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Filtering Methods Wrapper Methods Embedded Method 

Saeys, Y., Inza, I., & Larrañaga, P. (2007). A review of feature selection techniques in bioinformatics. Bioinformatics, 23(19), 
2507–17.  

relevance of features is 
evaluated by looking 
only at the intrinsic 
properties of the data 
 
* Often feature relevance 
score is used to evaluate 
each feature  (gene)  

model hypothesis 
search is embed within 
the feature subset 
search 
 
-> various subsets of 
features are  generated 
and evaluated 

optimal feature subset 
search is built into the 
classifier construction 
 
-> a search in the 
combined space of feature 
subsets and hypotheses 



Chapter 3 of PRML  

FEATURE SELECTION WITH LASSO REGRESSION MODEL 



LINEAR BASIS FUNCTION MODELS (1) 

 Example: Polynomial Curve Fitting 



LINEAR BASIS FUNCTION MODELS (2) 

 Generally 
 
 

 where 𝜙𝑗(x) are known as basis functions. 
 Typically, 𝜙0 x = 1 , so that 𝑤0 acts as a bias. 
 In the simplest case, we use linear basis functions :
𝜙𝑑(𝑥)  =  𝑥𝑑. 



LINEAR BASIS FUNCTION MODELS (3) 

Polynomial basis function
s: 

 
 

These are global; a small 
change in 𝑥 affect all basis 
functions. 



LINEAR BASIS FUNCTION MODELS (4) 

Gaussian basis functions: 
 
 
 

These are local;  
a small change in 𝑥 only affect 
nearby basis functions. 
 𝜇𝑗 and 𝑠 control location and sc
ale (width). 



LINEAR BASIS FUNCTION MODELS (5) 

Sigmoidal basis functions: 
 
 

where 
 
 
 

Also these are local;  
a small change in 𝑥 only affect 
nearby basis functions. 
 𝜇𝑗 and 𝑠 control location and 
scale (width). 



MAXIMUM LIKELIHOOD AND LEAST SQUARES (1) 

 Assume observations from a deterministic function with added 
Gaussian noise: 
 

 which is the same as saying, 
 

 Given observed inputs,                            , and targets, 
                      , we obtain the likelihood function   
 

where 

likelihood function  



MAXIMUM LIKELIHOOD AND LEAST SQUARES (2) 

 Log likelihood:  
 
 
 

      where 
 
 

      is the sum-of-squares error. 
 

𝑁 𝑡𝑛 𝒘𝑻𝝓 𝐱𝐧 ,𝛽−1 =
𝛽
2𝜋

1
2 exp (−𝛽

2
𝑡𝑛 − 𝒘𝑻𝝓 𝐱𝐧

2)  
 

Relationship of log 
likelihood and sum-of-
squares error in univariate 
Gaussian noise model.  



 Computing the gradient and setting it to zero yields 
 
 

 Solving for 𝑤, we get  
 

 where 

MAXIMUM LIKELIHOOD AND LEAST SQUARES (3) 

The Moore-Penrose 
pseudo-inverse,       . 

Design matrix 



MAXIMUM LIKELIHOOD AND LEAST SQUARES (4) 

 Maximizing with respect to the bias, 𝑤0, alone, we see 
that 
 
 
 

 We can also maximize with respect to 𝛽, giving 

Residual variance of the target value 
around the regression function 



REGULARIZED LEAST SQUARES (1) 

 Consider the error function: 
 

 With the sum-of-squares error (SSE) function and a 
quadratic regularizer, we get   
 
 

 which is minimized by 

Data term + Regularization term 

𝜆 is called the 
regularization 
coefficient. 



REGULARIZED LEAST SQUARES (2) 

 With a more general regularizer, we have 
 

Lasso Quadratic 

Fig: Contours of the regularization terms  



USING LASSO FOR FEATURE SELECTION 

Lasso tends to generate sparser solutions 
 If 𝜆 is sufficiently large, some of the coefficients 𝑤𝑗are 

driven to zero, leading to a sparse model in which the 
corresponding basis function pays no role.  
 

Minimizing  
 

    
is equivalent to minimizing the unregularized SSE subjected  to 
constraint   

general regularizer 

Subjected to  � 𝑤𝑗
𝑞 ≤ 𝜂

𝑀

𝑗=1

 

Lagrangian Multiplier 



REGULARIZED LEAST SQUARES (3) 

Figure shows the minimum of the error function, subjected to constraint.  
As 𝜆 is increased, so an increasing number of parameters are driven to 
zero.  

Quadratic Lasso 

Q: So, how do we find the right 𝜆?  

Contours of 
unregularized SSE 

Contours of the 
regularization terms � 𝑤𝑗

𝑞 ≤ 𝜂
𝑀

𝑗=1

 

Lasso give sparse solution in 
which 𝑤∗ = 0.  

𝑤1 = 0 



LIMITATIONS OF LASSO BASED FEATURE SELECTION 

 
 Linear feature space : inadequate to capture non-

linear dependencies from features to output 
 
 
 
 



SUPPORT VECTOR MACHINES 



REVIEW 
AMIA ch 18.9 

Logistic regression 

ℎw x = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 w𝑇x  = 1

1+𝑒− w𝑇x  
  

Estimated prob. that y=1 
on input x 

linear regression  
𝑙ℎw x = w𝑇x  



LEARNING THE WEIGHTS 

linear regression:  

𝐿𝐿𝐿𝐿 ℎ𝑤 =  �(𝑦𝑖  − w𝑇x )2
𝑁

𝑗=1

 

logistic regression: 

 𝐿𝐿𝐿𝐿 ℎ𝑤 =   �−𝑦𝑖 log ℎ𝑤 𝑥 − (𝑦𝑖 − 1)(log (1 − ℎ𝑤(𝑥)))
𝑁

𝑗=1

 

 

𝑤∗  = 𝑎𝑎𝑎𝑎𝑎𝑎𝑤𝐿𝐿𝐿𝐿 ℎ𝑤  

• y is classification label in logistics 
regression (0 or 1) 

• y is scalar values in linear regression   
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KERNELS 

• The original feature space can always be mapped to 
some higher-dimensional feature space (even infinite) 
where the training set is separable  

Φ:  x → 
φ(x) 



KERNEL TRICK 



KERNELS 

• The linear classifier relies on an inner product between vectors K(xi,xj)=xi
Txj 

• If every data point is mapped into high-dimensional space via some 
transformation Φ:  x → φ(x), the inner product becomes: 

K(xi,xj)= φ(xi) 
Tφ(xj) 

• A kernel function is some function that corresponds to an inner product in 
some expanded feature space. 
 
 

• Kernel function should measure some similarity between data 
• kernel must be positive semi-definite 

 
• You should scale the features to have same scale!! 

 
• Most widely used is linear kernels and Gaussian kernels    



GAUSSIAN KERNELS 

𝑘 𝑥𝑖 , 𝑥𝑗 = exp −
| 𝑥𝑖 − 𝑥𝑗 |2

2𝜎2 = exp −
∑ (𝑥𝑖𝑘 − 𝑥𝑗𝑘)2𝑛
𝑘=1  

2𝜎2  

If 𝑥𝑖  𝑎𝑎𝑎 𝑥𝑗 is similar: 

  𝑘 𝑥𝑖 , 𝑥𝑗  ≈ exp − 02

2𝜎2
≈ 1  

If 𝑥𝑖  𝑎𝑎𝑎 𝑥𝑗 is different: 

  𝑘 𝑥𝑖 , 𝑥𝑗  ≈ exp − (𝑙𝑙𝑙𝑙𝑙 𝑛𝑛𝑛𝑛𝑛𝑛)2

2𝜎2
≈ 0   

If you use Gaussian kernel, 
You will need to pick 𝜎 



 SVMs constructs a maximum margin separator 
 SVMs create a linear separating hyperplane 

 But have ability to embed that in to higher-
dimensional space (via Kernel trick) 

 SVM are a nonparametric method 
 Retain training examples an potentially need to 

store all or part of the data 
 Some example are more important then others (support 

vectors) 

SUPPORT VECTOR MACHINES 
SVM 



SVM TERMS  
SVM 

• Distance from example xi to the separator is  
 𝑟 =  (w𝑇x+b)

w�   
• Examples closest to the hyperplane are support vectors.  
• Margin ρ of the separator is the distance between support vectors 

r 

ρ 

wT x + b < 0 

wT x + b > 0 



MARGINS  
SVM 

Instead of minimizing expected empirical loss in the training data, 
SVM attempts to minimize expected generalization loss.  

or 𝑟 =  (w𝑇x+b)
w�   𝑦(𝑥)/ 𝑤  

-b/ 𝑤  

w 

x⊥ 

x 

𝑦 x =  wTx + 𝑏 where w is weight vector and b is bias 
x= x ⊥  +𝑟 𝑤

| 𝑤 |
    (multiply wT and add b) 

wTx + 𝑏 = wT(x ⊥  +𝑟 𝑤
| 𝑤 |

)  + 𝑏 (𝑦 x =  wTx + 𝑏 ) 

𝑦 x = wTx ⊥  + 𝑟 w
T𝑤
𝑤

+ 𝑏  (𝑦 x ⊥ =  wTx ⊥ +𝑏 = 0) 

𝑦 x = 𝑟 w
T𝑤

| 𝑤 |
    = I 

 



MAXIMUM MARGINS 

r 

ρ 
𝑎𝑎𝑎𝑎𝑎𝑎𝑤,𝑏 {

1
𝑤

 𝑚𝑚𝑚𝑛[𝑡𝑛(wTxn + 𝑏)]} 

Solving this is non-trivial and will not be 
discussed in class 

𝑟 =  (w𝑇x+b)
w�   

𝑎𝑎𝑎𝑎𝑎𝑎𝑤,𝑏
1
2 ||𝑤||2 

𝜙(xn) in the 
feature space 

� 𝑎𝑛𝑡𝑛
𝑁

𝑛=1
= 0 

w =  � 𝑎𝑛𝑡𝑛
𝑁

𝑛=1
𝜙 xn  



SOFT MARGINS 

Idea: Allow data point to be in the wrong side of the margin boundary, but with a 
penalty that increases with the distance from that boundary.  
 
Penalty for each data point : slack variable 𝝃 
𝜉𝑛 = 0  if point is on the right side 
𝜉𝑛 = |𝑡𝑛 − 𝑦(x𝑛)| if point is on the wrong side  
Such that 
𝑡𝑛𝑦 x𝑛 ≥ 1 − 𝜉𝑛 for n = 1, …, N and 𝜉𝑛 ≥ 0  
 
• 0 < 𝜉𝑛 ≤ 1 for points inside the margin 
• 𝜉𝑛 = 1 for points on the margin 
• 𝜉𝑛 > 1 for points that are on the wrong side 

 
Goal now is to maximize the margin while softly penalizing points that lie on the 
wrong side of the margin boundary 
 
 

𝑎𝑎𝑎𝑎𝑎𝑎𝑤,𝑏  𝐶�𝜉𝑛

𝑁

𝑛

+  
1
2 | 𝑤 |2 



OPTIMIZATION ON SOFT MARGINS 
𝑎𝑎𝑎𝑎𝑎𝑎𝑤,𝑏  𝐶 ∑ 𝜉𝑛𝑁

𝑛 + 1
2

| 𝑤 |2  
subjected to 𝑡𝑛𝑦 x𝑛 ≥ 1 − 𝜉𝑛 for n = 1, …, N and 𝜉𝑛 ≥ 0  

Complex calculations 
Lagrangian 
Etc.  

� 𝑎𝑛𝑡𝑛
𝑁

𝑛=1
= 0 

w =  � 𝑎𝑛𝑡𝑛
𝑁

𝑛=1
𝜙 xn  

𝑎𝑛 = C - 𝜇𝑛 𝜇𝑛 is Lagrangian multiplier 
related to 𝜉𝑛  

 𝜉𝑛: slack variable for 
training data  x𝑛 

𝑎𝑛 is Lagrangian multiplier 
related to w𝑛  

b =  
1
𝑁𝑀

� (𝑡𝑛 −� (𝑎𝑚𝑡𝑚
𝑛∈𝑆

𝑘(𝑥𝑛𝑥𝑚))
𝑛∈𝑀

 



PREDICTION USING KERNELS 

𝑦 𝑥 =  w𝑇𝜙 xn + 𝑏  

w =  � 𝑎𝑛𝑡𝑛
𝑁

𝑛=1
𝜙 xn  

𝑦 𝑥 =  � 𝑎𝑛𝑡𝑛𝑘(x, xn)
𝑁

𝑛=1
+ 𝑏 

𝑎𝑛 is a Lagrangian multiplier 

New 
Data Training data 

Training data target (-1,1) 

Any data point 𝑎𝑛 = 0 will not appear in 
the sum  



METHODS OF USING SVM OF FEATURE SELECTION 

1. Linear SVM:  
     Evaluation of learned weights in Linear SVM 

3. Feature Vector Machines 
    Variation of Lasso like SVM that generate kernels on    
    features not samples.   

2. Recursive Feature Elimination: 
     Iterative evaluation of significance of features in SVM   
     classification: 
  

𝑦 𝑥 =  w𝑇𝜙 xn + 𝑏  w =  � 𝑎𝑛𝑡𝑛
𝑁

𝑛=1
𝜙 xn  
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