
LECTURE 16: 
PCA AND SVD 

Instructor: Sael Lee 
CS549 – Computational Biology 

Resource:  
• PCA Slide by Iyad Batal 
• Chapter 12 of PRML 
• Shlens, J. (2003). A tutorial on principal component analysis. 

 



CONTENT 

 
 Principal Component Analysis (PCA)  
 Singular Value Decomposition (SVD)  

 



PRINCIPLE COMPONENT ANALYSIS 

 PCA finds a linear projection of high dimensional data 
into a lower dimensional subspace such as:  
 The variance retained is maximized.  
 The least square reconstruction error is minimized  

 



PCA STEPS 

Linearly transform an 𝑁×𝑑 matrix 𝑋 into an 𝑁×𝑚 matrix 𝑌 
 Centralized the data (subtract the mean).  

 Calculate the 𝑑×𝑑 covariance matrix: 𝐶 = 1
𝑁−1

𝑋𝑇𝑋 

 𝐶𝑖,𝑗 = 1
𝑁−1

∑ 𝑋𝑞,𝑖𝑋𝑞,𝑖  𝑁
𝑞=1  

 𝐶𝑖,𝑖  (diagonal) is the variance of variable i.  
 𝐶𝑖,𝑗 (off-diagonal) is the covariance between variables i and j.  

 Calculate the eigenvectors of the covariance matrix 
(orthonormal).  

 Select m eigenvectors that correspond to the largest m 
eigenvalues to be the new basis.  
 
 



EIGENVECTORS 

 If A is a square matrix, a non-zero vector v is an 
eigenvector of A if there is a scalar λ (eigenvalue) such 
that  

𝐴𝐴 = 𝜆𝐴 
 Example:  
   
 
 If we think of the squared matrix A as a transformation 

matrix, then multiply it with the eigenvector do not 
change its direction.  
 



PCA EXAMPLE 

𝑋 : the data matrix with N=11 objects and d=2 
dimensions 



 Step 1: subtract the mean and calculate the 
covariance matrix C. 



 Step 2: Calculate the eigenvectors and eigenvalues of 
the covariance matrix: 

 
Notice that v1 and v2  
are orthonormal:  



 Step 3: project the data 
 Let 𝑉 =  [𝐴1, … 𝐴𝑚] is 𝑑×𝑚 matrix where the columns 𝐴𝑖 are 

the eigenvectors corresponding to the largest m eigenvalues  
 The projected data: 𝑌=𝑋 𝑉 is 𝑁×𝑚 matrix.  
 If m=d (more precisely rank(X)), then there is no loss of 

information! 



 Step 3: project the data 
 
 

 The eigenvector with the highest eigenvalue is the 
principle component of the data.  

 if we are allowed to pick only one dimension, the 
principle component is the best direction (retain the 
maximum variance).  

 Our PC is 𝐴1  ≈  −0.677 − 0.735 𝑇 



USEFUL PROPERTIES 

 The covariance matrix is always symmetric 
 
 

 The principal components of 𝑋 are orthonormal  
 
 
 

   
 



USEFUL PROPERTIES 

Theorem 1: if square 𝑑×𝑑 matrix S is a real and 
symmetric matrix (𝑆 = 𝑆𝑇) then 

 
     
     Where 𝑉 = [𝐴1, … 𝐴𝑑] are the eigenvectors of S and  
     Λ =  𝑑𝑖𝑑𝑑 (𝜆1, … 𝜆𝑑) are the eigenvalues. 

 

𝑺 =  𝑽 𝚲 𝑽𝑻  

Proof: 
• 𝑆 𝑉 = 𝑉 Λ   
• [𝑆 𝐴1  …  𝑆 𝐴𝑑] = [𝜆1. 𝐴1  … 𝜆𝑑 . 𝐴𝑑]: the definition of eigenvectors.  
• 𝑆 =  𝑉 Λ 𝑉−1    
• 𝑆 =  𝑉 Λ 𝑉𝑇  because V is orthonormal 𝑉−1 =  𝑉𝑇  



USEFUL PROPERTIES 
 

 The projected data: 𝑌=𝑋 𝑉 
 The covariance matrix of Y is 

 
because the covariance matrix 𝐶𝑋 is 
symmetric  
 
because V is orthonormal  

 
After the transformation, the covariance matrix becomes diagonal.   



DERIVATION OF PCA : 1. MAXIMIZING VARIANCE 

 Assume the best transformation is one that maximize 
the variance of project data.  
 

 Find the equation for variance of projected data. 
 

 Introduce constraint  
 

 Maximize the un-constraint equation. ( find derivative 
w.r.t  projection axis and set to zero)  



DERIVATION OF PCA :  
2. MINIMIZING TRANSFORMATION ERROR 
 Define error 

 
 Identify variables that needs to be optimized in the 

error  
 

 Minimize and solve for the variables. 
 

 Interpret the information  



SINGULAR VALUE DECOMPOSITION(SVD) 

 Any 𝑁×𝑑 matrix 𝑋 can be uniquely expressed as: 
 
 
 
 
 
 

 r is the rank of the matrix X (# of linearly independent 
columns/rows).  
 U is a column-orthonormal 𝑁×𝑟 matrix.  
 Σ is a diagonal 𝑟×𝑟 matrix where the singular values σi are sorted 

in descending order.  
 V is a column-orthonormal 𝑑×𝑟 matrix.  

 



PCA AND SVD RELATION 

Theorem:  
Let 𝑋 =  𝑈 Σ 𝑉𝑇 be the SVD of an 𝑁×𝑑 matrix X and  

𝐶 = 1
𝑁−1

𝑋𝑇𝑋  be the 𝑑×𝑑 covariance matrix.  

The eigenvectors of C are the same as the right singular 
vectors of X.  

Proof: 

But C is symmetric, hence 𝐶 =  𝑉 Λ 𝑉𝑇  
Therefore, the eigenvectors of the covariance matrix C  are the same as 
matrix V (right singular vectors) and  

the eigenvalues of C can be computed from the singular values 𝜆𝑖 = 𝜎𝑖
2

𝑁−1
 

 



The singular value decomposition and the 
eigendecomposition are closely related. Namely: 
 The left-singular vectors of 𝑋 are eigenvectors of 𝑋𝑋𝑇   
 The right-singular vectors of 𝑋 are eigenvectors of 𝑋𝑇𝑋. 
 The non-zero singular values of 𝑋 (found on the diagonal 

entries of Σ) are the square roots of the non-zero eigenvalues of 
both 𝑋𝑇𝑋 and 𝑋𝑋𝑇. 



ASSUMPTIONS OF PCA 

 I. Linearity 
 II. Mean and variance are sufficient statistics. 

 Gaussian distribution assumed 

 III. Large variances have important dynamics. 
 IV. The principal components are orthogonal 



PCA WITH EIGENVALUE DECOMPOSITION 
function [signals,PC,V] = pca1(data) 
 
% PCA1: Perform PCA using covariance. 
% data - MxN matrix of input data 
% (M dimensions, N trials) 
% signals - MxN matrix of projected data 
% PC - each column is a PC 
% V - Mx1 matrix of variances 
 
[M,N] = size(data); 
 
% subtract off the mean for each dimension 
mn = mean(data,2); 
data = data - repmat(mn,1,N); 
 
% calculate the covariance matrix 
covariance = 1 / (N-1) * data * data’; 

% find the eigenvectors and eigenvalues 
[PC, V] = eig(covariance); 
 
% extract diagonal of matrix as vector 
V = diag(V); 
 
% sort the variances in decreasing order 
[junk, rindices] = sort(-1*V); 
V = V(rindices); 
PC = PC(:,rindices); 
 
% project the original data set 
signals = PC’ * data; 

Shlens, J. (2003). A tutorial on principal component analysis. 



PCA WITH SVD 

function [signals,PC,V] = pca2(data) 
 
% PCA2: Perform PCA using SVD. 
% data - MxN matrix of input data 
% (M dimensions, N trials) 
% signals - MxN matrix of projected data 
% PC - each column is a PC 
% V - Mx1 matrix of variances 
 
[M,N] = size(data); 
 
% subtract off the mean for each dimension 
mn = mean(data,2); 
data = data - repmat(mn,1,N); 
 
% construct the matrix Y 
Y = data’ / sqrt(N-1); 

% SVD does it all 
[u,S,PC] = svd(Y); 
 
% calculate the variances 
S = diag(S); 
V = S .* S; 
 
% project the original data 
signals = PC’ * data; 

Shlens, J. (2003). A tutorial on principal component analysis. 
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