

Instructor: Sael Lee CS549 Spring – Computational Biology

LECTURE 12-13: FEATURE SELECTION

Ref.

1. C. M. Bishop "Pattern Recognition and Machine Learning" 2nd ed. & provided sides

TYPES OF FEATURE SELECTION METHOD

relevance of features is evaluated by looking only at the intrinsic properties of the data

* Often **feature relevance score** is used to evaluate each feature (gene)

Wrapper Methods

model hypothesis search is embed within the feature subset search

-> various subsets of features are generated and evaluated

Embedded Method
FS U hypothesis space Classifier

optimal feature subset search is built into the classifier construction

-> a search in the combined space of feature subsets and hypotheses

Saeys, Y., Inza, I., & Larrañaga, P. (2007). A review of feature selection techniques in bioinformatics. *Bioinformatics*, 23(19), 2507–17.

Chapter 3 of PRML

FEATURE SELECTION WITH LASSO REGRESSION MODEL

LINEAR BASIS FUNCTION MODELS (1)

x Example: Polynomial Curve Fitting

LINEAR BASIS FUNCTION MODELS (2)

× Generally

$$y(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})$$

× where $\phi_j(x)$ are known as basis functions.

- × Typically, $\phi_0(\mathbf{x}) = 1$, so that w_0 acts as a bias.
- * In the simplest case, we use linear basis functions : $\phi_d(x) = x_d$.

LINEAR BASIS FUNCTION MODELS (3)

*Polynomial basis function s:

$$\phi_j(x) = x^j.$$

*These are global; a small change in *x* affect all basis functions.

LINEAR BASIS FUNCTION MODELS (4)

×Gaussian basis functions:

$$\phi_j(x) = \exp\left\{-\frac{(x-\mu_j)^2}{2s^2}\right\}$$

These are local;

+a small change in x only affect nearby basis functions.

+ μ_j and *s* control location and sc ale (width).

LINEAR BASIS FUNCTION MODELS (5)

×Sigmoidal basis functions:

where
$$\phi_j(x) = \sigma\left(rac{x-\mu_j}{s}
ight)$$

$$\sigma(a) = \frac{1}{1 + \exp(-a)}.$$

×Also these are local;

+a small change in x only affect nearby basis functions.

+ μ_j and s control location and scale (width).

MAXIMUM LIKELIHOOD AND LEAST SQUARES (1)

 Assume observations from a <u>deterministic function with added</u> <u>Gaussian noise</u>:

 $t = y(\mathbf{x}, \mathbf{w}) + \epsilon$ where $p(\epsilon|\beta) = \mathcal{N}(\epsilon|0, \beta^{-1})$

× which is the same as saying,

$$p(t|\mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(t|y(\mathbf{x}, \mathbf{w}), \beta^{-1}).$$

× Given observed inputs, $\mathbf{X} = {\mathbf{x}_1, \dots, \mathbf{x}_N}$ and targets, $\mathbf{t} = [t_1, \dots, t_N]^T$, we obtain the likelihood function

likelihood function
$$p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}(t_n | \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1}).$$

MAXIMUM LIKELIHOOD AND LEAST SQUARES (2)

× Log likelihood:

$$\ln p(\mathbf{t}|\mathbf{w},\beta) = \sum_{n=1}^{N} \ln \mathcal{N}(t_n|\mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_n),\beta^{-1})$$

$$= \boxed{\frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi) - \beta E_D(\mathbf{w})}^{\mathbb{N}}$$
where

$$E_D(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_n)\}^2$$
Relationship of log likelihood and sum-of-squares error in univariate Gaussian noise model.

1

is the sum-of-squares error.

MAXIMUM LIKELIHOOD AND LEAST SQUARES (3)

<u>Computing the gradient and setting it to zero yields</u> ×

$$\nabla_{\mathbf{w}} \ln p(\mathbf{t}|\mathbf{w},\beta) = \beta \sum_{n=1}^{N} \left\{ t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n) \right\} \boldsymbol{\phi}(\mathbf{x}_n)^{\mathrm{T}} = \mathbf{0}.$$

× Solving for w, we get

where
$$\mathbf{w}_{\mathrm{ML}} = \left(\mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi} \right)^{-1} \mathbf{\Phi}^{\mathrm{T}} \mathbf{t}$$
 The Moore-Penrose pseudo-inverse, $\mathbf{\Phi}^{\dagger}$.

Design matrix

$$oldsymbol{\Phi} = \left(egin{array}{ccccc} \phi_0(\mathbf{x}_1) & \phi_1(\mathbf{x}_1) & \cdots & \phi_{M-1}(\mathbf{x}_1) \ \phi_0(\mathbf{x}_2) & \phi_1(\mathbf{x}_2) & \cdots & \phi_{M-1}(\mathbf{x}_2) \ dots & dots & \ddots & dots \ \phi_0(\mathbf{x}_N) & \phi_1(\mathbf{x}_N) & \cdots & \phi_{M-1}(\mathbf{x}_N) \end{array}
ight)$$

MAXIMUM LIKELIHOOD AND LEAST SQUARES (4)

* Maximizing with respect to the bias, w_0 , alone, we see that

$$w_{0} = \overline{t} - \sum_{j=1}^{M-1} w_{j} \overline{\phi_{j}}$$
$$= \frac{1}{N} \sum_{n=1}^{N} t_{n} - \sum_{j=1}^{M-1} w_{j} \frac{1}{N} \sum_{n=1}^{N} \phi_{j}(\mathbf{x}_{n}).$$

× We can also maximize with respect to β , giving

$$\frac{1}{\beta_{\rm ML}} = \frac{1}{N} \sum_{n=1}^{N} \{t_n - \mathbf{w}_{\rm ML}^{\rm T} \boldsymbol{\phi}(\mathbf{x}_n)\}^2$$
Residual variance of the target value around the regression function

REGULARIZED LEAST SQUARES (1)

× Consider the error function:

 $E_D(\mathbf{w}) + \lambda E_W(\mathbf{w})$

Data term + Regularization term

• With the sum-of-squares error (SSE) function and a quadratic regularizer, we get

$$\frac{1}{2}\sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_n)\}^2 + \frac{\lambda}{2}\mathbf{w}^{\mathrm{T}}\mathbf{w}$$

× which is minimized by

$$\mathbf{w} = \left(\lambda \mathbf{I} + \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \mathbf{t}.$$

 λ is called the regularization coefficient.

REGULARIZED LEAST SQUARES (2)

× With a more general regularizer, we have

Fig: Contours of the regularization terms

USING LASSO FOR FEATURE SELECTION

Lasso tends to generate sparser solutions

+ If λ is sufficiently large, some of the coefficients $\underline{w_{j}}$ are driven to zero, leading to a sparse model in which the corresponding basis function pays no role.

Minimizing

$$\frac{1}{2}\sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2 + \frac{\lambda}{2}\sum_{j=1}^{M} |w_j|^q$$

is equivalent to minimizing the unregularized SSE subjected to constraint

Lagrangian Multiplier

general regularizer

$$E_D(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2 \text{ Subjected to } \sum_{j=1}^{M} |w_j|^q \le \eta$$

REGULARIZED LEAST SQUARES (3)

Figure shows the minimum of the error function, subjected to constraint. As λ is increased, so an increasing number of parameters are driven to

LIMITATIONS OF LASSO BASED FEATURE SELECTION

 Linear feature space : inadequate to capture nonlinear dependencies from features to output

$$y(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})$$

SUPPORT VECTOR MACHINES

linear regression $lh_w(x) = (w^T x)$ Logistic regression

Estimated prob. that y=1
on input x
$$h_{w}(x) = Logistic(w^{T}x) = \frac{1}{1 + e^{-(w^{T}x)}}$$

LEARNING THE WEIGHTS

 $w^* = argmin_w Loss(h_w)$

linear regression:

$$Loss(h_w) = \sum_{j=1}^{N} (y_i - (w^T x))^2$$

logistic regression:

$$Loss(h_w) = \sum_{j=1}^{N} -y_i(\log(h_w(x))) - (y_i - 1)(\log(1 - h_w(x)))$$

- y is classification label in logistics regression (0 or 1)
- y is scalar values in linear regression

 The original feature space can always be mapped to some higher-dimensional feature space (even infinite) where the training set is separable

and negative examples as white circles. The true decision boundary, $x_1^2 + x_2^2 \le 1$, is also shown. (b) The same data after mapping into a three-dimensional input space $(x_1^2, x_2^2, \sqrt{2}x_1x_2)$. The circular decision boundary in (a) becomes a linear decision boundary in three dimensions. Figure 18.29(b) gives a closeup of the separator in (b).

- The linear classifier relies on an inner product between vectors $K(\mathbf{x}_i, \mathbf{x}_i) = \mathbf{x}_i^T \mathbf{x}_i$
- If every data point is mapped into high-dimensional space via some transformation Φ: x → φ(x), the inner product becomes:

$$K(\mathbf{x}_i, \mathbf{x}_j) = \boldsymbol{\varphi}(\mathbf{x}_i)^{\mathsf{T}} \boldsymbol{\varphi}(\mathbf{x}_j)$$

- A *kernel function* is some function that corresponds to an inner product in some expanded feature space.
- Kernel function should measure some similarity between data
- kernel must be positive semi-definite
- You should scale the features to have same scale!!
- Most widely used is linear kernels and Gaussian kernels

$$k(x_i, x_j) = \exp\left(-\frac{||x_i - x_j||^2}{2\sigma^2}\right) = \exp\left(-\frac{\sum_{k=1}^n (x_{ik} - x_{jk})^2}{2\sigma^2}\right)$$

If x_i and x_j is similar:

$$k(x_i, x_j) \approx \exp\left(-\frac{0^2}{2\sigma^2}\right) \approx 1$$

If x_i and x_j is different:

$$k(x_i, x_j) \approx \exp\left(-\frac{(large \ number)^2}{2\sigma^2}\right) \approx 0$$

If you use Gaussian kernel, You will need to pick σ

SUPPORT VECTOR MACHINES

- x SVMs constructs a maximum margin separator
- x SVMs create a linear separating hyperplane
 - + But have ability to embed that in to higherdimensional space (via Kernel trick)
- x SVM are a nonparametric method
 - + Retain training examples an potentially need to store all or part of the data
 - + Some example are more important then others (support vectors)

• Distance from example \mathbf{x}_i to the separator is $r = \frac{(\mathbf{w}^T \mathbf{x} + \mathbf{b})}{\mathbf{x}_i}$

$$\left| \frac{w + b}{|w|} \right|$$

- Examples closest to the hyperplane are *support vectors*.
- *Margin* ρ of the separator is the distance between support vectors

circles) are the examples closest to the separator.

Instead of minimizing expected empirical loss in the training data, SVM attempts to minimize expected generalization loss.

 $\phi(\mathbf{x}_{n})$ in the

Solving this is non-trivial and will not be discussed in class

$$r = \frac{(w^{T}x+b)}{||w||}$$

$$argmax_{w,b} \{\frac{1}{||w||} \min_{n}[t_{n}(w^{T}x_{n}+b)]\}$$

$$argmin_{w,b} \frac{1}{2}||w||^{2}$$

$$w = \sum_{n=1}^{N} a_{n}t_{n} \phi(x_{n})$$

$$\sum_{n=1}^{N} a_{n}t_{n} = 0$$

SOFT MARGINS

Idea: Allow data point to be in the wrong side of the margin boundary, but with a penalty that increases with the distance from that boundary.

Penalty for each data point : slack variable ξ $\xi_n = 0$ if point is on the right side $\xi_n = |t_n - y(\mathbf{x}_n)|$ if point is on the wrong side Such that

 $t_n y(\mathbf{x}_n) \ge 1 - \xi_n$ for n = 1, ..., N and $\xi_n \ge 0$

- $0 < \xi_n \le 1$ for points inside the margin
- $\xi_n = 1$ for points on the margin
- $\xi_n > 1$ for points that are on the wrong side

Goal now is to <u>maximize the margin while softly penalizing points that lie on the</u> <u>wrong side of the margin boundary</u>

$$argmin_{w,b} C \sum_{n}^{N} \xi_{n} + \frac{1}{2} ||w||^{2}$$

OPTIMIZATION ON SOFT MARGINS

 $argmin_{w,b} C \sum_{n=1}^{N} \xi_n + \frac{1}{2} ||w||^2$ subjected to $t_n y(\mathbf{x}_n) \ge 1 - \xi_n$ for n = 1, ..., N and $\xi_n \ge 0$

 ξ_n : slack variable for training data x_n

Complex calculations Lagrangian Etc.

$$w = \sum_{n=1}^{N} a_n t_n \phi(\mathbf{x}_n)$$

$$\sum_{n=1}^{N} a_n t_n = 0$$

 $a_n = C - \mu_n$

 μ_n is Lagrangian multiplier

 a_n is Lagrangian multiplier

related to
$$\xi_n$$

$$\mathbf{b} = \frac{1}{N_M} \sum_{n \in M} (t_n - \sum_{n \in S} (a_m t_m \, k(x_n x_m)))$$

PREDICTION USING KERNELS

$$y(x) = w^T \phi(x_n) + b$$

w = $\sum_{n=1}^{N} a_n t_n \phi(\mathbf{x}_n)$ a_n is a Lagrangian multiplier

METHODS OF USING SVM OF FEATURE SELECTION

1. Linear SVM:

Evaluation of learned weights in Linear SVM

$$y(x) = w^T \phi(\mathbf{x}_n) + b$$
 $w = \sum_{n=1}^N a_n t_n \phi(\mathbf{x}_n)$

- 2. Recursive Feature Elimination: Iterative evaluation of significance of features in SVM classification:
- Feature Vector Machines
 Variation of Lasso like SVM that generate kernels on features not samples.