
Instructor: Sael Lee CS549 Spring – Computational Biology

### Lecture 15: Analyzing Protein Structure and Dynamics

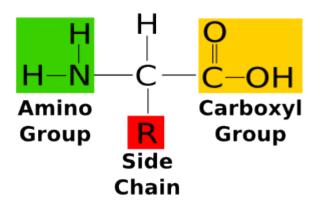
Resources:

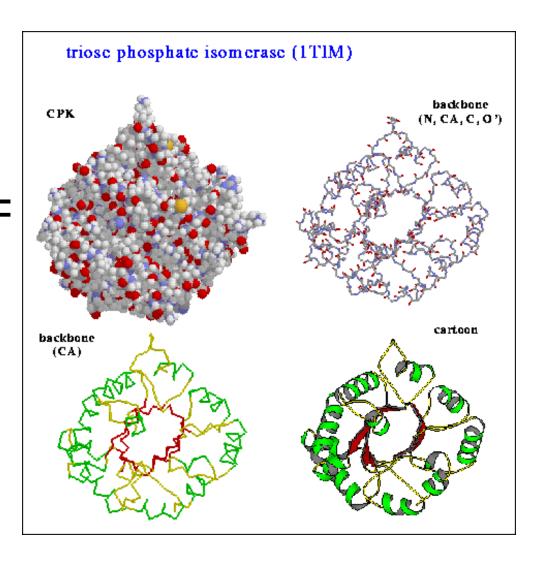
- Slide 9 of Protein Bioinformatics, Spring 2013 Daisuke Kihara
- Wikipedia

### **Translation process**



http://content.answcdn.com/main/content/img/Britannic aConcise/images/780.gif


Start codon: AUG ( also Methionine (Met, M)) Stop codon: UAA, UAG, UGA


### **Protein Structure**

#### Amino Acid Sequence

APRKFFVGGNWKMNGDKKSLGELIHTLNGAKL SADTEVVCGAPSIYLDFARQKLDAKIGVAAQN CYKVPKGAFTGEISPAMIKDIGAAWVILGHSE RRHVFGESDELIGQKVAHALAEGLGVIACIGE KLDEREAGITEKVVFEQTKAIADNVKDWSKVV LAYEPVWAIGTGKTATPQQAQEVHEKLRGWLK SHVSDAVAQSTRIIYGGSVTGGNCKELASQHD VDGFLVGGASLKPEFVDIINAKH

#### General Structure of AA





#### CS 549 Spring - Computational Biology DIFFERENT REPRESENTATIONS OF A POLYPEPTIDE

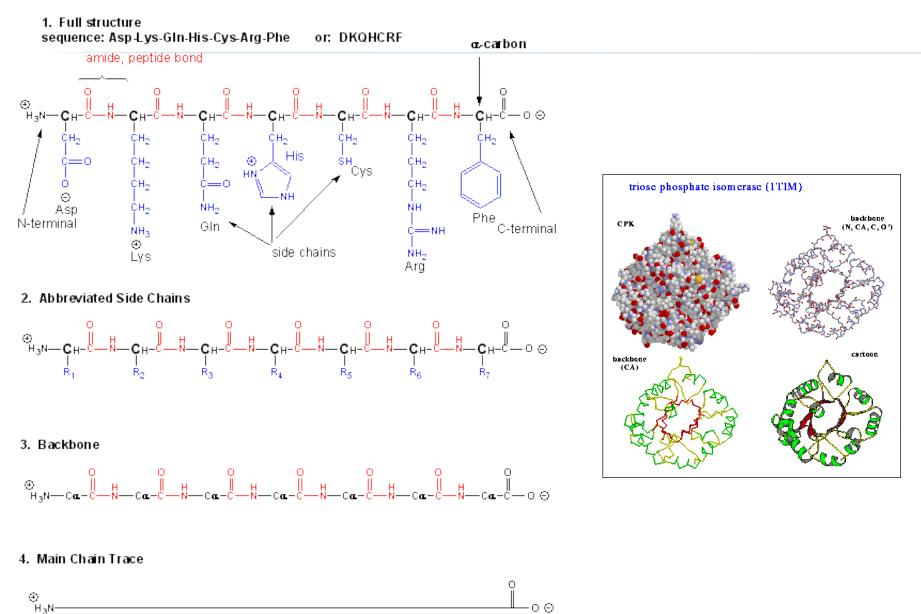



Figure from : http://employees.csbsju.edu/hjakubowski/classes/ch331/protstructure/olprotein-aminoacid.html

# PDB database

#### http://www.rcsb.org/pdb/home/home.do



Search by PDB ID, author, macromolecule, sequence, or ligands

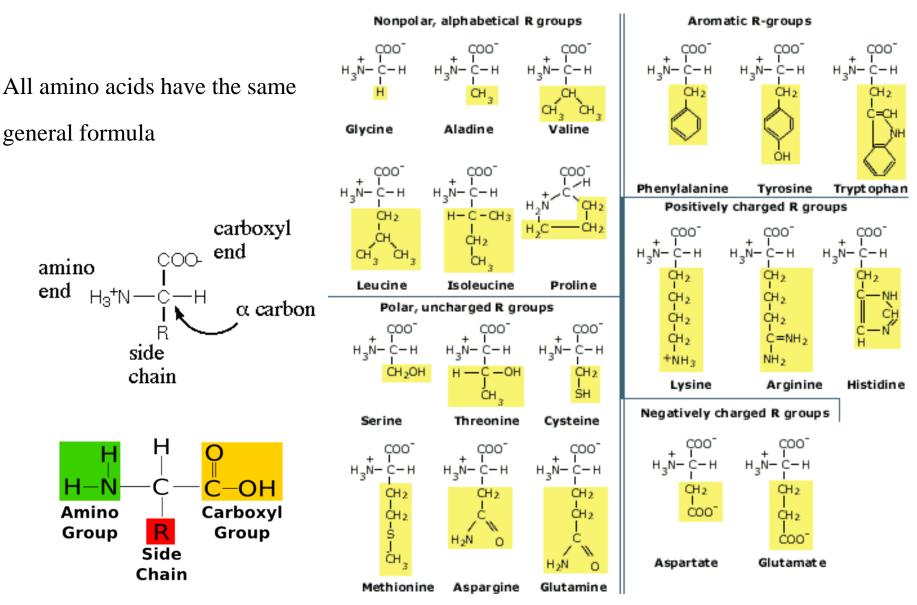
#### Advanced Search | Browse by Annotations

#### A Structural View of Biology October Molecule of the Month Welcome This resource is powered by the Protein Data Bank archive-information about the 3D shapes of proteins, nucleic acids, and complex assemblies that helps students and researchers understand all aspects of biomedicine and Deposit agriculture, from protein synthesis to health and disease. As a member of the wwPDB, the RCSB PDB curates and annotates PDB data. **Q** Search The RCSB PDB builds upon the data by creating tools and resources for research and education in molecular biology, structural biology, computational Visualize biology, and beyond. Analyze Take an Interactive Tour of the PDB Download C Learn Two-component Systems BEGIN EXPLORING



Go

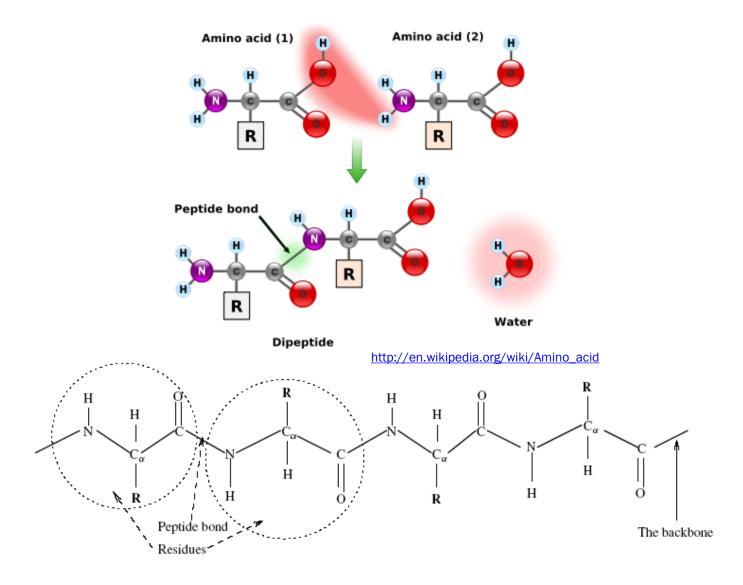
፼⊻⊵ќ≬0


### **Coordinates (PDB file: 1tim)**

| TITLE  |                                                     |      |        |        |              |          |          |        |        |
|--------|-----------------------------------------------------|------|--------|--------|--------------|----------|----------|--------|--------|
| COMPND | MOL_ID: 1;                                          |      |        |        |              |          |          |        |        |
| COMPND | 2 MOLECULE: TRIOSEPHOSPHATE ISOMERASE;              |      |        |        |              |          |          |        |        |
| COMPND | 3 CHAIN: A, B;                                      |      |        |        |              |          |          |        |        |
| COMPND | 4 EC: 5.3.1.1;                                      |      |        |        |              |          |          |        |        |
| COMPND | 5 E                                                 | NGIN | EERED: | YES    |              |          |          |        |        |
| SOURCE | MO                                                  | l_ID | : 1;   |        |              |          |          |        |        |
| SOURCE | 2 ORGANISM_SCIENTIFIC: GALLUS GALLUS;               |      |        |        |              |          |          |        |        |
| SOURCE | 3 ORGANISM_COMMON: CHICKEN;                         |      |        |        |              |          |          |        |        |
| SOURCE | 4 ORGANISM_TAXID: 9031                              |      |        |        |              |          |          |        |        |
| KEYWDS | ISOMERASE, ISOMERASE (INTRAMOLECULAR OXIDOREDUCTSE) |      |        |        |              |          |          |        |        |
| EXPDTA | Х-                                                  | RAY  | DIFFRA | CTION  |              |          |          |        |        |
| AUTHOR | D.                                                  | W.BA | NNER,A | .C.BLO | OMER, G.A.PE | TSKO,D.C | .PHILLIP | S,I.A. | WILSON |
|        |                                                     |      |        |        |              |          |          |        |        |
| ATOM   | 1                                                   | Ν    | ALA A  | . 1    | 43.240       | 11.990   | -6.915   | 1.00   | 0.00   |
| ATOM   | 2                                                   | CA   | ALA A  | . 1    | 43.888       | 10.862   | -6.231   | 1.00   | 0.00   |
| ATOM   | 3                                                   | С    | ALA A  | . 1    | 44.791       | 11.378   | -5.094   | 1.00   | 0.00   |
| ATOM   | 4                                                   | 0    | ALA A  | . 1    | 44.633       | 10.992   | -3.937   | 1.00   | 0.00   |
| ATOM   | 5                                                   | CB   | ALA A  | . 1    | 44.722       | 10.051   | -7.240   | 1.00   | 0.00   |
| ATOM   | 6                                                   | Ν    | PRO A  | 2      | 45.714       | 12.244   | -5.497   | 1.00   | 0.00   |
| ATOM   | 7                                                   | CA   | PRO A  | 2      | 46.689       | 12.815   | -4.561   | 1.00   | 0.00   |
| ATOM   | 8                                                   | С    | PRO A  | 2      | 46.042       | 13.601   | -3.411   | 1.00   | 0.00   |
| ATOM   | 9                                                   | 0    | PRO A  | 2      | 46.030       | 13.141   | -2.267   | 1.00   | 0.00   |
| ATOM   | 10                                                  | CB   | PRO A  | 2      | 47.640       | 13.732   | -5.359   | 1.00   | 0.00   |
| ATOM   | 11                                                  | CG   | PRO A  | 2      | 47.006       | 13.820   | -6.760   | 1.00   | 0.00   |
| ATOM   | 12                                                  | CD   | PRO A  | 2      | 46.056       | 12.615   | -6.882   | 1.00   | 0.00   |
| ATOM   | 13                                                  | Ν    | ARG A  | . 4    | 45.521       | 14.773   | -3.763   | 1.00   | 0.00   |
| ATOM   | 14                                                  | CA   | ARG A  | . 4    | 44.872       | 15.621   | -2.730   | 1.00   | 0.00   |
| ATOM   | 15                                                  | С    | ARG A  | . 4    | 46.092       | 16.358   | -2.094   | 1.00   | 0.00   |
| ATOM   | 16                                                  | 0    | ARG A  | 4      | 46.091       | 16.680   | -0.916   | 1.00   | 0.00   |
| ATOM   | 17                                                  | CB   | ARG A  | 4      | 44.264       | 14.706   | -1.647   | 1.00   | 0.00   |
| ATOM   | 18                                                  | CG   | ARG A  | . 4    | 42.729       | 14.802   | -1.637   | 1.00   | 0.00   |
| ATOM   | 19                                                  | CD   | ARG A  | . 4    | 42.158       | 13.894   | -0.528   | 1.00   | 0.00   |
| ATOM   | 20                                                  | NE   | ARG A  | . 4    | 42.592       | 12.508   | -0.754   | 1.00   | 0.00   |
|        |                                                     |      |        |        |              |          |          |        |        |

Ν С С 0 С Ν С С 0 С С С Ν С С 0 С С С Ν




### 20 AA found in biological systems



# Dr. M.O. Dayhoff's resources on amino acids

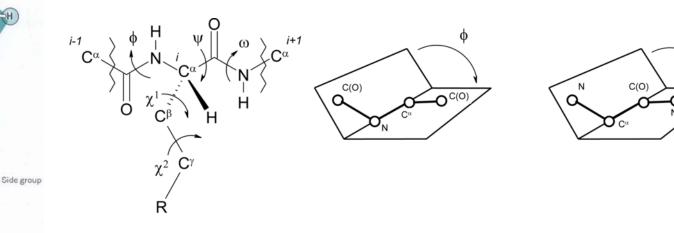
□ <u>http://www.biology.arizona.edu/biochemistry/proble</u> <u>m\_sets/aa/aa.html#Essentialaa</u>

### Amino acid and main chain



### **Dihedral Angles**

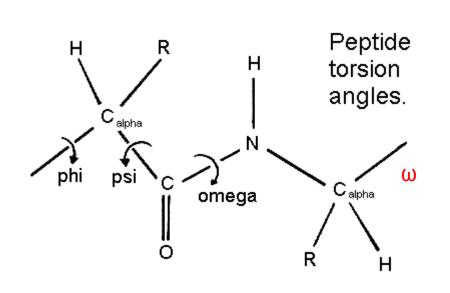
Amide plane

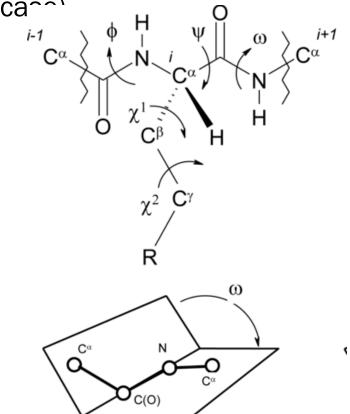

Alpha carbon

N

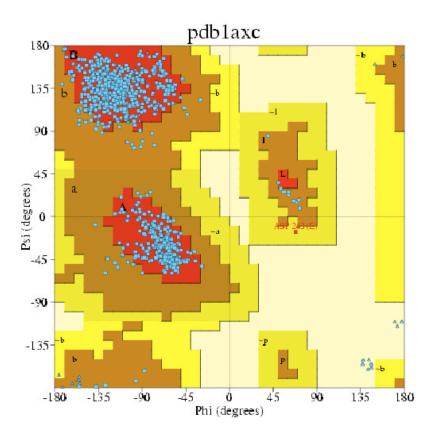
C

Amide plane


• Dihedral Angles (Torsion angles): Angels between two planes.



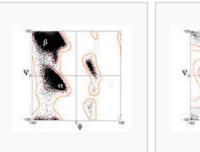

- $\phi$  (*phi*, involving the backbone atoms C'-N-C<sup> $\alpha$ </sup>-C<sup>+</sup>)</sup>
- $\psi$  (*psi*, involving the backbone atoms N-C<sup> $\alpha$ </sup>-C'-N)
- $\phi$  controls the C'-C' distance,  $\psi$  controls the N-N distance
- rotations about  $\phi$  and  $\psi$  angles are the softest

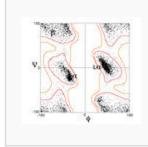

## **Dihedral Angles**

- $\omega$  (omega, involving the backbone atoms C<sup> $\alpha$ </sup>-C'-N-C<sup> $\alpha$ </sup>).
- $\omega$  controls the C<sup> $\alpha$ </sup>-C<sup> $\alpha$ </sup> distance
- Peptide bond usually restricts ω to be 180° (the typical trans case) or 0° (the rare cis ca<sup>^</sup>)



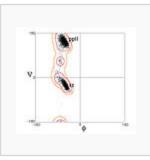


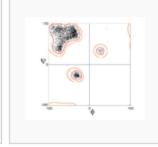

### **Ramachandran plot**




The red, brown, and yellow regions represent the favored, allowed, and "generously allowed" regions as defined by ProCheck

#### A Ramachandran plot


Is a visualization tools for visualizing backbone dihedral angles  $\psi$  against  $\phi$  of amino acid residues in protein structure.





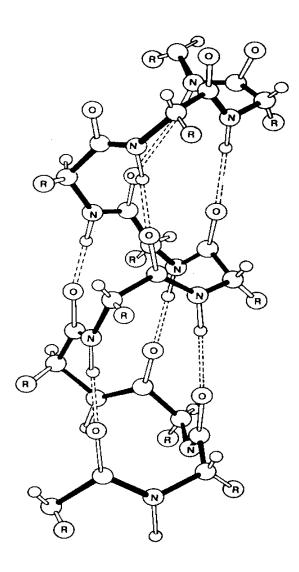

Ramachandran plot for the general case; data from Lovell 2003

Ramachandran plot for Glycine



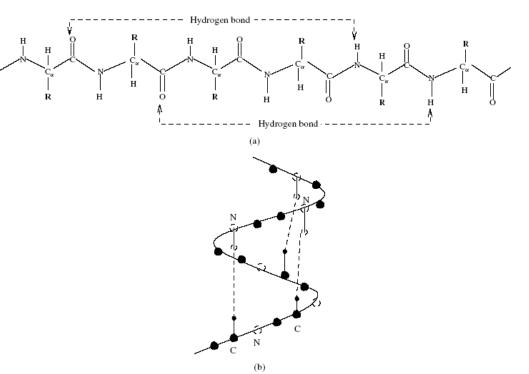


Ramachandran plot for Proline


Ramachandran plot for pre-Proline

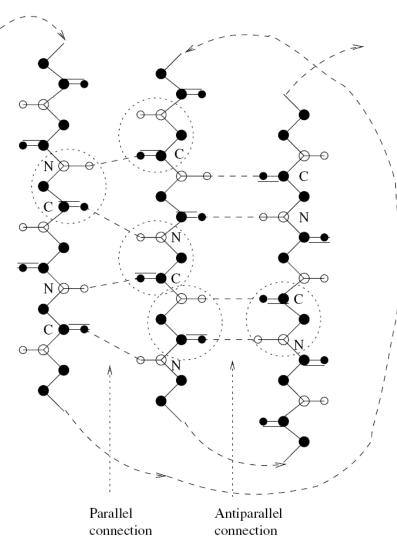
### **Protein secondary structures**

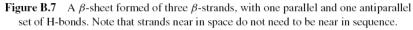
- □ Proteins packs the hydrophobic side chains inside the molecule.
- □ Proteins have hydrophobic kernel and hydrophilic surface.
- □ The backbone is polar, hence hydrophilic.
- To neutralize this hydrophility there are hydrogen bindings between NH and CO on the backbone.
- □ This is done by constructing regular *secondary structures* 
  - □ *Helices, alpha most usual*
  - □ Beta sheets

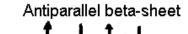


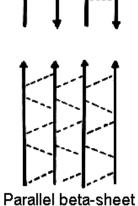

## Alpha Helix




Alpha-helix:


- Right-handed helix
- 3.6 residues per helix turn
- Hydrogen bond between n and n+4





**Figure B.6** (a) Schematic of the hydrogen bonding forming an  $\alpha$ -helix. (b) For the hydrogen bonding to take place, the sequence must be formed as a helix in the space.

### **Beta Sheets**










The different types of beta-sheet. Dashed lines indicate main chain hydrogen bonds.



Mixed beta-sheet

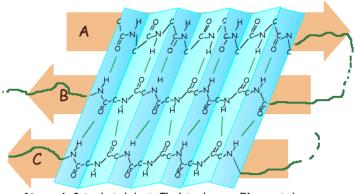
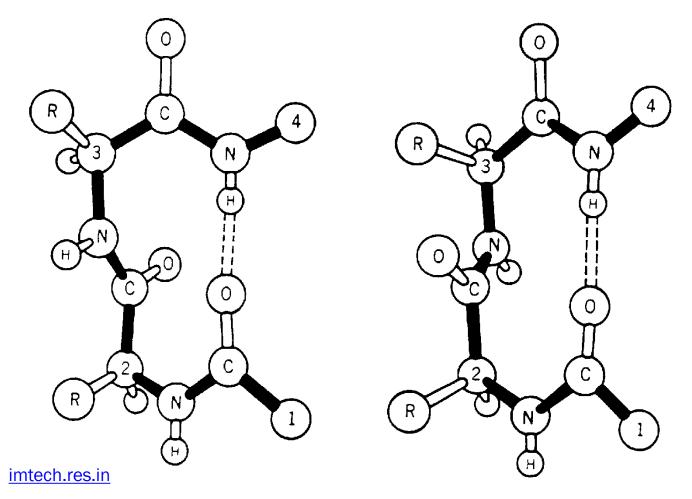




Diagram 1: Beta pleated sheet. The lateral groups (R) are not shown.

### **Beta Turn**

- 4 residues in length
- Enables structure to have an 180 degree turn



### **Protein Tertiary Structure**

### Driving force for folding:

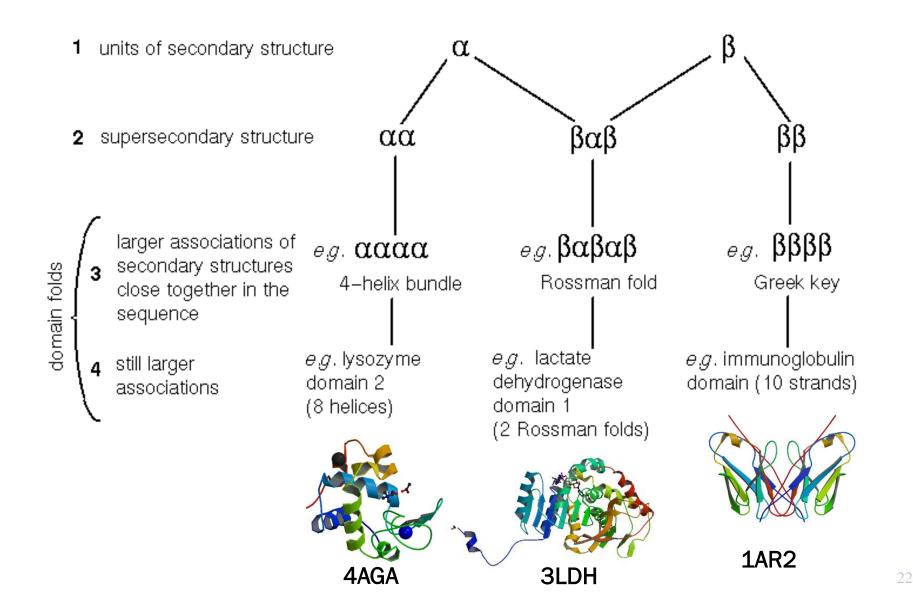
- Hydrophobic effect
- Electrostatic
- Hydrogen bond
- Disulfide bond



### Protein Structure Classification SCOP Classification

□ SCOP: Structural Classification of Proteins

□ Classes:


- □ <u>All alpha proteins (126)</u>
- □ <u>All beta proteins(81)</u>
- <u>Alpha and beta proteins (a/b)</u> (87)
  <u>Mainly parallel beta sheets (beta-alpha-beta units)</u>
- <u>Alpha and beta proteins (a+b)</u> (151)
  *Mainly antiparallel beta sheets (segregated alpha and beta regio ns)*
- Multi-domain proteins (alpha and beta) (21) Folds consisting of more than one domain of different classes

#### CS 549 Spring - Computational Biology **Protein Structure Classification SCOP Classification**

#### □ Classes cont.:

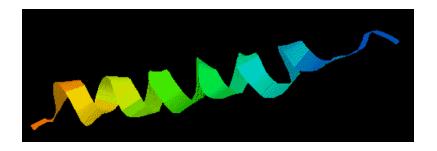
- □ <u>Membrane and cell surface proteins and peptides</u> (10) *Does not include proteins in the immune system*
- Small proteins (44) Usually dominated by metal ligand, heme, and/or disulfide brid ges
- $\Box \underline{\text{Coiled coil proteins}} (4)$
- □ <u>Low resolution protein structures</u> (4)
- Peptides (61) Peptides and fragments
- Designed proteins (17) Experimental structures of proteins with essentially non-natura l sequences

## **SCOP cont.**



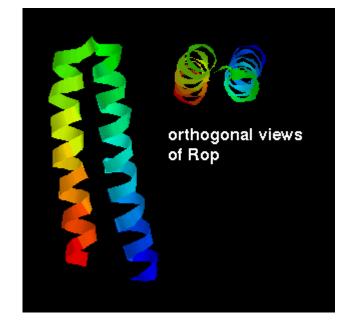
Protein Structure Classification —

# **CATH database**


Class, Architecture, Topology, Homology

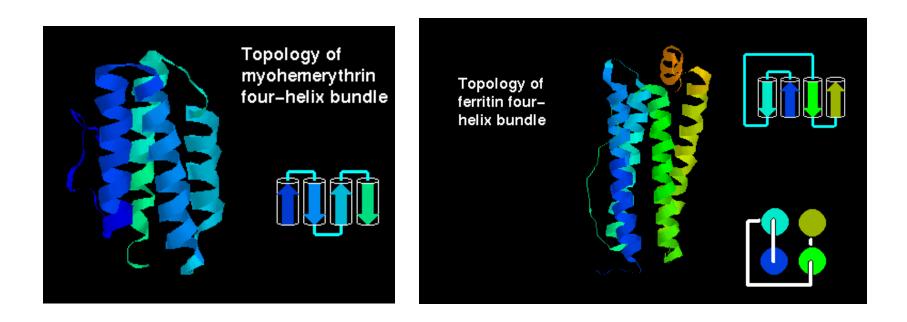
- Architecture: the global spatial arrangement of 2ndary structure segments
- Topology: connectivity of the 2ndary structure segments is also counted
- Protein structure comparison program, SSAP is used

| C                  |          |          |
|--------------------|----------|----------|
| α                  | α&β      | β        |
| 000                |          | -        |
| A                  | e la     | P        |
| TIM barrel         | Sandwich | Roll     |
|                    |          |          |
| т                  |          | A COL    |
| flavodox<br>(4fxn) |          | actamase |


| Class | Architecture | Topology | Homologous Superfamily | S35 Family | S60 Family | S95 Family | S100 Family | Domains |
|-------|--------------|----------|------------------------|------------|------------|------------|-------------|---------|
| 1     | 5            | 376      | 839                    | 2763       | 3571       | 4679       | 9217        | 32396   |
| 2     | 20           | 228      | 514                    | 2514       | 3573       | 5668       | 9824        | 39140   |
| 3     | 14           | 577      | 1082                   | 5849       | 8381       | 10626      | 21900       | 79038   |
| 4     | 1            | 101      | 114                    | 204        | 253        | 352        | 547         | 2346    |
| Total | 40           | 1282     | 2549                   | 11330      | 15778      | 21325      | 41488       | 152920  |

### All-Alpha



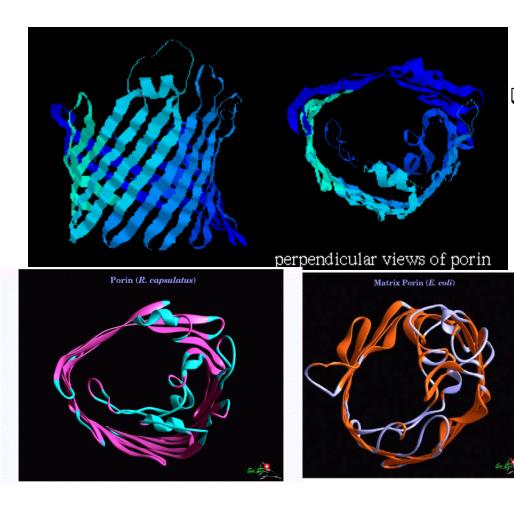

 The Lone Helix: small proteins (or peptides) which consist of little more than a single helix. Example: glucagon, a hormone involved in regulating sugar metabolism in mammals (as is insulin).

 Helix-turn-helix motif: The simplest packing arrangement of a domain of two helices is for them to lie *antiparallel*, connected by a *short loop*.



### **Four Helix Bundle**

□ **Topology:** The four helices may be arranged in a simple up-and -down topology, or more complex arrangement.

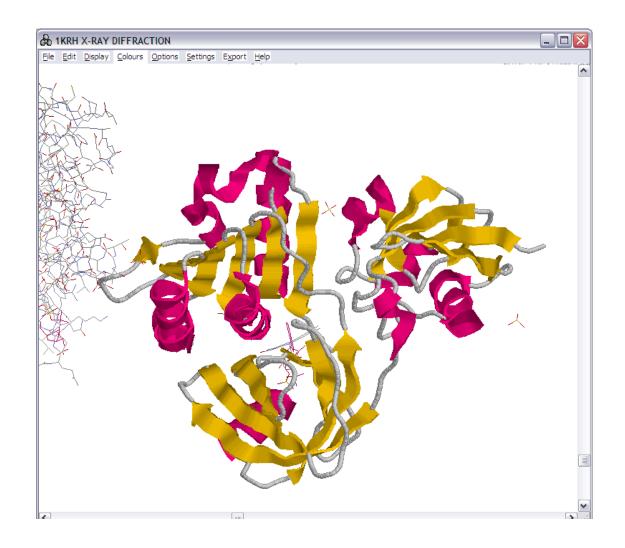



### All-Beta

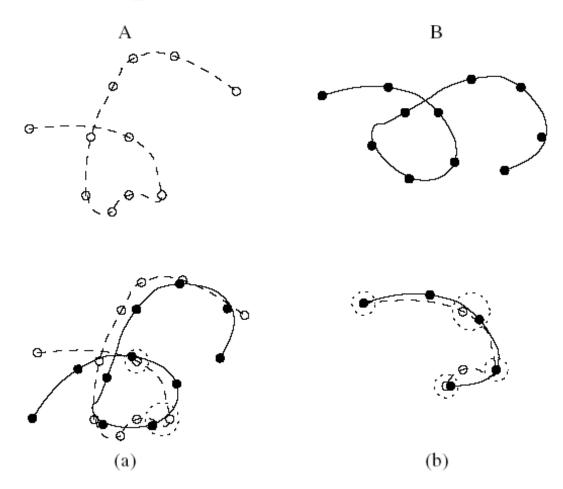
 Beta Sandwiches and Beta Barrels:
 In the immunoglobulin fold, the strands form two sheets packed against each other, forming a "beta sandwich". The Immunoglobulin Domain, indicating disulphide bond and chain direction



### **Beta Barrels**

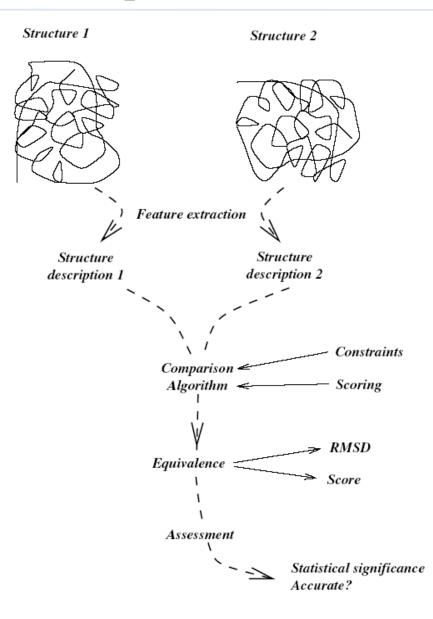



#### □ beta barrels: Some


antiparallel beta sheet domains are better described as **beta barrels** rather than beta sandwiches

 eg. Porin: beta-sheets in a 16-stranded beta-barrel formation and forms a pore in the membrane 1.7 - 2.5 nm in diameter

### $\alpha/\beta$ protein (Rossmann fold, 1krh)

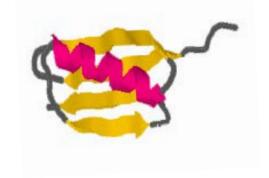



# **Cannot use pure dynamic programming for structure comparison**



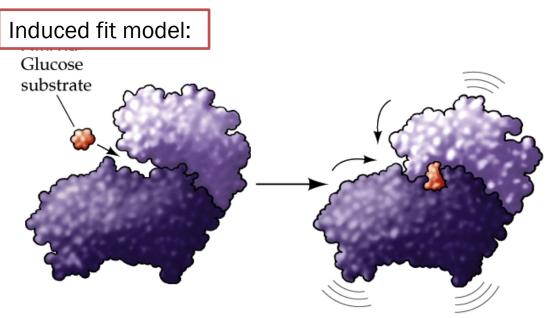
**Figure 8.18** Illustration that dynamic programming cannot be used directly for structure alignment (see the text).

### Framework for pairwise structure comparison




### **Distance Matrices**

|    | 23456789A123456789B123456789C123456789D123456789E1         | 00456700 |
|----|------------------------------------------------------------|----------|
| 1  | 23456789A123456789B123456789C123456789D123456789B1.<br>469 |          |
| 2  | 0469                                                       |          |
| 3  | 40479                                                      |          |
| 4  | 640479                                                     |          |
| 45 |                                                            |          |
| 5  |                                                            |          |
|    |                                                            |          |
| 7  |                                                            |          |
| 8  | 964045547769                                               |          |
| 9  | 86404669                                                   |          |
| 10 | 9540469                                                    |          |
| 11 | 856404688                                                  |          |
| 12 |                                                            |          |
| 13 |                                                            |          |
| 14 | 786785404698                                               |          |
| 15 | 76669.866404679                                            |          |
| 16 | 8999864047                                                 |          |
| 17 |                                                            |          |
| 18 | 9                                                          | .98676   |
| 19 |                                                            | .66578   |
| 20 |                                                            | 85578    |
| 21 |                                                            | 6579     |
| 22 |                                                            | 568      |
| 23 |                                                            | 79       |
| 24 |                                                            |          |
| 25 |                                                            | 988      |
| 26 | 8.9                                                        |          |
| 27 |                                                            | .999     |
| 28 |                                                            |          |
| 29 |                                                            | 9        |
| 30 |                                                            |          |
| 31 |                                                            |          |
| 32 |                                                            |          |
| 33 |                                                            |          |
| 34 |                                                            | 97       |
| 35 |                                                            |          |
| 36 |                                                            |          |
| 37 |                                                            |          |
| 38 |                                                            |          |
|    |                                                            |          |
| 39 |                                                            |          |
| 40 |                                                            |          |
| 41 |                                                            |          |
| 42 |                                                            |          |
| 43 |                                                            |          |
| 44 |                                                            |          |
| 45 |                                                            |          |
| 46 |                                                            |          |
| 47 |                                                            |          |
| 48 |                                                            |          |
| 49 | 8657974047                                                 |          |
| 50 |                                                            | 68       |
| 51 |                                                            |          |
| 52 |                                                            |          |
| 53 |                                                            | 4047     |
| 54 |                                                            | 740469   |
| 55 |                                                            | .740469. |
| 56 |                                                            | 64047.   |
| 57 |                                                            |          |
| 58 |                                                            |          |
| 59 |                                                            |          |
|    |                                                            |          |


**re 8.5** A distance matrix for the first 59 residues of PDB entry 1chc, where each residue resented by its  $C_{\alpha}$  atom. The distances are rounded to integers, and distances larger than are represented by dots.

# CONTACT MAP PATTERNS





### **Protein Dynamics**



© 2001 Sinauer Associates, Inc.

Molecular Dynamics Extended Library: http://mmb.pcb.ub.es/MoDEL/ : test searching **1e5w** & **1AHR**  10QK

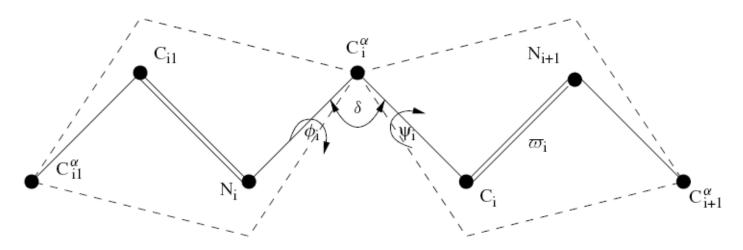
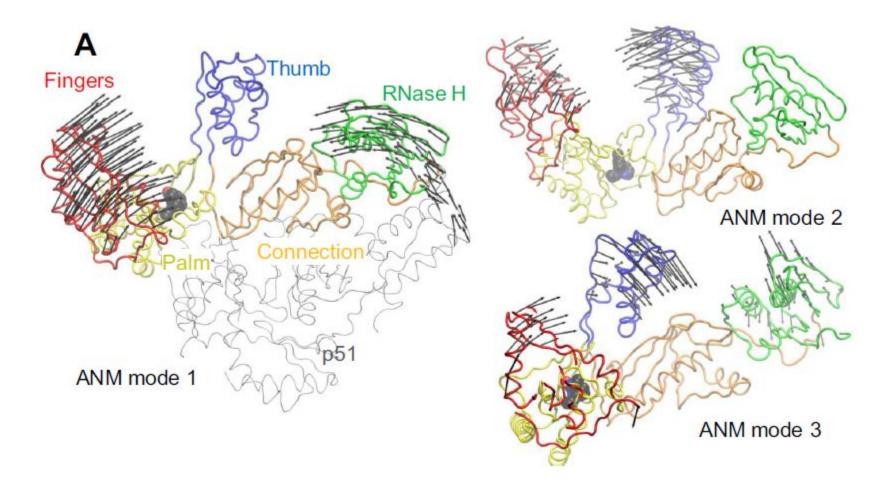


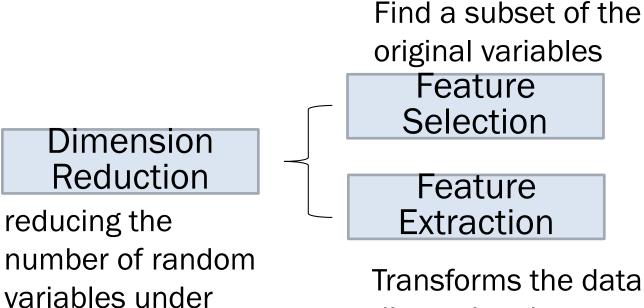
1AHR



### How/why does a molecule move?

 Among the 3N-6 internal degrees of freedom, bond rotations (i.e. changes in dihedral angles) are the softest, and mainly responsible for the functional motions



Figure 8.7 Figure illustrating the torsion angles.

### The intrinsic dynamics of enzymes



Bakan, A., & Bahar, I. (2009). The intrinsic dynamics of enzymes plays a dominant role in determining the structural changes induced upon inhibitor binding. *PNAS*, *106*(34), 14349–54.

### **Feature extraction**



consideration

Transforms the data in the highdimensional space to a space of fewer dimensions

### **Feature Extraction Methods**

### Principal component analysis

- Semidefinite embedding
- Multifactor dimensionality reduction
- Multilinear subspace learning
- Nonlinear dimensionality reduction
- □ Isomap
- □ Kernel PCA
- Multilinear PCA
- □ Latent semantic analysis
- Partial least squares
- □ Independent component analysis
- □ Autoncoder

### Reading

### □ Chapter 12 of PRML