

Instructor: Sael Lee CS549 – Computational Biology

LECTURE 16: PCA AND SVD

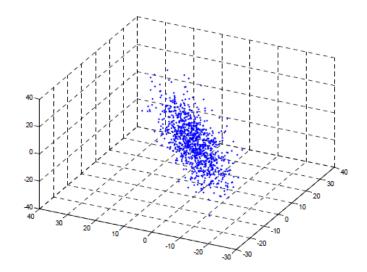
Resource:

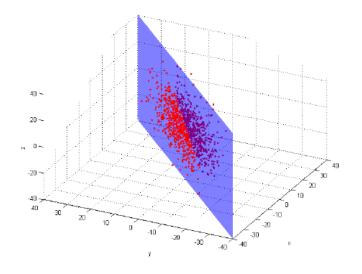
- PCA Slide by lyad Batal
- Chapter 12 of PRML
- Shlens, J. (2003). A tutorial on principal component analysis.

- * Principal Component Analysis (PCA)
- × Singular Value Decomposition (SVD)

PRINCIPLE COMPONENT ANALYSIS

- * PCA finds a **linear** projection of high dimensional data into a lower dimensional subspace such as:
 - + The variance retained is maximized.
 - + The least square reconstruction error is minimized





Linearly transform an $N \times d$ matrix X into an $N \times m$ matrix Y

- × Centralized the data (subtract the mean).
- × Calculate the $d \times d$ covariance matrix: $C = \frac{1}{N-1}X^T X$

+
$$C_{i,j} = \frac{1}{N-1} \sum_{q=1}^{N} X_{q,i} X_{q,i}$$

- + $C_{i,i}$ (diagonal) is the variance of variable i.
- + $C_{i,j}$ (off-diagonal) is the covariance between variables i and j.
- * Calculate the eigenvectors of the covariance matrix (orthonormal).
- * Select *m* eigenvectors that correspond to the largest *m* eigenvalues to be the new basis.

EIGENVECTORS

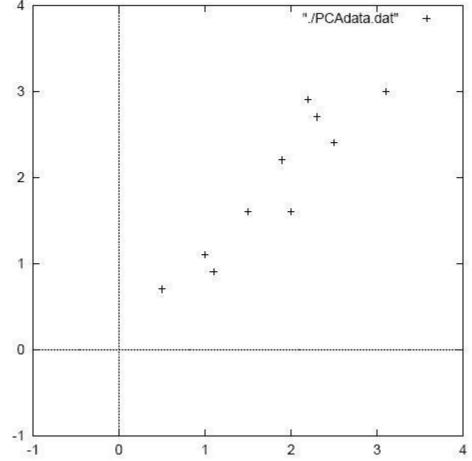
× If A is a square matrix, a non-zero vector \mathbf{v} is an eigenvector of A if there is a scalar λ (eigenvalue) such that

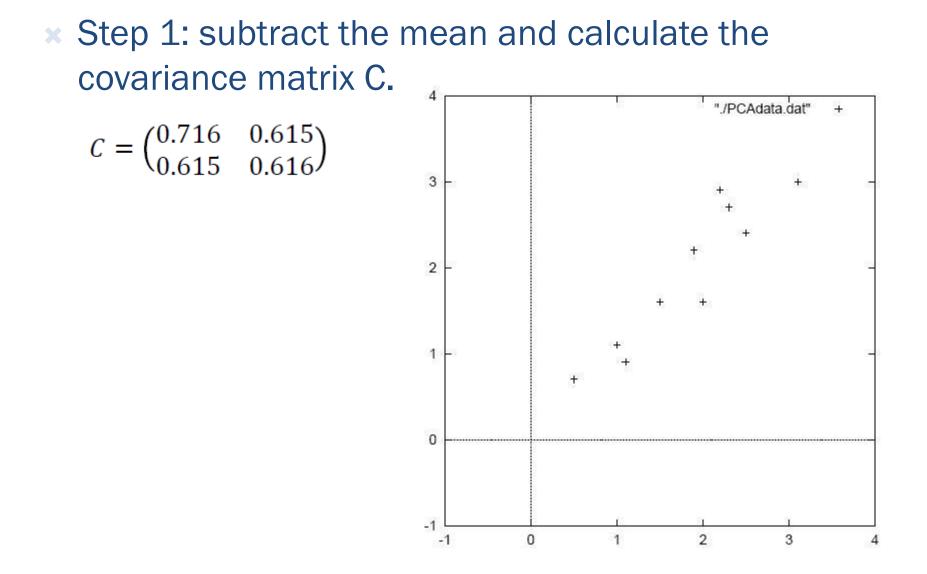
 $Av = \lambda v$

Example: $\begin{pmatrix} 2 & 3 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 12 \\ 8 \end{pmatrix} = 4 \begin{pmatrix} 3 \\ 2 \end{pmatrix}$

* If we think of the squared matrix *A* as a transformation matrix, then multiply it with the eigenvector do not change its direction.

X : the data matrix with N=11 objects and d=2 dimensions

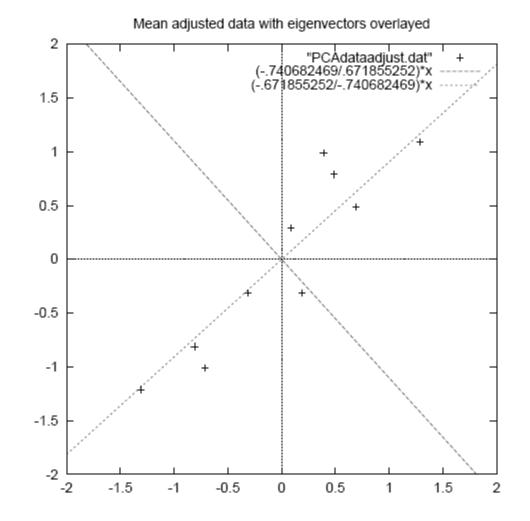




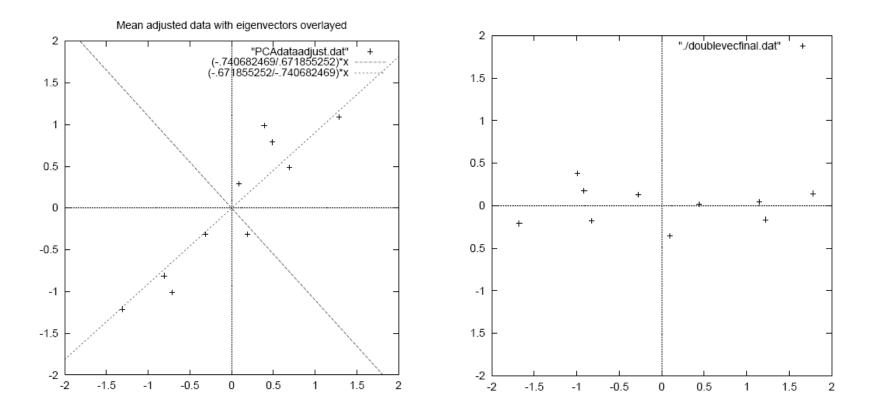
× Step 2: Calculate the eigenvectors and eigenvalues of the covariance matrix: $\lambda_1 \approx 1.28, v_1 \approx [-0.677 \ -0.735]^T, \lambda_2 \approx 0.49, v_2 \approx [-0.735 \ 0.677]^T$

Notice that v1 and v2 are orthonormal:

 $|v_1|=1$ $|v_2|=1$ $v_1 \cdot v_2 = 0$



- × Step 3: project the data
 - + Let $V = [v_1, ..., v_m]$ is $d \times m$ matrix where the columns vi are the eigenvectors corresponding to the largest m eigenvalues
 - + The projected data: Y = X V is $N \times m$ matrix.
 - + If m=d (more precisely rank(X)), then there is no loss of information!



× Step 3: project the data

```
\lambda_1 \approx 1.28, \, v_1 \approx [-0.677 \ -0.735]^{\mathsf{T}}, \, \lambda_2 \approx 0.49, \, v_2 \approx [-0.735 \ 0.677]^{\mathsf{T}}
```

- The eigenvector with the highest eigenvalue is the principle component of the data.
- if we are allowed to pick <u>only one dimension</u>, the principle component is the best direction (retain the <u>maximum variance</u>).
- × Our PC is $v_1 \approx [-0.677 0.735]^T$

USEFUL PROPERTIES

× The covariance matrix is always symmetric

$$C^{T} = (\frac{1}{N-1}X^{T}X)^{T} = \frac{1}{N-1}X^{T}X^{T}^{T} = C$$

× The principal components of X are orthonormal

$$v_i^T v_j = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

× $V = [v_1, ..., v_m]$, then $V^T = V^{-1}$, i.e $V^T V = I$

USEFUL PROPERTIES

Theorem 1: if square $d \times d$ matrix S is a real and symmetric matrix ($S = S^T$) then

 $S = V \Lambda V^T$

Where $V = [v_1, ..., v_d]$ are the eigenvectors of S and $\Lambda = diag (\lambda_1, ..., \lambda_d)$ are the eigenvalues.

Proof:

- $SV = V\Lambda$
- $[S v_1 \dots S v_d] = [\lambda_1 . v_1 \dots \lambda_d . v_d]$: the definition of eigenvectors.
- $S = V \Lambda V^{-1}$
- $S = V \Lambda V^T$ because V is orthonormal $V^{-1} = V^T$

USEFUL PROPERTIES

- × The projected data: Y=X V
- × The covariance matrix of Y is

$$C_{Y} = \frac{1}{N-1} Y^{T} Y = \frac{1}{N-1} V^{T} X^{T} X V = V^{T} C_{X} V$$
$$= V^{T} V \Lambda V^{T} V \qquad \text{because the covariance matrix } C_{X} \text{ is symmetric}$$

 $= V^{-1}V \Lambda V^{-1}V$ because V is orthonormal = Λ

After the transformation, the covariance matrix becomes diagonal.

DERIVATION OF PCA : 1. MAXIMIZING VARIANCE

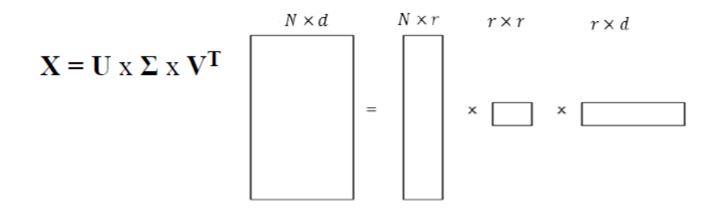
- Assume the best transformation is one that maximize the variance of project data.
- × Find the equation for variance of projected data.
- × Introduce constraint
- Maximize the un-constraint equation. (find derivative w.r.t projection axis and set to zero)

DERIVATION OF PCA : 2. MINIMIZING TRANSFORMATION ERROR × Define error

- Identify variables that needs to be optimized in the error
- × Minimize and solve for the variables.
- × Interpret the information

SINGULAR VALUE DECOMPOSITION(SVD)

* Any $N \times d$ matrix X can be uniquely expressed as:



- r is the rank of the matrix X (# of linearly independent columns/rows).
 - + U is a <u>column-orthonormal</u> $N \times r$ matrix.
 - + Σ is a **diagonal** $r \times r$ matrix where the singular values of are sorted in descending order.
 - + V is a <u>column-orthonormal</u> $d \times r$ matrix.

PCA AND SVD RELATION

Theorem:

Let $X = U \Sigma V^T$ be the SVD of an $N \times d$ matrix X and

$$C = \frac{1}{N-1}X^T X$$
 be the $d \times d$ covariance matrix.

The <u>eigenvectors of C</u> are the same as the <u>right singular</u> <u>vectors of X</u>.

Proof:

$$X^T X = V \Sigma U^T U \Sigma V^T = V \Sigma \Sigma V^T = V \Sigma^2 V^T$$

$$C = V \frac{\Sigma^2}{N - 1} V^T$$

But C is symmetric, hence $C = V \Lambda V^T$

Therefore, the eigenvectors of the covariance matrix C are the same as matrix V (right singular vectors) and

the eigenvalues of C can be computed from the singular values $\lambda_i = \frac{\sigma_i}{N-1}$

$\mathbf{X} = \mathbf{U} \ge \mathbf{\Sigma} \ge \mathbf{V}^{\mathbf{T}}$

The singular value decomposition and the eigendecomposition are closely related. Namely:

- × The left-singular vectors of X are eigenvectors of XX^T
- × The **right-singular vectors** of X are eigenvectors of $X^T X$.
- × The **non-zero singular values** of *X* (found on the diagonal entries of Σ) are the square roots of the non-zero eigenvalues of both $X^T X$ and $X X^T$.

ASSUMPTIONS OF PCA

- × I. Linearity
- × II. Mean and variance are sufficient statistics.
 - + Gaussian distribution assumed
- × III. Large variances have important dynamics.
- × IV. The principal components are orthogonal

PCA WITH EIGENVALUE DECOMPOSITION

function [signals,PC,V] = pca1(data)

% PCA1: Perform PCA using covariance.
% data - MxN matrix of input data
% (M dimensions, N trials)
% signals - MxN matrix of projected data
% PC - each column is a PC
% V - Mx1 matrix of variances

[M,N] = size(data);

% subtract off the mean for each dimension mn = mean(data,2); data = data - repmat(mn,1,N);

% calculate the covariance matrix covariance = 1 / (N-1) * data * data'; % find the eigenvectors and eigenvalues [PC, V] = eig(covariance);

% extract diagonal of matrix as vector V = diag(V);

% sort the variances in decreasing order [junk, rindices] = sort(-1*V); V = V(rindices); PC = PC(:,rindices);

% project the original data set signals = PC' * data;

PCA WITH SVD

function [signals,PC,V] = pca2(data)

% PCA2: Perform PCA using SVD.
% data - MxN matrix of input data
% (M dimensions, N trials)
% signals - MxN matrix of projected data
% PC - each column is a PC
% V - Mx1 matrix of variances

[M,N] = size(data);

% subtract off the mean for each dimension mn = mean(data,2); data = data - repmat(mn,1,N);

```
% construct the matrix Y
Y = data' / sqrt(N-1);
```

% SVD does it all [u,S,PC] = svd(Y);

% calculate the variances S = diag(S); V = S .* S;

% project the original data signals = PC' * data;