
p_{X, Y}(x, y)=p_{X}(x) p_{Y}(y), \text { for } \forall(x, y) \in \chi \times \psi
$$

The variables $X_{1}, X_{2}, \ldots, X_{N}$ are called independent if for all $\left(x_{1}, x_{2}, \ldots, x_{N}\right) \in$ $\chi_{1} \times \chi_{x} \times \cdots \times \chi_{N}$

$$
p\left(x_{1}, x_{2}, \ldots, x_{N}\right)=\prod_{i=1}^{N} p_{X_{i}}\left(x_{i}\right)
$$

They are furthermore called identically distributed if all variables X_{i} have the same distribution $p_{X}(x)$.

EXPECTED VALUE

1 Discrete random variable, finite case, taking $x_{1}, x_{2}, \ldots, x_{N}$ with prob. $p_{1}, p_{2}, \ldots, p_{N}$

$$
E[X]=\frac{x_{1} p_{1}+x_{2} p_{2}+\cdots+x_{k} p_{N}}{p_{1}+p_{2}+\cdots+p_{N}}
$$

$$
\text { Sum to } 1 \text { if probability }
$$

2 Discrete random variable X , countable case, taking x_{1}, x_{2}, \ldots with prob. p_{1}, p_{2}, \ldots

$$
E[X]=\sum_{i=1}^{\infty} x_{i} p_{i}
$$

3 Univariate continuous random variable:

$$
E[X]=\int_{-\infty}^{\infty} x f(x) \mathrm{d} x
$$

General definition: random variable defined on a probability space $(\Omega, \Sigma, \mathrm{P})$, then the expected value of X, denoted by $E[X],\langle X\rangle, \bar{X}$ or $E[X]$, is defined as the Lebesgue integral

$$
E[X]=\int_{\Omega} X d P=\int_{\Omega} X(\omega) P(\mathrm{~d} \omega)
$$

ENTROPY

Definition:

The entropy $H(X)$ of a discrete random variable X with pmf $p_{X}(x)$ is given by

$$
H(X)=-\sum_{x} p_{X}(x) \log p_{X}(x)=-E_{p_{X}(x)}\left[\log p_{X}(X)\right]
$$

The entropy $H(X)$ of a continuous random variable X with pdf $f_{X}(x)$ in support set S is given by

$$
h(X)=-\int_{S} f_{X}(x) \log f_{X}(x)=-E_{f_{X}(x)}\left[\log f_{X}(X)\right]
$$

Meaning:

- Measure of the uncertainty of the r.v.
- Measure of the amount of information required on the average to describe the r.v.

JOINT ENTROPY

Definition:

The joint entropy $H(X, Y)$ on a pair of discrete r.v. (X, Y) with a joint distribution $p(x, y)$ is defined as

$$
\begin{aligned}
H(X, Y) & =-\sum_{x} \sum_{y} p(x, y) \log p(x, y) \\
& =-E_{p(x, y)} \log p(x, y)
\end{aligned}
$$

CONDITIONAL ENTROPY

Definition:

The conditional entropy $H(Y \mid X)$ on a pair of discrete r.v. (X, Y) with a joint distribution $p(x, y)$ is defined as

$$
\begin{gathered}
H(Y \mid X)=-\sum_{x} p(x) H(Y \mid X=x) \\
=\sum_{x} p(x) \sum_{y} p(y \mid x) \log p(y \mid x) \\
=-\sum_{x} \sum_{y} p(x, y) \log p(y \mid x) \\
=-E_{p(x, y)} \log p(y \mid x)
\end{gathered}
$$

CHAIN RULE

Theory (Chain Rule)

$$
\begin{aligned}
H(X, Y) & =H(X)+H(Y \mid X) \\
& =H(Y)+H(X \mid Y)
\end{aligned}
$$

Corollary

$$
H(X, Y \mid Z)=H(X \mid Z)+H(Y \mid X, Z)
$$

Remark

$$
\begin{aligned}
H(Y \mid X) & \neq H(X \mid Y) \\
H(Y)-H(Y \mid X) & =H(X)-H(X \mid Y)
\end{aligned}
$$

RELATIVE ENTROPY

Definition:
The relative entropy (Kullbuck-Leibler distance, K-L divergence) between two probability mass function $p(x)$ and $q(x)$ is defined as

$$
D(p \| q)=\sum_{x \in \chi} p(x) \log \frac{p(x)}{q(x)}=E_{p} \log \frac{p(X)}{q(X)}
$$

Meaning:

- Distance between two distributions
- A measure of the inefficiency of assuming that the distribution is q when the true distribution is p

Properties:

- Is non-negative
- $D(p \| q)=0$ if and only if $p=q$
- Is asymmetric : $D(p \| q) \neq D(q \| p)$
- Does not satisfy triangle inequality

Definition:
The conditional relative entropy between two probability mass function $p(x, y)$ and $q(x, y)$ is defined as

$$
D(p(y \mid x) \| q(y \mid x))=\sum_{x \in \chi} p(y \mid x) \log \frac{p(y \mid x)}{q(y \mid x)}=E_{p(x, y)} \log \frac{p(Y \mid X)}{q(Y \mid X)}
$$

MUTUAL INFORMATION

Definition:
Mutual information $\mathrm{I}(\mathrm{X} ; \mathrm{Y})$ is the relative entropy between the joint distribution $\mathrm{p}(\mathrm{x}, \mathrm{y})$ and the product distribution $\mathrm{p}(\mathrm{x}) \mathrm{p}(\mathrm{y})$

$$
\begin{aligned}
& I(X ; Y)=D(p(x, y) \| p(x) p(y)) \\
& =\sum_{x} \sum_{y} p(x, y) \log \frac{p(x, y)}{p(x) p(y)} \\
& =E_{p(x, y)} \log \frac{p(X, Y)}{p(X) p(Y)}
\end{aligned}
$$

Definition:
Conditional mutual information $\mathrm{I}(\mathrm{X} ; \mathrm{Y} \mid \mathrm{Z})$ is the reduction in the uncertainty of X due to knowledge of Y when Z is given

$$
\begin{gathered}
I(X ; Y \mid Z)=D(p(x, y \mid z)| | p(x \mid z) p(y \mid z)) \\
=\sum_{x} \sum_{y} p(x, y \mid z) \log \frac{p(x, y \mid z)}{p(x \mid z) p(y \mid z)} \\
=E_{p(x, y, z)} \log \frac{p(X, Y \mid Z)}{p(X \mid Z) p(Y \mid Z)} \\
=\mathrm{H}(\mathrm{X} \mid \mathrm{Z})-\mathrm{H}(\mathrm{X} \mid \mathrm{Y}, \mathrm{Z})
\end{gathered}
$$

RELATIONSHIP BETWEEN ENTROPY AND MUTUAL INFORMATION

Properties:

- $\mathrm{I}(\mathrm{X} ; \mathrm{Y})$ is the reduction of uncertainty of X due to the knowledge of Y (or vise versa) proof $I(X ; Y)=H(X)-H(X \mid Y)$ $I(X ; Y)=H(Y)-H(Y \mid X)$
- Is symmetric: X says about Y as much and Y says about X
- $I(X ; Y)=H(Y)+H(X)-H(X, Y)$ since $H(X, Y)=H(X)+H(Y \mid X)$ by chain rule
- $I(X ; X)=H(X)$ also called self information

VARIATIONS OF CHAIN RULES

Theorem (chain rule for entropy)
Let $X_{1}, X_{2}, \ldots, X_{n}$ be drawn according to $p\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. Then,

$$
H\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\sum_{i=1}^{n} H\left(X_{i} \mid X_{i-1}, \ldots, X_{1}\right)
$$

Theorem (chain rule for information)
Let $X_{1}, X_{2}, \ldots, X_{n}$ be drawn according to $p\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. Then,

$$
I\left(X_{1}, X_{2}, \ldots, X_{n} ; Y\right)=\sum_{i=1}^{n} I\left(X_{i} ; Y \mid X_{i-1}, \ldots, X_{1}\right)
$$

Theorem (chain rule for relative entropy)
For joint pmf $p(x, y)$ and $\mathrm{q}(x, y)$.

$$
D(p(x, y) \| q(x, y))=D(p(x) \| q(x))+D(p(y \mid x) \| q(y \mid x))
$$

JENSEN'S INEQUALITY

Theorem (Jensen's Inequality)

If f is a convex function and X is a random variable,

$$
E f(X) \geq f(E X)
$$

Moreover, if f is strictly convex, the equality implies that $\mathrm{X}=\mathrm{EX}$ with probability 1 (i.e. X is a constant)

JENSEN'S INEQUALITY CONSEQUENCES

Theorem (Information Inequality)

Let $p(x), q(x), x \in \chi$, be two probability mass funcions. Then,

$$
D(p \| q) \geq 0
$$

With equality if and only if $p(x)=q(x)$ for all x.

Corollary (No-negativity of mutual information)
For any two random variable X and Y. Then,

$$
I(X ; Y) \geq 0
$$

With equality if and only if X and Y are independent.

Corollary

$$
D(p(y \mid x) \| q(y \mid x)) \geq 0
$$

With equality if and only if $p(y \mid x)=q(y \mid x)$ for all y and x such that $p(x)>0$.

Corollary

$$
I(X ; Y \mid Z) \geq 0
$$

With equality if and only if X and Y are independent given Z.

JENSEN'S INEQUALITY CONSEQUENCES CONT,

Theorem [UPPER BOUND IN ENTROPY]

Let $H(X) \leq \log |\chi|$, where $|\chi|$ denotes the number of elements in the range of X, with equality if and only X has a uniform distribution over χ.

Proof Hint) show $D(p \| u)=\log |\chi|-H(X)$, where $u(x)=\frac{1}{|\chi|}$
Theorem (Conditioning reduces entropy)

$$
H(X \mid Y) \leq H(X)
$$

With equality if and only if X and Y are independent.

NOTE>
The theorem says that knowing another r.v. Y can only reduce the uncertainty in X. Note that this in true only on the average. Specific $\mathrm{H}(\mathrm{X} \mid \mathrm{Y}=\mathrm{y})$ may be greater than or less than or euqal to $\mathrm{H}(\mathrm{X})$.

JENSEN'S INEQUALITY CONSEQUENCES CONT,

Theorem (Independence Bound on Entropy)
Let $X_{1}, X_{2}, \ldots, X_{n}$ be drawn according to $p\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. Then

$$
H\left(X_{1}, X_{2}, \ldots, X_{n}\right) \leq \sum_{i=1}^{n} H\left(X_{i}\right)
$$

With equality if and only if X_{i} are independent.

Proof Hint> use chain rule of entropy

LOG-SUM INEQUALITY

Theorem (Log sum inequality)

For nonnegative numbers $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$. Then,

$$
\sum_{i=1}^{n} a_{1} \log \left(\frac{a_{i}}{b_{i}}\right) \geq\left(\sum_{i=1}^{n} a_{i}\right) \log \left(\left(\sum_{i=1}^{n} a_{i}\right) /\left(\sum_{i=1}^{n} b_{i}\right)\right)
$$

with equality if and only if $\frac{a_{i}}{b_{i}}=$ constant.

Convention

- $0 \log 0=0$
- a $\log \frac{a}{0}=\infty$, if $a>0$
- $0 \log \frac{0}{0}=0$

LOG-SUM INEQUALITY CONSEQUENCES

Theorem (Convexity of relative entropy)

$D(p \| q)$ is convex in the pair (p, q), so that for pmf's $\left(p_{1}, q_{1}\right)$ and $\left(p_{2}, q_{2}\right)$, we have for all $0 \leq \lambda \leq 1$:

$$
\left.D\left(\lambda p_{1}+(1-\lambda) p_{2}\right) \| \lambda q_{1}+(1-\lambda) q_{2}\right) \leq \lambda D\left(p_{1} \| q_{1}\right)+(1-\lambda) D\left(p_{2}, q_{2}\right)
$$

Theorem (Concavity of entropy)

For $X \sim p(x)$, we have that

$$
H(p):=H_{p}(X) \text { is concave function of } \mathrm{p}(\mathrm{x}) .
$$

LOG-SUM INEQUALITY CONSEQUENCES CONT.

Theorem (Concavity of the mutual information in $p(x)$)
Let $(X, Y) \sim p(x, y)=p(x) p(y \mid x)$. Then, $I(X ; Y)$ is a concave function of $p(x)$ for fixed $p(y \mid x)$.

Theorem (Convexity of the mutual information in $p(y / x)$)
Let $(X, Y) \sim p(x, y)=p(x) p(y \mid x)$. Then, $I(X ; Y)$ is a convex function of $p(y \mid x)$ for fixed $p(x)$

MARKOV CHAINS

Definition:
X, Y, Z form a Markov chain in that order $(X \rightarrow Y \rightarrow Z)$ iff

$$
p(x, y, z)=p(x) p(y \mid x) p(z \mid y) \equiv p(z \mid y, x)=p(z \mid y)
$$

With equality if and only if X and Y are independent given Z.

$X \rightarrow Y \rightarrow Z$ iff X and Z are conditionally independent given Y
$X \rightarrow Y \rightarrow Z \Rightarrow Z \rightarrow Y \rightarrow X$. Thus, we can write $X \leftrightarrow Y \leftrightarrow Z$.

DATA-PROCESSING INEQUALITY

Theorem (Data-processing inequality)
If $X \rightarrow Y \rightarrow Z$, then

$$
I(X ; Y) \geq I(X ; Z)
$$

with equality iff $I(X ; Y \mid Z)=0$.

Corollary

$$
\text { If } \mathrm{Z}=\mathrm{f}(\mathrm{Y}) \text {, then } I(X ; Y) \geq I(X ; f(Y))
$$

Corollary
If $X \rightarrow Y \rightarrow Z$, then

$$
I(X ; Y) \geq I(X ; Y \mid Z)
$$

SUFFICIENT STATISTIC

Definition:

A function $T(X)$ is said to be a sufficient statistic relative to the family $\left\{f_{\theta}(x)\right\}$ if the conditional distribution of X, given $T(X)=t$, is independent of θ for any distribution on θ (Fisher-Neyman):

$$
f_{\theta}(x)=f(x \mid t) f_{\theta}(t) \Rightarrow \theta \rightarrow T(X) \Rightarrow I(\theta ; T(X)) \geq I(\theta ; X)
$$

Hence, $I(\theta ; X)=I(\theta ; T(X))$ for a sufficient statistics (suf stat. preserves mutual info.)

FANO'S INEQUALITY

Problem: using the observation of r.v. Y. we want to guess the value of X that is correlated to r.v. Y.
-> Fano's inequality relates the probability of error in guessing the r.v. X to its conditional entropy $\mathrm{H}(\mathrm{X} \mid \mathrm{Y})$.

* We can estimate X for Y with 0 prob. Of error if and only if $H(X \mid Y)=0$;

Theorem (Fano's inequality)
For any estimator \hat{X} such that $\mathrm{X} \rightarrow Y \rightarrow \hat{X}$, with probability of error
$P_{e}=\operatorname{Pr}(X \neq \hat{X})$, we have

$$
H\left(P_{e}\right)+P_{e} \log |\chi| \geq H(X \mid \hat{X}) \geq H(X \mid Y)
$$

$$
g(Y)=\hat{X}
$$

This inequality can be weekend to

$$
1+P_{e} \log |\chi| \geq H(X \mid Y)
$$

or

$$
P_{e} \geq \frac{H(X \mid Y)-1}{\log |\chi|}
$$

NOTE: Fano's bound is a loose bound, but sufficient for many cases of interest.

FANO'S INEQUALITY CONSEQUENCES

Corollary

Let $p=\operatorname{Pr}(X \neq Y)$. Then

$$
H(p)+p \log |\chi| \geq H(X \mid Y)
$$

Corollary
Let $\mathrm{P}_{\mathrm{e}}=\operatorname{Pr}(X \neq \hat{X})$, and $\hat{X}: \psi \rightarrow \chi$; Then

$$
H\left(P_{e}\right)+P_{e} \log (|\chi|-1) \geq H(X \mid Y)
$$

* Range of possible outcome changed to $|\chi|-1$.

Remark:

Suppose that ther is no knowledge of Y . Thus, X must be guessed. Without any information. Let $X \in\{1,2, \ldots, m\}$ and $p_{1} \geq p_{2} \geq \cdots \geq p_{m}$. Then the best guess of X is $\hat{X}=1$ and the resulting probability of error is $P_{e}=1-p_{1}$. Fano's inequality becomes

$$
H\left(P_{e}\right)+P_{e} \log |m-1| \geq H(X)
$$

The pmf

$$
\left(p_{1}, p_{2}, \ldots, p_{m}\right)=\left(1-P_{e}, \frac{P_{e}}{m-1}, \ldots, \frac{P_{e}}{m-1}\right)
$$

achieves this bound with equality.

FANO'S INEQUALITY CONSEQUENCES

Lemma

If X and X ' are i.i.d. with entropy $\mathrm{H}(\mathrm{X})$, assume the probability at $\mathrm{X}=\mathrm{X}^{\prime}$ is given by

$$
P\left(X=X^{\prime}\right)=\sum_{x} p^{2}(x) .
$$

Then

$$
\operatorname{Pr}\left(X=X^{\prime}\right) \geq 2^{-H(X)}
$$

with equality if and only if X has a uniform distribution.

Corollary
Let X, X^{\prime} be independent with $X \sim p(x), X^{\prime} \sim r(x), x, x^{\prime} \in \chi$, then

$$
\begin{aligned}
& \operatorname{Pr}\left(X=X^{\prime}\right) \geq 2^{-H(p)-D(p \| r)} \\
& \operatorname{Pr}\left(X=X^{\prime}\right) \geq 2^{-H(r)-D(r \| p)}
\end{aligned}
$$

with equality if and only if X has a uniform distribution.

Chapter 4 of Elements of Information Theory, $2^{\text {nd }}$ ed.

ENTROPY RATES OF A STOCHASTIC PROCESS

STOCHASTIC PROCESSES

* What about the notion of entropy of a general random process?

Definition: A stochastic process $\left\{X_{i}\right\}$ is an indexed sequence of random variables.

Definition: A discrete-time stochastic process $\left\{X_{i}\right\}_{i \in \mathcal{I}}$ is one for which we associate the discrete index set $\mathcal{I}=\{1,2, \ldots\}$ with time.

Entropy: $H\left(\left\{X_{i}\right\}\right)=H\left(X_{1}\right)+H\left(X_{2} \mid X_{1}\right)+\cdots=\infty($ often $)$

MOTIVATION: Should probably normalize by n somehow.

ENTROPY RATE

- Entropy Rate: The entropy rate of a stochastic process $\left\{X_{i}\right\}$ is defined by

$$
H(\mathcal{X})=\lim _{n \rightarrow \infty} \frac{1}{n} H\left(X_{1}, X_{2}, \ldots, X_{n}\right)
$$

when the limit exists. We can also define an alternative notion:

$$
H^{\prime}(\mathcal{X})=\lim _{n \rightarrow \infty} H\left(X_{n} \mid X_{n-1}, X_{n-2}, \ldots, X_{1}\right)
$$

- Entropy rate estimates the additional entropy per new sample.
- Gives lower bound on number of code bits per sample.
- If the X_{i} are not i.i.d the entropy rate limit may not exist.
- X_{i} i.i.d. random variables: $H(\mathcal{X})=H\left(X_{i}\right)$

STATIONARY PROCESSES

Definition: A discrete-time stochastic process is said to be stationary if the joint distribution of any subset of the sequence of random variables is invariant with respect to shifts in the time index; that is,

$$
\operatorname{Pr}\left\{X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right\}=\operatorname{Pr}\left\{X_{1+l}=x_{1}, X_{2+l}=x_{2}, \ldots, X_{n+l}=x_{n}\right\}
$$

for every n and every shift l and for all $x_{1}, x_{2}, \ldots, x_{n} \in \mathcal{X}$.

Lemma: For a stationary stochastic process, $H\left(X_{n} \mid X_{n-1}, X_{n-2}, \ldots, X_{1}\right)$ is nonincreasing in n and has a limit $H^{\prime}(\mathcal{X})$.

Lemma: Cesáro mean If $a_{n} \rightarrow a$ and $b_{n}=\frac{1}{n} \sum_{i=1}^{n} a_{i}$, then $b_{n} \rightarrow a$.
Theorem: For a stationary stochastic process, $H(\mathcal{X})$ and $H^{\prime}(\mathcal{X})$ exist and are equal:

$$
H(\mathcal{X})=H^{\prime}(\mathcal{X}) .
$$

