Instructor: Sael Lee

CS549 - Computational Biology

LECTURE 16; PCA AND SXD

Resource:

- PCA Slide by lyad Batal
- Chapter 12 of PRML
- Shlens, J. (2003). A tutorial on principal component analysis.

CONTENT

Principal Component Analysis (PCA)
Singular Value Decomposition (SVD)

PRINCIPLE COMPONENT ANALYSIS

* PCA finds a linear projection of high dimensional data into a lower dimensional subspace such as:
+ The variance retained is maximized.
+ The least square reconstruction error is minimized

PCA STEPS

Linearly transform an $N \times d$ matrix X into an $N \times m$ matrix Y Centralized the data (subtract the mean).

* Calculate the $d \times d$ covariance matrix: $C=\frac{1}{N-1} X^{T} X$
$+C_{i, j}=\frac{1}{N-1} \sum_{q=1}^{N} X_{q, i} X_{q, i}$
$+C_{i, i}$ (diagonal) is the variance of variable i.
$+C_{i, j}$ (off-diagonal) is the covariance between variables i and j .
* Calculate the eigenvectors of the covariance matrix (orthonormal).
* Select m eigenvectors that correspond to the largest m eigenvalues to be the new basis.

EIGENVECTORS

* If A is a square matrix, a non-zero vector v is an eigenvector of A if there is a scalar λ (eigenvalue) such that

$$
A v=\lambda v
$$

Example:

$$
\left(\begin{array}{ll}
2 & 3 \\
2 & 1
\end{array}\right)\binom{3}{2}=\binom{12}{8}=4\binom{3}{2}
$$

* If we think of the squared matrix A as a transformation matrix, then multiply it with the eigenvector do not change its direction.

PCA EXAMPLE

X : the data matrix with $N=11$ objects and $d=2$ dimensions

Step 1: subtract the mean and calculate the

 covariance matrix C.$$
C=\left(\begin{array}{ll}
0.716 & 0.615 \\
0.615 & 0.616
\end{array}\right)
$$

* Step 2: Calculate the eigenvectors and eigenvalues of the covariance matrix:

$$
\lambda_{1} \approx 1.28, \mathrm{v}_{1} \approx\left[\begin{array}{ll}
-0.677 & -0.735
\end{array}\right]^{\top}, \lambda_{2} \approx 0.49, \mathrm{v}_{2} \approx\left[\begin{array}{ll}
-0.735 & 0.677
\end{array}\right]^{\top}
$$

Notice that v1 and v2 are orthonormal:

$$
\begin{aligned}
& \left|\mathrm{v}_{1}\right|=1 \\
& \left|\mathrm{v}_{2}\right|=1 \\
& \mathrm{v}_{1} \cdot \mathrm{v}_{2}=0
\end{aligned}
$$

Step 3: project the data

+ Let $V=\left[v_{1}, \ldots v_{m}\right]$ is $d \times m$ matrix where the columns $v i$ are the eigenvectors corresponding to the largest m eigenvalues
+ The projected data: $Y=X V$ is $N \times m$ matrix.
+ If $m=d$ (more precisely $\operatorname{rank}(X)$), then there is no loss of information!

* Step 3: project the data

$$
\lambda_{1} \approx 1.28, v_{1} \approx\left[\begin{array}{ll}
-0.677 & -0.735
\end{array}\right]^{\top}, \lambda_{2} \approx 0.49, v_{2} \approx\left[\begin{array}{ll}
-0.735 & 0.677
\end{array}\right]^{\top}
$$

The eigenvector with the highest eigenvalue is the principle component of the data.

* if we are allowed to pick only one dimension, the principle component is the best direction (retain the maximum variance).
* Our PC is $v_{1} \approx[-0.677-0.735]^{T}$

USEFUL PROPERTIES

The covariance matrix is always symmetric

$$
C^{T}=\left(\frac{1}{N-1} X^{T} X\right)^{T}=\frac{1}{N-1} X^{T} X^{T^{T}}=C
$$

The principal components of X are orthonormal

$$
v_{i}^{T} v_{j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

$$
V=\left[v_{1}, \ldots v_{m}\right] \text {, then } V^{T}=V^{-1} \text {, i.e } V^{T} V=I
$$

USEFUL PROPERTIES

Theorem 1: if square $d \times d$ matrix S is a real and symmetric matrix $\left(S=S^{T}\right)$ then

$$
S=V \Lambda V^{T}
$$

Where $V=\left[\begin{array}{lll}v_{1}, \ldots & v_{d}\end{array}\right]$ are the eigenvectors of S and
$\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots \lambda_{d}\right)$ are the eigenvalues.

Proof:

- $S V=V \Lambda$
- $\left[\begin{array}{llll}S & v_{1} & \ldots & S \\ v_{d}\end{array}\right]=\left[\begin{array}{llll}\lambda_{1} & v_{1} & \ldots & \lambda_{d}\end{array} \cdot v_{d}\right]$: the definition of eigenvectors.
- $S=V \Lambda V^{-1}$
- $S=V \Lambda V^{T}$ because V is orthonormal $V^{-1}=V^{T}$

USEFUL PROPERTIES

* The projected data: $Y=X V$

The covariance matrix of Y is

$$
\begin{aligned}
C_{Y} & =\frac{1}{N-1} Y^{T} Y=\frac{1}{N-1} V^{T} X^{T} X V=V^{T} C_{X} V \\
& =\mathrm{V}^{\mathrm{T}} \mathrm{~V} \Lambda \mathrm{~V}^{\mathrm{T}} \mathrm{~V} \quad \begin{array}{l}
\text { because the covariance matrix } C_{X} \text { is } \\
\\
\\
=\mathrm{V}^{-1} \mathrm{~V} \Lambda \mathrm{~V}^{-1} \mathrm{~V} \quad \\
\\
\end{array} \quad \text { because } \mathrm{V} \text { is orthonormal }
\end{aligned}
$$

After the transformation, the covariance matrix becomes diagonal.

DERIVATION OF PCA : 1, MAXIMIZING VARIANCE

* Assume the best transformation is one that maximize the variance of project data.
* Find the equation for variance of projected data.
* Introduce constraint
* Maximize the un-constraint equation. (find derivative w.r.t projection axis and set to zero)

DERIVATION OF PCA ;
 2. MINIMIZING TRANSFORMATION ERROR

* Define error

Identify variables that needs to be optimized in the error

* Minimize and solve for the variables.
* Interpret the information

SINGULAR VALUE DECOMPOSITION(SVD)

\times Any $N \times d$ matrix X can be uniquely expressed as:

* r is the rank of the matrix X (\# of linearly independent columns/rows).
+U is a column-orthonormal $N \times r$ matrix.
$+\Sigma$ is a diagonal $r \times r$ matrix where the singular values oi are sorted in descending order.
+V is a column-orthonormal $d \times r$ matrix.

PCA AND SVD RELATION

Theorem:

Let $X=U \Sigma V^{T}$ be the SVD of an $N \times d$ matrix X and
$C=\frac{1}{N-1} X^{T} X$ be the $d \times d$ covariance matrix.
The eigenvectors of C are the same as the right singular vectors of X.

Proof:
$X^{T} X=V \Sigma U^{T} U \Sigma V^{T}=V \Sigma \Sigma V^{T}=V \Sigma^{2} V^{T}$
$\mathrm{C}=\mathrm{V} \frac{\Sigma^{2}}{N-1} \mathrm{~V}^{\mathrm{T}}$
But C is symmetric, hence $C=V \Lambda V^{T}$
Therefore, the eigenvectors of the covariance matrix C are the same as matrix V (right singular vectors) and
the eigenvalues of C can be computed from the singular values $\lambda_{i}=\frac{\sigma_{i}^{2}}{N-1}$

$\mathbf{X}=\mathbf{U} \times \boldsymbol{\Sigma} \times \mathbf{V}^{\mathbf{T}}$

The singular value decomposition and the eigendecomposition are closely related. Namely:

* The left-singular vectors of X are eigenvectors of $X X^{T}$
* The right-singular vectors of X are eigenvectors of $X^{T} X$.
* The non-zero singular values of X (found on the diagonal entries of Σ) are the square roots of the non-zero eigenvalues of both $X^{T} X$ and $X X^{T}$.

ASSUMPTIONS OF PCA

* I. Linearity
* II. Mean and variance are sufficient statistics.
+ Gaussian distribution assumed
* III. Large variances have important dynamics.
* IV. The principal components are orthogonal

PCA WITH EIGENVALUE DECOMPOSITION

function [signals,PC,V] = pca1(data)
\% PCA1: Perform PCA using covariance.
\% data - MxN matrix of input data
\% (M dimensions, N trials)
\% signals - MxN matrix of projected data
\% PC - each column is a PC
\% V - Mx1 matrix of variances
[M,N] = size(data);
\% subtract off the mean for each dimension
mn = mean(data,2);
data $=$ data $-\operatorname{repmat}(m n, 1, \mathrm{~N})$;
\% calculate the covariance matrix
covariance = $1 /(\mathrm{N}-1)$ * data * data';
\% find the eigenvectors and eigenvalues
[PC, V] = eig(covariance);
\% extract diagonal of matrix as vector $\mathrm{V}=\operatorname{diag}(\mathrm{V})$;
\% sort the variances in decreasing order [junk, rindices] = sort(-1*V);
$\mathrm{V}=\mathrm{V}$ (rindices);
PC = PC(:,rindices);
\% project the original data set
signals = PC' * data;

PCA WITH SVD

```
function [signals,PC,V] = pca2(data)
% PCA2: Perform PCA using SVD.
% data - MxN matrix of input data
% (M dimensions, N trials)
% signals - MxN matrix of projected data
% PC - each column is a PC
% V - Mx1 matrix of variances
[M,N] = size(data);
% subtract off the mean for each dimension
mn = mean(data,2);
data = data - repmat(mn,1,N);
% construct the matrix Y
Y = data' / sqrt(N-1);
```

\% SVD does it all [u,S,PC] = svd(Y);
\% calculate the variances
S = diag(S);
V = S.*S;
\% project the original data signals = PC' * data;

