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Saeys, Y., Inza, I., & Larrañaga, P. (2007). A review of feature selection techniques in bioinformatics. Bioinformatics, 23(19), 
2507–17.  

relevance of features is 
evaluated by looking 
only at the intrinsic 
properties of the data 
 
* Often feature relevance 
score is used to evaluate 
each feature  (gene)  

model hypothesis 
search is embed within 
the feature subset 
search 
 
-> various subsets of 
features are  generated 
and evaluated 

optimal feature subset 
search is built into the 
classifier construction 
 
-> a search in the 
combined space of feature 
subsets and hypotheses 



Chapter 3 of PRML  

FEATURE SELECTION WITH LASSO REGRESSION MODEL 



LINEAR BASIS FUNCTION MODELS (1) 

 Example: Polynomial Curve Fitting 



LINEAR BASIS FUNCTION MODELS (2) 

 Generally 
 
 

 where 𝜙𝑗(x) are known as basis functions. 
 Typically, 𝜙0 x = 1 , so that 𝑤0 acts as a bias. 
 In the simplest case, we use linear basis functions :
𝜙𝑑(𝑥)  =  𝑥𝑑. 



LINEAR BASIS FUNCTION MODELS (3) 

Polynomial basis function
s: 

 
 

These are global; a small 
change in 𝑥 affect all basis 
functions. 



LINEAR BASIS FUNCTION MODELS (4) 

Gaussian basis functions: 
 
 
 

These are local;  
a small change in 𝑥 only affect 
nearby basis functions. 
 𝜇𝑗 and 𝑠 control location and sc
ale (width). 



LINEAR BASIS FUNCTION MODELS (5) 

Sigmoidal basis functions: 
 
 

where 
 
 
 

Also these are local;  
a small change in 𝑥 only affect 
nearby basis functions. 
 𝜇𝑗 and 𝑠 control location and 
scale (width). 



MAXIMUM LIKELIHOOD AND LEAST SQUARES (1) 

 Assume observations from a deterministic function with added 
Gaussian noise: 
 

 which is the same as saying, 
 

 Given observed inputs,                            , and targets, 
                      , we obtain the likelihood function   
 

where 

likelihood function  



MAXIMUM LIKELIHOOD AND LEAST SQUARES (2) 

 Log likelihood:  
 
 
 

      where 
 
 

      is the sum-of-squares error. 
 

𝑁 𝑡𝑛 𝒘𝑻𝝓 𝐱𝐧 ,𝛽−1 =
𝛽
2𝜋

1
2 exp (−𝛽

2
𝑡𝑛 − 𝒘𝑻𝝓 𝐱𝐧

2)  
 

Relationship of log 
likelihood and sum-of-
squares error in univariate 
Gaussian noise model.  



 Computing the gradient and setting it to zero yields 
 
 

 Solving for 𝑤, we get  
 

 where 

MAXIMUM LIKELIHOOD AND LEAST SQUARES (3) 

The Moore-Penrose 
pseudo-inverse,       . 

Design matrix 



MAXIMUM LIKELIHOOD AND LEAST SQUARES (4) 

 Maximizing with respect to the bias, 𝑤0, alone, we see 
that 
 
 
 

 We can also maximize with respect to 𝛽, giving 

Residual variance of the target value 
around the regression function 



REGULARIZED LEAST SQUARES (1) 

 Consider the error function: 
 

 With the sum-of-squares error (SSE) function and a 
quadratic regularizer, we get   
 
 

 which is minimized by 

Data term + Regularization term 

𝜆 is called the 
regularization 
coefficient. 



REGULARIZED LEAST SQUARES (2) 

 With a more general regularizer, we have 
 

Lasso Quadratic 

Fig: Contours of the regularization terms  



USING LASSO FOR FEATURE SELECTION 

Lasso tends to generate sparser solutions 
 If 𝜆 is sufficiently large, some of the coefficients 𝑤𝑗are 

driven to zero, leading to a sparse model in which the 
corresponding basis function pays no role.  
 

Minimizing  
 

    
is equivalent to minimizing the unregularized SSE subjected  to 
constraint   

general regularizer 

Subjected to  � 𝑤𝑗
𝑞 ≤ 𝜂

𝑀

𝑗=1

 

Lagrangian Multiplier 



REGULARIZED LEAST SQUARES (3) 

Figure shows the minimum of the error function, subjected to constraint.  
As 𝜆 is increased, so an increasing number of parameters are driven to 
zero.  

Quadratic Lasso 

Q: So, how do we find the right 𝜆?  

Contours of 
unregularized SSE 

Contours of the 
regularization terms � 𝑤𝑗

𝑞 ≤ 𝜂
𝑀

𝑗=1

 

Lasso give sparse solution in 
which 𝑤∗ = 0.  

𝑤1 = 0 



LIMITATIONS OF LASSO BASED FEATURE SELECTION 

 
 Linear feature space : inadequate to capture non-

linear dependencies from features to output 
 
 
 
 



SUPPORT VECTOR MACHINES 



REVIEW 
AMIA ch 18.9 

Logistic regression 

ℎw x = 𝐿𝐿𝐿𝐿𝑠𝑡𝐿𝐿 w𝑇x  = 1

1+𝑒− w𝑇x  
  

Estimated prob. that y=1 
on input x 

linear regression  
𝑙ℎw x = w𝑇x  



LEARNING THE WEIGHTS 

linear regression:  

𝐿𝐿𝑠𝑠 ℎ𝑤 =  �(𝑦𝑖  − w𝑇x )2
𝑁

𝑗=1

 

logistic regression: 

 𝐿𝐿𝑠𝑠 ℎ𝑤 =   �−𝑦𝑖 log ℎ𝑤 𝑥 − (𝑦𝑖 − 1)(log (1 − ℎ𝑤(𝑥)))
𝑁

𝑗=1

 

 

𝑤∗  = 𝑎𝑎𝐿𝑎𝐿𝑎𝑤𝐿𝐿𝑠𝑠 ℎ𝑤  

• y is classification label in logistics 
regression (0 or 1) 

• y is scalar values in linear regression   
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KERNELS 

• The original feature space can always be mapped to 
some higher-dimensional feature space (even infinite) 
where the training set is separable  

Φ:  x → 
φ(x) 



KERNEL TRICK 



KERNELS 

• The linear classifier relies on an inner product between vectors K(xi,xj)=xi
Txj 

• If every data point is mapped into high-dimensional space via some 
transformation Φ:  x → φ(x), the inner product becomes: 

K(xi,xj)= φ(xi) 
Tφ(xj) 

• A kernel function is some function that corresponds to an inner product in 
some expanded feature space. 
 
 

• Kernel function should measure some similarity between data 
• kernel must be positive semi-definite 

 
• You should scale the features to have same scale!! 

 
• Most widely used is linear kernels and Gaussian kernels    



GAUSSIAN KERNELS 

𝑘 𝑥𝑖 , 𝑥𝑗 = exp −
| 𝑥𝑖 − 𝑥𝑗 |2

2𝜎2 = exp −
∑ (𝑥𝑖𝑘 − 𝑥𝑗𝑘)2𝑛
𝑘=1  

2𝜎2  

If 𝑥𝑖  𝑎𝑎𝑑 𝑥𝑗 is similar: 

  𝑘 𝑥𝑖 , 𝑥𝑗  ≈ exp − 02

2𝜎2
≈ 1  

If 𝑥𝑖  𝑎𝑎𝑑 𝑥𝑗 is different: 

  𝑘 𝑥𝑖 , 𝑥𝑗  ≈ exp − (𝑙𝑙𝑙𝑙𝑒 𝑛𝑛𝑛𝑛𝑒𝑙)2

2𝜎2
≈ 0   

If you use Gaussian kernel, 
You will need to pick 𝜎 



 SVMs constructs a maximum margin separator 
 SVMs create a linear separating hyperplane 

 But have ability to embed that in to higher-
dimensional space (via Kernel trick) 

 SVM are a nonparametric method 
 Retain training examples an potentially need to 

store all or part of the data 
 Some example are more important then others (support 

vectors) 

SUPPORT VECTOR MACHINES 
SVM 



SVM TERMS  
SVM 

• Distance from example xi to the separator is  
 𝑎 =  (w𝑇x+b)

w�   
• Examples closest to the hyperplane are support vectors.  
• Margin ρ of the separator is the distance between support vectors 

r 

ρ 

wT x + b < 0 

wT x + b > 0 



MARGINS  
SVM 

Instead of minimizing expected empirical loss in the training data, 
SVM attempts to minimize expected generalization loss.  

or 𝑎 =  (w𝑇x+b)
w�   𝑦(𝑥)/ 𝑤  

-b/ 𝑤  

w 

x⊥ 

x 

𝑦 x =  wTx + 𝑏 where w is weight vector and b is bias 
x= x ⊥  +𝑎 𝑤

| 𝑤 |
    (multiply wT and add b) 

wTx + 𝑏 = wT(x ⊥  +𝑎 𝑤
| 𝑤 |

)  + 𝑏 (𝑦 x =  wTx + 𝑏 ) 

𝑦 x = wTx ⊥  + 𝑎 w
T𝑤
𝑤

+ 𝑏  (𝑦 x ⊥ =  wTx ⊥ +𝑏 = 0) 

𝑦 x = 𝑎 w
T𝑤

| 𝑤 |
    = I 

 



MAXIMUM MARGINS 

r 

ρ 
𝑎𝑎𝐿𝑎𝑎𝑥𝑤,𝑛 {

1
𝑤

 𝑎𝐿𝑎𝑛[𝑡𝑛(wTxn + 𝑏)]} 

Solving this is non-trivial and will not be 
discussed in class 

𝑎 =  (w𝑇x+b)
w�   

𝑎𝑎𝐿𝑎𝐿𝑎𝑤,𝑛
1
2 ||𝑤||2 

𝜙(xn) in the 
feature space 

� 𝑎𝑛𝑡𝑛
𝑁

𝑛=1
= 0 

w =  � 𝑎𝑛𝑡𝑛
𝑁

𝑛=1
𝜙 xn  



SOFT MARGINS 

Idea: Allow data point to be in the wrong side of the margin boundary, but with a 
penalty that increases with the distance from that boundary.  
 
Penalty for each data point : slack variable 𝝃 
𝜉𝑛 = 0  if point is on the right side 
𝜉𝑛 = |𝑡𝑛 − 𝑦(x𝑛)| if point is on the wrong side  
Such that 
𝑡𝑛𝑦 x𝑛 ≥ 1 − 𝜉𝑛 for n = 1, …, N and 𝜉𝑛 ≥ 0  
 
• 0 < 𝜉𝑛 ≤ 1 for points inside the margin 
• 𝜉𝑛 = 1 for points on the margin 
• 𝜉𝑛 > 1 for points that are on the wrong side 

 
Goal now is to maximize the margin while softly penalizing points that lie on the 
wrong side of the margin boundary 
 
 

𝑎𝑎𝐿𝑎𝐿𝑎𝑤,𝑛  𝐶�𝜉𝑛

𝑁

𝑛

+  
1
2 | 𝑤 |2 



OPTIMIZATION ON SOFT MARGINS 
𝑎𝑎𝐿𝑎𝐿𝑎𝑤,𝑛  𝐶 ∑ 𝜉𝑛𝑁

𝑛 + 1
2

| 𝑤 |2  
subjected to 𝑡𝑛𝑦 x𝑛 ≥ 1 − 𝜉𝑛 for n = 1, …, N and 𝜉𝑛 ≥ 0  

Complex calculations 
Lagrangian 
Etc.  

� 𝑎𝑛𝑡𝑛
𝑁

𝑛=1
= 0 

w =  � 𝑎𝑛𝑡𝑛
𝑁

𝑛=1
𝜙 xn  

𝑎𝑛 = C - 𝜇𝑛 𝜇𝑛 is Lagrangian multiplier 
related to 𝜉𝑛  

 𝜉𝑛: slack variable for 
training data  x𝑛 

𝑎𝑛 is Lagrangian multiplier 
related to w𝑛  

b =  
1
𝑁𝑀

� (𝑡𝑛 −� (𝑎𝑛𝑡𝑛
𝑛∈𝑆

𝑘(𝑥𝑛𝑥𝑛))
𝑛∈𝑀

 



PREDICTION USING KERNELS 

𝑦 𝑥 =  w𝑇𝜙 xn + 𝑏  

w =  � 𝑎𝑛𝑡𝑛
𝑁

𝑛=1
𝜙 xn  

𝑦 𝑥 =  � 𝑎𝑛𝑡𝑛𝑘(x, xn)
𝑁

𝑛=1
+ 𝑏 

𝑎𝑛 is a Lagrangian multiplier 

New 
Data Training data 

Training data target (-1,1) 

Any data point 𝑎𝑛 = 0 will not appear in 
the sum  



METHODS OF USING SVM OF FEATURE SELECTION 

1. Linear SVM:  
     Evaluation of learned weights in Linear SVM 

3. Feature Vector Machines 
    Variation of Lasso like SVM that generate kernels on    
    features not samples.   

2. Recursive Feature Elimination: 
     Iterative evaluation of significance of features in SVM   
     classification: 
  

𝑦 𝑥 =  w𝑇𝜙 xn + 𝑏  w =  � 𝑎𝑛𝑡𝑛
𝑁

𝑛=1
𝜙 xn  
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