
Lecture 20:
Random Walk Kernels and Other Graph
Kernels

Instructor: Sael Lee
CS549 Spring – Computational Biology

Resources:
• Shervashidze, N., et al. (2011). Weisfeiler-Lehman Graph Kernels. Journal of Machine Learning Research, 12,

2539–2561.
• “Graph Mining and Graph Kernels” K. Borgwardt and X. Yan KDD2008 Tutorial
• Vishwanathan, S. V. N., et al. (2010). Graph Kernels. Journal of Machine Learning Research, 11, 1201–1242.
• “Graph kernels and chemoinformatics” Jean-Philippe Vert. Slides from Gbr’2007

Graph Comparison

Definition 1 (Graph Comparison Problem)

Given two graphs G and G′ from the space of graphs G. The problem of
graph comparison is to find a mapping

𝑠 ∶ 𝐺 × 𝐺′ → 𝑅

such that s(G,G′) quantifies the similarity (or dissimilarity) of G and G′.

Graph Kernels aim at computing similarity scores between graphs in a
dataset

Graph Kernels Measuring Graph Similarity
Principle
• Let 𝜙(x) be a vector representation of the graph x
• The kernel between two graphs is defined by:

𝐾(𝑥, 𝑥′) = 𝜙 𝑥 𝑇 𝜙(𝑥′)
• To solve convex optimization with kernels, kernels needs to be

• Symmetric, that is, k(x, x′) = k(x′, x), and
• Positive semi-definite (p.s.d.)

• Comparing nodes in a graph involves constructing a kernel between nodes
• Comparing graphs involves constructing a kernel between graphs.

Advantages
• Similarity of two graphs are inferred through kernel function

Disadvantages
• Defining a kernel that captures the semantics inherent in the graph structure and

is reasonably efficient to evaluate is the key challenge.

Brief history of graph kernels
 The idea of constructing kernels on graphs (i.e., between the

nodes of a single graph) was first proposed by Kondor and
Lafferty (2002), and extended by Smola and Kondor (2003).

 Idea of kernels between graphs were proposed by G¨artner et al.
(2003) and later extended by Borgwardt et al. (2005).

 Idea of marginalized kernels (Tsuda et al., 2002) was extended to
graphs by Kashima et al. (2003, 2004), then further refined by
Mah´e et al. (2004).

What is a Graph Kernel?

Graph kernels are Instance of R-convolution kernels by
Haussler (1999)
R-convolution is a generic way of defining kernels on discrete
compound objects by comparing all pairs of decompositions
thereof.
Therefore, a new type of decomposition of a graph results in a
new graph kernel.

A graph kernel makes the whole family of kernel methods
applicable to graphs

Generation of complete decompositions of graph is as hard as
subgraph isomorphism !!

Graph Kernels
5/20/2013 CSE 549 - Computational Biology

6

G1 G2 G3 GN

G
1

G
2

G
3

G
N

𝐾(𝐺1,𝐺2)

Kernel matrix K

. . .

. . .

How to define a valid kernel function
𝐾(𝐺𝑗 ,𝐺𝑗), between two graphs
𝐺𝑗 and 𝐺𝑗 .
• 𝐾(𝐺𝑗 ,𝐺𝑗) should provide relationship

(similarity / dissimilarity /
correlation etc.) measure for between
two graphs.

• 𝐾(𝐺𝑗 ,𝐺𝑗) should be able to be
applied in kernel based machine
learning methods such that it provide
optimal classification / clustering
performance.

We will look at graph kernels that states similarity between kernels.

Graph Terminology

• A graph G as a triplet (𝑉,𝐸, 𝑙), where V is the set of vertices, E

is the set of undirected edges, and 𝑙 ∶ 𝑉 → Σ is a function that

assigns labels from an alphabet Σ to nodes in the graph.

• The neighborhood N (v) of a node v is the set of nodes to which

v is connected by an edge, that is 𝑁 (𝑣) = {𝑣′|(𝑣, 𝑣′) ∈ 𝐸}.

For simplicity, we assume that every graph has n nodes, m edges,

and a maximum degree of d. The size of G is defined as the

cardinality of V.

Graph Terminology cont.

• A path is a walk that consists of distinct nodes only.

• A walk is a sequence of nodes in a graph, in which

consecutive nodes are connected by an edge. walk extends

the notion of path by allowing nodes to be equal

• A (rooted) subtree is a subgraph of a graph, which has no

cycles, but a designated root node.

• The height of a subtree is the maximum distance between

the root and any other node in the subtree.

Complete Graph Kernels
A graph kernel is complete
if it separates non-isomorphic graphs, i.e.:

∀𝐺1,𝐺2 ∈ 𝑋,𝑑𝐾 𝐺1,𝐺2 = 0 ⇒ 𝐺𝐺 ≅ 𝐺𝐺 .

Equivalently, ϕ(𝐺1) ≠ ϕ(𝐺1) if 𝐺1 and 𝐺2 are not isomorphic.

• If a graph kernel is not complete, then it cannot cover all
possible functions over X: the kernel is not expressive
enough.

• On the other hand, kernel computation must be tractable, i.e.,
no more than polynomial (with small degree) for practical
applications.

• Can we define tractable and expressive graph kernels?
Computing any complete graph kernel is at least as hard as the graph
isomorphism problem. (Gärtner et al., 2003)

Subgraph Kernel

Let λ 𝐺 𝐺∈𝑋 a set or nonnegative real-valued weights

For any graph G ∈ X, let

∀𝐻 ∈ 𝑋, 𝜙𝐻 𝐺 = |G′ is a subgraph of G : G′ ≅ H

The subgraph kernel between any two graphs 𝐺1 and 𝐺2 ∈ X

is defined by:

𝐾𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐺1,𝐺2) = �λ𝐻
𝐻∈𝑋

𝜙𝐻 𝐺1 𝜙𝐻(𝐺2)

NOTE: Computing the subgraph kernel is NP-hard. (Gärtner et al., 2003)

Graph Kernel Terminology cont.

Note that all subtree kernels compare subtree patterns in
two graphs, not (strict) subtrees.

Figure 1: A subtree pattern of height 2 rooted at the node 1.
Note the repetitions of nodes in the unfolded subtree pattern
on the right.

subtree patterns (also called tree-walks, Bach, 2008) can
have nodes that are equal .

Path Kernel

A path of a graph (V,E) is sequence of distinct vertices
𝑣1, . . . , 𝑣𝑛 ∈ 𝑉 (𝑖 ≠ 𝑗 ⇒ 𝑣𝑖 ≠ 𝑣𝑗) such that (𝑣𝑖 , 𝑣𝑖+1) ∈
𝐸 for i = 1, . . . , n − 1.
Equivalently the paths are the linear subgraphs.

The path kernel is the subgraph kernel restricted to paths,
i.e.,

𝐾𝑠𝑠𝑝𝑠(𝐺1,𝐺2) = �λ𝐻
𝐻∈𝑃

𝜙𝐻 𝐺1 𝜙𝐻(𝐺2)

where P ⊂ X is the set of path graphs.

NOTE: Computing the path kernel is NP-hard. (Gärtner et al., 2003)

Expressiveness vs Complexity trade-off

 It is intractable to compute complete graph kernels.

 It is intractable to compute the subgraph kernels.

 Restricting subgraphs to be linear does not help:

 it is intractable to compute the path kernel.

 One approach to define polynomial time computable graph kernels
is to have the feature space be made up of graphs homomorphic
to subgraphs, e.g., to consider walks instead of paths.

Three Classes of Graph Kernels

 Graph kernels based on walks and paths
 Compute the number of matching pairs of random walks (resp.

paths) in two graphs
 Random walk kernel are generated by direct product graph

of two graphs
 Walks (Kashima et al., 2003; G¨artner et al., 2003)
 Paths (Borgwardt and Kriegel, 2005),

 Graph kernels based on limited-size subgraphs
 Kernels based on graphlets, that represent graphs as counts of

all types (or certain type of) of subgraphs of size k ∈{3,4,5}.
 (Horv´ath et al., 2004; Shervashidze et al., 2009),

Three classes of graph kernels cont.

 Graph kernels based on subtree patterns
 Subtree kernels iteratively compares all matchings between

neighbors of two nodes v from G and v’ from G’. In other
words, for all pairs of nodes v from G and v’ from G’, it counts
all pairs of matching substructures in subtree patterns rooted at
v and v’.

 (Ramon and G¨artner, 2003; Mah´e and Vert, 2009)

5/20/2013 CSE 549 - Computational Biology

20

Walks

A walk of a graph (V,E) is sequence of 𝑣1, . . . , 𝑣𝑛 ∈ 𝑉 such
that (𝑣𝑖 ,𝑣𝑖 + 𝐺) ∈ 𝐸 for 𝑖 = 𝐺, . . . ,𝑛 − 𝐺.

We note 𝑾𝒏(𝑮) the set of walks with n vertices of the graph
G, and 𝑾(𝑮) the set of all walks.

walks Paths

Walk Kernel
• Let 𝑺𝒏 denote the set of all possible label sequences of walks

of length n (including vertices and edges labels), and
𝑆 = ∪𝑛≥1 𝑆𝑛.

• For any graph X let a weight 𝜆𝐺(𝑤) be associated to each
walk 𝑤 ∈ 𝑊(𝐺).

• Let the feature vector 𝜙 𝐺 = 𝜙𝑠 𝐺 𝑠∈𝑆 be defined by:

𝜙𝑠(𝐺) = � 𝜆𝐺(𝑤)𝟏
 𝑤∈𝑊(𝐺)

(𝑠 is the label sequence of 𝑤) .

• A walk kernel is a graph kernel defined by:

𝐾𝑤𝑠𝑤𝑤(𝐺1,𝐺2) = �𝜙𝑆 𝐺1 𝜙𝑆(𝐺2)
𝑠∈𝑆

Walk Kernel Examples

• The nth-order walk kernel is the walk kernel with 𝜆𝐺(𝑤) = 1 if the
length of w is n, 0 otherwise. It compares two graphs through their
common walks of length n.

• The random walk kernel is obtained with 𝜆𝐺(𝑤) = 𝑃𝐺(𝑤), where 𝑃𝐺 is a
Markov random walk on G. In that case we have:

𝐾(𝐺1,𝐺2) = 𝑃(𝑙𝑙𝑙𝑙𝑙(𝑊1) = 𝑙𝑙𝑙𝑙𝑙(𝑊2)) ,
 where 𝑊1 and 𝑊2 are two independent random walks on 𝐺1 and 𝐺2,
 respectively (Kashima et al., 2003).

• The geometric walk kernel is obtained (when it converges) with
𝜆𝐺(𝑤) = 𝛽𝑤𝑙𝑛𝑠𝑝𝑠 𝑤 , for 𝛽 > 0. In that case the feature space is of infinite
dimension (Gärtner et al., 2003).

These three kernels (nth-order, random and geometric walk kernels)
can be computed efficiently in polynomial time.

Walk Kernel Example

Subtree Kernels

Like the walk kernel, amounts to compute
the (weighted) number of subtrees in the
product graph.

Subtree Kernels

Motivation
• Compare tree-like substructures of graphs
• May distinguish between substructures that walk kernel

deems identical

Algorithmic principle
• for all pairs of nodes r from V1(G1) and s from V2(G2) and

a predefined height h of subtrees:
• recursively compare neighbors (of neighbors) of r and s
• subtree kernel on graphs is sum of subtree kernels on nodes

Marginalized Kernels Between Labeled Graphs
5/20/2013 CSE 549 - Computational Biology

34

(Kashima et al., ICML 2003)

Marginalized Kernels

• Assume hidden variables h (ex> walk of a graph) and make use
of the probability distribution of visible variables x, x’ (structured
data ex> Graph) and hidden variables

joint kernel & z = [x;h]

posterior probability

posterior probability p(h|x) can be interpreted as a feature
extractor that extracts informative features for classification
from x

Marginalized Kernels: Expectation of the joint kernel over all
possible values of h and h’

𝐾 𝒙,𝒙′ = ��𝐾𝑧(𝒛, 𝒛′)𝒑 𝒉 𝒙 𝑝 𝒉 𝒙′
𝑠′𝑠

Note: Undirected Graph to Directed Graph
5/20/2013 CSE 549 - Computational Biology

35

• A graph G =(𝑉,𝐸, 𝑙),
• 𝑉 is the set of vertices,
• 𝐸 ⊂ (𝑉 × 𝑉) is the set of undirected edges (Changed to

directed for random walk), and
• 𝑙 ∶ 𝑉,𝐸 → Σ is a function that assigns labels from an alphabet
Σ to nodes in the graph.

• ’s’ and ’d’ denote single
and double bonds,
respectively.

• Kernel assumes a
directed graph,
undirected edges are
replaced by directed
edges

Changing undirected graph to directed graph

G =(𝑉,𝐸, 𝑙),

First Order Markov Random Walks on Graphs
5/20/2013 CSE 549 - Computational Biology

36

Hidden variable: Random Walks on Graphs

• Hidden variable 𝒉 = (ℎ1, … ,ℎ𝑤) associated with graph G is a
sequence of natural numbers from 1 to |G|. |G| : number of vertices

• h is generated by a random walk

1-st step) ℎ1 is sampled from the prior probability distribution 𝑝𝑠(𝒉).
i-th step) ℎ𝑖 sampled subject to the transition probability 𝑝𝑝(ℎ𝑖|ℎ𝑖−1)
 and with walk termination probability 𝑝𝑞(ℎ𝑖−1):

• Posterior probability for the walk h : p(h|G)

where 𝑙 is the length of h

uniform distribution can be used
for uninformative prior

• traversed labels are listed:

Define Joint Kernel

5/20/2013 CSE 549 - Computational Biology

37

Assume that two kernel functions are
readily defined:
• K(v, v’) : Kernel between vertex labels
• K(e, e’): Kernel between edge labels,

Constrain both kernels to be nonnegative
𝐾 𝑣, 𝑣′ ≥ 0; 𝐾 𝑙, 𝑙′ ≥ 0

Define vertex kernel & edge kernel
Example of the vertex label
kernels

Dirac kernel: For Discrete labels

Gaussian kernel: For Real value labels

Joint Kernel

Computing Joint Kernel

5/20/2013 CSE 549 - Computational Biology

38

Where

The straightforward
enumeration is impossible,
because 𝑙 spans
from 1 to infinity.

Computing Joint Kernel cont.

5/20/2013 CSE 549 - Computational Biology

39

Computing Joint Kernel cont.

5/20/2013 CSE 549 - Computational Biology

40

Restate this problem in recursive form

Equilibrium equation:

Computing Joint Kernel cont.

5/20/2013 CSE 549 - Computational Biology

41

computation of the marginalized kernel finally comes down to
iteratively solving for

and substituting the solutions into

until convergence starting from Proof of convergence in
Section 3.4 of Kashima

et al., 2003

Extension to Marginalized Graph Kernel

5/20/2013 CSE 549 - Computational Biology

42

Reduce Tottering effect by
 Using 2nd Order Markov Random Walk instead of 1st order

Iterative Label Enrichment:
 Morgan Index (1965)

Approaches:
Size of product graph affects runtime of kernel computation
• The more node labels, the smaller the product graph
• Trick: Introduce new artificial node labels

Focusing on non-tottering walks is a way to get closer to the path kernel

1

2

(Mahé et al. ICML 2004)
Model: Marginalized Graph Kernel with Dirac joint kernel

Simplified Marginalized Graph Kernel

5/20/2013 CSE 549 - Computational Biology

43

𝐾 𝐺,𝐺′ = � 𝑝 𝒉|𝐺 𝑝′ 𝒉′|𝐺′ 𝐾𝐿(𝑙 𝒉 , 𝑙 𝒉′)
𝒉,𝒉′ ∈𝑉∗×𝑉′∗

𝐾𝐿: Dirac kernel between labeled sequence

𝐾𝐿 𝑙, 𝑙′ = �𝐺 if 𝑙 = 𝑙′
0 otherwise

𝐾: Marginalized graph kernel

Simplified by
1) not using edge kernel defined
2) Using Dirac vertex kernel

Simplified Marginalized Graph Kernel in Matrix

5/20/2013 CSE 549 - Computational Biology

44

Tensor product graph is defined as labeled graph 𝐺𝑠 = 𝑉𝑠,Ε𝑠 with
 𝑉𝑠 ⊂ 𝑉1 × 𝑉2 are pairs of vertices with identical labels

𝑣1, 𝑣2 ∈ 𝑉𝑠 iff 𝑙 𝑣1 = 𝑙 𝑣2
and edges connecting the vertices

𝑢1,𝑢2 and 𝑣1, 𝑣2 iff 𝑢𝑖 ,𝑣𝑖 ∈ 𝐸𝑠, 𝑓𝑓𝑓 𝑖 = 𝐺,𝐺, … 𝑙

 tensor product of agency matrix G × H G × H G H
Fig: http://en.wikipedia.org/wiki/Tensor_product_of_graphs

http://en.wikipedia.org/wiki/Tensor_product_of_graphs

5/20/2013 CSE 549 - Computational Biology

45
G × H G H

A function 𝜋 on the set of walks(paths) 𝐻(𝐺𝑠)

𝜋𝑝

Simplified Marginalized Graph Kernel in
Matrix

Simplified Marginalized Graph Kernel in
Matrix cont.

5/20/2013 CSE 549 - Computational Biology

46

𝐾 𝐺1,𝐺2
= � 𝑝1 𝒉𝟏|𝐺1 𝑝2 𝒉𝟐|𝐺1 𝐾𝐿(𝑙 𝒉𝟏 , 𝑙 𝒉𝟐)

𝒉𝟏,𝑠2 ∈𝑉1∗×𝑉2∗

Label Enrichment with Morgan Index (1965)

Problems:
• The computation of graph kernels is time-consuming.
• Need to increase the relevance of the features used to

compare graphs.

Expected outcome:
• The computation of graph kernels is time-consuming.
• Need to increase the relevance of the features used to

compare graphs.

Label Enrichment with Morgan Index cont.

5/20/2013 CSE 549 - Computational Biology

48

Enrichment with vertex connectivity properties
→ extended connectivity descriptor :

Label Enrichment with Morgan Index cont.

5/20/2013 CSE 549 - Computational Biology

49

𝑀𝑛: vector of labels in graph
 Given adjacency matrix A and setting 𝑀0 = 𝟏
 𝑀𝑛+1 = 𝐴 + 𝐼 𝑀𝑛

Preventing Tottering

A tottering walk is a walk 𝑤 = 𝑣1 . . . 𝑣𝑛 with 𝑣𝑖 = 𝑣𝑖 + 𝐺 for
some i.
• A walk can visit the same cycle of nodes all over again
• Kernel measures similarity in terms of common walks
• Hence a small structural similarity can cause a huge

kernel value
• Focusing on non-tottering walks is a way to get closer to

the path kernel (e.g., equivalent on trees).

Preventing Tottering Cont.

5/20/2013 CSE 549 - Computational Biology

51

Preventing Tottering Cont.

5/20/2013 CSE 549 - Computational Biology

52

Preventing Tottering Cont.

5/20/2013 CSE 549 - Computational Biology

53

2nd order Markov Random Walk

5/20/2013 CSE 549 - Computational Biology

54

The function is still a valid kernel but the implementation described for the
first order Markov random walk cannot be directly used anymore.

=> Instead of explicitly working with 2nd Order Markov Random walk,
transform the original graph 𝐺 to 𝐺′ such that 𝐺′ contains the look ahead
information.

Graph Transformation Cont.

5/20/2013 CSE 549 - Computational Biology

55

* Don’t confuse G’ used in the last
notation for compared Graph

Graph Transformation Cont.

5/20/2013 CSE 549 - Computational Biology

56

Graph Transformation Cont.

5/20/2013 CSE 549 - Computational Biology

57

Graph Transformation Cont.

5/20/2013 CSE 549 - Computational Biology

58

Original Graph Corresponding directed graph G = (V,E,l)

Transformed Graph Labels in the transformed graph

Modified Kernel Computation cont.

5/20/2013 CSE 549 - Computational Biology

59

Modified Kernel Computation cont.

5/20/2013 CSE 549 - Computational Biology

60

one-to-one correspondence

Review Bijection

5/20/2013 CSE 549 - Computational Biology

61

• Bijection (or bijective function or one-to-one correspondence) is a
function giving an exact pairing of the elements of two sets.

http://en.wikipedia.org/wiki/Bijection

A bijection composed of an injection (left)
and a surjection (right).

• Bijective function f: X → Y is a one to one and onto mapping of a
set X to a set Y.

http://en.wikipedia.org/wiki/Bijection

Review Bijection cont.

5/20/2013 CSE 549 - Computational Biology

62

Theorem 1. f is a Bijective function between 𝐻0(𝐺) and 𝐻1(𝐺𝐺), and
for any path 𝐡 ∈ 𝐻0(𝐺) we have

𝑓:𝐻0 𝐺 → 𝐻1(𝐺𝐺)

� 𝑙 𝒉|𝐺 = 𝑙′(𝑓 𝒉 |𝐺′)
𝑝 𝒉|𝐺 = 𝑝′ 𝑓 𝒉 |𝐺′

Corollary 1. For any two graphs 𝐺1 and 𝐺2, the marginalized graph
kernel can be expressed in terms of the transformed
graphs 𝐺′1 and 𝐺′2 by:

𝐾 𝐺1,𝐺2 = � 𝑝1′ ℎ1′ 𝑝2′ ℎ2′

𝑠1′ ,𝑠2′ ∈ Σ1′
∗
× Σ2′

∗

𝐾𝐿(𝑙1′ ℎ1′ 𝑙2′ ℎ2′)

	Lecture 20:�Random Walk Kernels and Other Graph Kernels
	Graph Comparison
	Graph Kernels Measuring Graph Similarity
	Brief history of graph kernels
	What is a Graph Kernel?
	Graph Kernels
	Graph Terminology
	Graph Terminology cont.
	Complete Graph Kernels
	Subgraph Kernel
	Graph Kernel Terminology cont.
	Path Kernel
	Expressiveness vs Complexity trade-off
	Three Classes of Graph Kernels
	Three classes of graph kernels cont.
	Walks
	Walk Kernel
	Walk Kernel Examples
	Walk Kernel Example
	Subtree Kernels
	Subtree Kernels
	Marginalized Kernels Between Labeled Graphs
	Note: Undirected Graph to Directed Graph
	First Order Markov Random Walks on Graphs
	Define Joint Kernel
	Computing Joint Kernel
	Computing Joint Kernel cont.
	Computing Joint Kernel cont.
	Computing Joint Kernel cont.
	Extension to Marginalized Graph Kernel
	Simplified Marginalized Graph Kernel
	Simplified Marginalized Graph Kernel in Matrix
	Simplified Marginalized Graph Kernel in Matrix
	Simplified Marginalized Graph Kernel in Matrix cont.
	Label Enrichment with Morgan Index (1965)
	Label Enrichment with Morgan Index cont.
	Label Enrichment with Morgan Index cont.
	Preventing Tottering
	Preventing Tottering Cont.
	Preventing Tottering Cont.
	Preventing Tottering Cont.
	2nd order Markov Random Walk
	Graph Transformation Cont.
	Graph Transformation Cont.
	Graph Transformation Cont.
	Graph Transformation Cont.
	Modified Kernel Computation cont.
	Modified Kernel Computation cont.
	Review Bijection
	Review Bijection cont.

