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Instructor: Sael Lee 
CS549 Spring – Computational Biology 

Resources: . 
• Abeel, T., Helleputte, T., Van de Peer, Y., Dupont, P., & Saeys, Y. (2010). Robust biomarker identification for cancer diagnosis with 

ensemble feature selection methods. Bioinformatics .26(3), 392–8. 
• Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene Selection for Cancer Classification using Support Vector Machines. 

Machine Learning, 46(1-3), 389–422.  
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Robust biomarker identification for cancer diagnosis 
with ensemble feature selection methods.  
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Motivation:  
“Biomarker discovery is an important topic in biomedical 
applications of computational biology, including applications 
such as gene and SNP selection from high-dimensional data. 
Surprisingly, the stability with respect to sampling variation or 
robustness of such selection processes has received attention 
only recently.  …” 
 
 



Abstract cont. 
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Results:  
“We show that the robustness of SVMs for biomarker discovery 
can be substantially increased by using ensemble feature 
selection techniques, while at the same time improving upon 
classification performances. The proposed methodology is 
evaluated on four microarray datasets showing increases of up 
to almost 30% in robustness of the selected biomarkers, along 
with an improvement of ∼15% in classification performance. 
The stability improvement with ensemble methods is 
particularly noticeable for small signature sizes (a few tens of 
genes), which is most relevant for the design of a diagnosis or 
prognosis model from a gene signature. …” 



Microarray Datasets  
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very low samples/ 
dimensions ratio. 

Types of cancer 

Leukemia dataset: model to discriminate between 
acute myeloid leukemia (AML) and acute 
lymphoblastic leukemia (ALL) tissues 

Colon Cancer dataset: is made of samples from 40 
tumor and 22 normal colon tissues measuring 
more than 6500 genes 



Microarray Datasets  
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very low samples/ 
dimensions ratio. 

Types of cancer 

The lymphoma dataset: comes from a study on diffuse large B-
cell Lymphoma in discriminate between two types of lymphoma 
based on gene expression.  

The prostate dataset: was first published in One of the tasks 
addressed by the authors is to build a model able to 
discriminate between normal and tumor prostate tissue 



Microarray Expression Normalization 
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The objective of data normalization is to enhance the similarity 
of genes sharing a common expression pattern throughout the 
data, but in different ranges of absolute expression values.  
 
IQR-normalization :  
The normalized expression value 𝑓�̅�𝑖  is defined as follows. 

𝑓�̅�𝑖 =
fij  − mj

𝐼𝐼𝑅𝑖/1.35
 

(Tukey,J.W. (1977) Exploratory Data Analysis. Addison-Wesley, Reading, MA) 

where 𝑓𝑖𝑖  is the original expression value of gene j from sample 
i, 𝑚𝑖 is the median of expression of this gene over all samples 
and 𝐼𝐼𝑅𝑖  stands for the gene-specific interquartile range.  



Microarray Expression Normalization 
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The IQR-normalization is more robust to the presence of outliers 
than a classical Z-score (centering to the mean with unit SD), 
but the 1.35 scaling factor makes both normalization equivalent 
whenever the data happens to be normally distributed. 
  
* The normalization parameters for each gene are always 
estimated from the training samples only and applied 
subsequently to the validation samples 

𝑓�̅�𝑖 =
fij  − mj

𝐼𝐼𝑅𝑖/1.35
 

(Tukey,J.W. (1977) Exploratory Data Analysis. Addison-Wesley, Reading, MA) 
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Stability Concept: adding or deleting a few samples should 
not drastically modify the top-ranked markers identified by 
the algorithm. 
 
slight variations of the original dataset, and compare the 
outcome of the marker selection algorithm across these 
different variations. 
 
Variations: subsampling the original dataset without 
replacement containing 90% of the samples of the original 
dataset.  
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Stability analysis process:  
• Dataset 𝑋 = {𝑥1, … , 𝑥𝑀} with M instances and N features. 

Then, k subsamplings of size 𝑥𝑥 (0 < 𝑥 < 1) are drawn 
randomly from X, where in our experiments k=500 and 
x=0.9.  
 

• Feature selection is performed on each of the k 
subsamplings, and a marker set—further referred to as a 
signature—of a given size is selected. 
 

• Similarity of the signatures of the k subsamples are 
evaluated for stability.  
 



Stability Measure 
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Kalousis, A., Prados, J., & Hilario, M. (2007). Stability of feature selection algorithms: a study on high dimensional spaces. 
Knowledge and Information Systems, 12, 95–116. 

The more similar all signatures are, the higher the stability 
measure will be. 
Stability : Defined as the average over all pairwise similarity 
comparisons  between all signatures on the k subsamplings 

𝒇𝑖 : the signature 
obtained by the 
selection method on 
subsampling 𝑖 (1 ≤ 𝑖 ≤
𝑘), 



Stability Measure 
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Kalousis, A., Prados, J., & Hilario, M. (2007). Stability of feature selection algorithms: a study on high dimensional spaces. 
Knowledge and Information Systems, 12, 95–116. 

𝑠 = |𝒇𝑖| = |𝒇𝑖  | 
: signature size 

r =|fi∩fj |: number of common 
elements in both signatures 

bias correction term: 
selecting common 
features at random 

−1 <  𝐾𝐼(𝒇𝑖,𝒇𝑗 ) ≤ 1 and the greater its value, the larger the 
number of commonly selected features in both signatures 

Kuncheva Index  which is a stability index between 𝒇𝑖 and 𝒇𝑖 



Classification Evaluation 
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Area under the curve of receiver operator curve (AUC ROC ):  

Use the same subsamplings—each containing 90% of 
the original dataset—as training sets to select 
features and estimate the performance of a classifier. 
The remaining 10% of the data can be used each time 
as an independent validation set to evaluate 
classification performance. 



Receiver Operating Characteristic Methodology: (slides 10-27) 
All credits goes to slide by Darlene Goldstein (29 January 2003) 

lausanne.isb-sib.ch/~darlene/ms/SIB-ROC.ppt 

Statistical 
measures of the 
performance of 
a binary 
classification test 



True disease state vs. Test result 
Null H. not rejected 
(Negative test outcome) 

Null H. rejected 
(Positive test outcome) 

 No disease 
 (D = 0)          

 Specificity 
(TN rate) 

    X 
Type I error  
(FP rate) α 

 Disease  
 (D = 1)     X 

Type II error (FN 
rate) β 

        
 Power  1 - β; 
Sensitivity  
(TP rate; recall) 

Precision = TP/(TP+FP) 
Accuracy = (TP + TN)/(TP+TN+FP+FN) 

Disease 
Test 



Confusion Matrix  
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True condition 

Total population Condition positive Condition negative 
Prevalence= Σ Cond
ition positive/Σ Total 

population 

Predic
ted 

condit
ion 

Predicted condition 
positive True positive False positive 

(Type I error) 

Positive predictive v
alue(PPV), Precision
= Σ True positive/

Σ Test outcome pos
itive 

False discovery rat
e (FDR)= Σ False po
sitive/Σ Test outco

me positive 

Predicted condition 
negative 

False negative 
(Type II error) True negative 

False omission rate (
FOR)= Σ False nega
tive/Σ Test outcom

e negative 

Negative predictive v
alue(NPV)= Σ True n
egative/Σ Test outc

ome negative 

Accuracy (ACC
) = Σ True positive 
+ Σ True negative/
Σ Total population 

True positive rate (T
PR),Sensitivity, Reca
ll= Σ True positive/
Σ Condition positiv

e 

False positive rate (F
PR),Fall-out= Σ Fals
e positive/Σ Conditi

on negative 

Positive likelihood ra
tio(LR+) = TPR/FPR 

Diagnostic odds rati
o (DOR)= LR+/LR− 

False negative rate(F
NR), Miss rate= Σ F
alse negative/Σ Co

ndition positive 

True negative rate (T
NR),Specificity (SPC)
= Σ True negative/
Σ Condition negativ

e 

Negative likelihood r
atio(LR−) = FNR/TN

R 

https://en.wikipedia.org/wiki/
Confusion_matrix 

https://en.wikipedia.org/wiki/Prevalence
https://en.wikipedia.org/wiki/Diagnostic_odds_ratio
https://en.wikipedia.org/wiki/Diagnostic_odds_ratio


Specific Example 

Test Result 

Pts with 
disease 

Pts without 
the disease 



Test Result 

Call these patients “negative” Call these patients “positive” 

Threshold 



Test Result 

Call these patients “negative” Call these patients “positive” 

without the disease 
with the disease 

True Positives 

Some definitions ... 



Test Result 

Call these patients “negative” Call these patients “positive” 

without the disease 
with the disease 

False 
Positives 



Test Result 

Call these patients “negative” Call these patients “positive” 

without the disease 
with the disease 

True 
negatives 



Test Result 

Call these patients “negative” Call these patients “positive” 

without the disease 
with the disease 

False 
negatives 



Test Result 

without the disease 
with the disease 

‘‘-’’ ‘‘+’’ 

Moving the Threshold: right 



Test Result 

without the disease 
with the disease 

‘‘-’’ ‘‘+’’ 

Moving the Threshold: left 
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Area under ROC curve (AUC)  

 Overall measure of test performance 

 Comparisons between two tests based on 
differences between (estimated) AUC 

 For continuous data, AUC equivalent to Mann-
Whitney U-statistic (nonparametric test of 
difference in location between two populations) 
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Interpretation of AUC 

 “AUC can be interpreted as the probability that the 
test result from a randomly chosen diseased 
individual is more indicative of disease than that 
from a randomly chosen nondiseased individual”: 
𝑃 𝑋𝑖 ≥   

𝑋𝑗 𝐷𝑖 = 1
,
𝐷𝑗 =  0) 

 So can think of this as a nonparametric distance 
between disease/nondisease test results 

From “Statistics in the 21st Century” 



Problems with AUC 

 No clinically relevant meaning 

 A lot of the area is coming from the range of large 
false positive values, no one cares what’s going on 
in that region (need to examine restricted regions) 

 The curves might cross, so that there might be a 
meaningful difference in performance that is not 
picked up by AUC 



Embedded Feature selection with SVM 
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Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene Selection for Cancer Classification using Support Vector Machines. 
Machine Learning, 46(1-3), 389–422.  

Recursive Feature Elimination: a type of backward feature elimination 
1. Train the classifier (optimize the weights 

𝑤𝑖  with respect to error fun𝑐𝑐𝑖𝑐𝑐 𝐽 ). 
2. Compute the ranking criterion ( 𝑤𝑖  2)  

for all features 
3. Remove the feature with smallest 

ranking criterion. 

• If features are removed one at a time, there is also a 
corresponding feature ranking.  

• However, the features that are top ranked (eliminated last) 
are not necessarily the ones that are individually most 
relevant. Only taken together the features of a subset 𝐹𝑚 are 
optimal in some sense. 

NOTE: for the Abeel 
et al. paper, drop 
20% features at 
each iteration by 
default. 



Embedded Feature selection with SVM 
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Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene Selection for Cancer Classification using Support Vector Machines. 
Machine Learning, 46(1-3), 389–422.  

A linear SVM essentially consists of a separating 
hyperplane in the input space.  
->  The absolute values of the weights of each dimension in the 
hyperplane can be regarded as the contribution (importance) of 
each dimension (feature) to the multivariate decision of the 
hyperplane. 
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Algorithm SVM-train 

Feature ranking with Support Vector 
Machine- Recursive Feature Elimination  
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Algorithm SVM-RFE: 

Feature ranking with Support Vector 
Machine- Recursive Feature Elimination  



Ensemble Feature Selection 
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Saeys, Y., Abeel, T., & Peer, Y. Van De. (2008). Robust feature selection using ensemble feature selection techniques. In Proceedings of the 25th 
ECML PKDD (pp. 313–325). Springer-Verlag, Berlin, Heidelberg.  

Idea: Aggregate the feature rankings provided by the single 
feature selectors into a final consensus ranking.  
 
Consider an ensemble E consisting of s feature selectors, 
𝐸 =  {𝐹1,𝐹2, . . . ,𝐹𝑠},  
Assuming that each 𝐹𝑖 provides a feature ranking 
 

𝒇𝑖  =  (𝑓𝑖1 , . . . ,𝑓𝑖𝑁 ),  
 
which are aggregated into a consensus feature ranking f by 
weighted voting: 
 



Ensemble feature selection 
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Saeys, Y., Abeel, T., & Peer, Y. Van De. (2008). Robust feature selection using ensemble feature selection techniques. In Proceedings of the 25th 
ECML PKDD (pp. 313–325). Springer-Verlag, Berlin, Heidelberg.  

weighted voting: 

𝑓𝑙 = �𝑤 𝑓𝑖𝑙
𝑡

𝑖=1

 

 
where 𝑤(. ) denotes a weighting function. If a linear aggregation 
is performed using 𝑤(𝒇𝑖𝑙)  =  𝒇𝑖𝑙 , this results in a sum where 
features contribute in a linear way with respect to their rank.  
 
• Weights can be used to incorporate prior knowledge.  

 
Ensemble of  linear SVM and SVM-RFE feature selection 
methods 
 



Ensemble feature selection applied  
by Abeel et al. 

4/10/2017 CSE 549 - Computational Biology 

42 

Starting from a particular training set, i.e. one of the 500 
subsamplings containing 90% of the data,  
 
• Generate a diverse set of RFE feature selections.  

• -> Because the RFE procedure is deterministic, this is done 
by generating different sample sets using the particular 
training set.  

• -> random sampling with replacement from the the particular 
training  

 



Ensemble feature selection applied  
by Abeel et al. 
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Ensemble EFS consisting of t feature selectors, 
𝐸𝐹𝐸 = 𝐹1,𝐹2, … ,𝐹𝑡 ,  
then we assume each 𝐹𝑖  provides a  
   feature ranking 𝒇𝑖 = (𝑓𝑖1 , … ,𝑓𝑖𝑁 ),  
where 𝑓𝑖

𝑖  denotes the rank of feature j in bootstrap i.  
 
A general formulation for the ensemble ranking f, obtained by 
summing the ranks over all bootstrap samples is as follows: 

𝑓 = �𝑤𝑖 𝑓𝑖𝑙
𝑡

𝑖=1

, … ,�𝑤𝑖 𝑓𝑖𝑙
𝑡

𝑖=1
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Results: Changing numbers of bootstrap 
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Results: varying number of features to eliminate 
during RFE 
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