
Lecture 20: 
Random Walk Kernels and Other Graph 
Kernels  

Instructor: Sael Lee 
CS549 Spring – Computational Biology 

Resources: 
• Shervashidze, N., et al. (2011). Weisfeiler-Lehman Graph Kernels. Journal of Machine Learning Research, 12, 

2539–2561. 
• “Graph Mining and Graph Kernels” K. Borgwardt and X. Yan KDD2008 Tutorial  
• Vishwanathan, S. V. N., et al.  (2010). Graph Kernels. Journal of Machine Learning Research, 11, 1201–1242. 
• “Graph kernels and chemoinformatics” Jean-Philippe Vert. Slides from Gbr’2007 
  



Graph Comparison 

Definition 1 (Graph Comparison Problem)  
 
Given two graphs G and G′ from the space of graphs G. The problem of 
graph comparison is to find a mapping 
 

𝑠 ∶  𝐺 × 𝐺′ →  𝑅 
 
such that s(G,G′) quantifies the similarity (or dissimilarity) of G and G′. 

Graph Kernels aim at computing similarity scores between graphs in a 
dataset 



Graph Kernels Measuring Graph Similarity 
Principle 
• Let 𝜙(x) be a vector representation of the graph x 
• The kernel between two graphs is defined by:  

𝐾(𝑥, 𝑥′)  =  𝜙 𝑥 𝑇  𝜙(𝑥′)  
• To solve convex optimization with kernels, kernels needs to be  

• Symmetric, that is, k(x, x′) = k(x′, x), and 
• Positive semi-definite (p.s.d.) 

• Comparing nodes in a graph involves constructing a kernel between nodes 
• Comparing graphs involves constructing a kernel between graphs.  
 
Advantages 
• Similarity of two graphs are inferred through kernel function 
 
Disadvantages 
• Defining a kernel that captures the semantics inherent in the graph structure and 

is reasonably efficient to evaluate is the key challenge. 
 



Brief history of graph kernels  
 The idea of constructing kernels on graphs (i.e., between the 

nodes of a single graph) was first proposed by Kondor and 
Lafferty (2002), and extended by Smola and Kondor (2003).  
 

 Idea of kernels between graphs were proposed by G¨artner et al. 
(2003) and later extended by Borgwardt et al. (2005).  
 

 Idea of marginalized kernels (Tsuda et al., 2002) was extended to 
graphs by Kashima et al. (2003, 2004), then further refined by 
Mah´e et al. (2004).  



What is a Graph Kernel? 

Graph kernels are Instance of R-convolution kernels by 
Haussler (1999) 
R-convolution is a generic way of defining kernels on discrete 
compound objects by comparing all pairs of decompositions 
thereof.  
Therefore, a new type of decomposition of a graph results in a 
new graph kernel. 

A graph kernel makes the whole family of kernel methods 
applicable to graphs 

Generation of complete decompositions of graph is as hard as 
subgraph isomorphism !!  
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How to define a valid kernel function 
𝐾(𝐺𝑗 ,𝐺𝑗), between two graphs 
𝐺𝑗  and 𝐺𝑗 . 
• 𝐾(𝐺𝑗 ,𝐺𝑗) should provide relationship 

(similarity / dissimilarity / 
correlation etc.) measure for between 
two graphs.  

• 𝐾(𝐺𝑗 ,𝐺𝑗) should be able to be 
applied in kernel based machine 
learning methods such that it provide 
optimal classification / clustering 
performance.  

We will look at graph kernels that states similarity between kernels.  



Graph Terminology 

• A graph G as a triplet (𝑉,𝐸, 𝑙), where V is the set of vertices, E 

is the set of undirected edges, and 𝑙 ∶  𝑉 → Σ is a function that 

assigns labels from an alphabet Σ to nodes in the graph.  

• The neighborhood N (v) of a node v is the set of nodes to which 

v is  connected by an edge, that is 𝑁 (𝑣)  =  {𝑣′|(𝑣, 𝑣′)  ∈  𝐸}. 

 

For simplicity, we assume that every graph has n nodes, m edges, 

and a maximum degree of d. The size of G is defined as the 

cardinality of V.  



Graph Terminology cont.  

• A path is a walk that consists of distinct nodes only.  

• A walk is a sequence of nodes in a graph, in which 

consecutive nodes are  connected by an edge. walk extends 

the notion of path by allowing nodes to be equal  

• A (rooted) subtree is a subgraph of a graph, which has no 

cycles, but a designated root node.  

• The height of a subtree is the maximum distance between 

the root and any other node in the subtree.  



Complete Graph Kernels 
A graph kernel is complete  
if it separates non-isomorphic graphs, i.e.: 

∀𝐺1,𝐺2  ∈  𝑋,𝑑𝐾 𝐺1,𝐺2 =  0 ⇒  𝐺𝐺 ≅  𝐺𝐺 . 

Equivalently,  ϕ(𝐺1) ≠  ϕ(𝐺1) if 𝐺1 and 𝐺2 are not isomorphic. 

• If a graph kernel is not complete, then it cannot cover all 
possible functions over X: the kernel is not expressive 
enough. 

• On the other hand, kernel computation must be tractable, i.e., 
no more than polynomial (with small degree) for practical 
applications. 

• Can we define tractable and expressive graph kernels? 
Computing any complete graph kernel is at least as hard as the graph 
isomorphism problem. (Gärtner et al., 2003) 



Subgraph Kernel 

Let λ 𝐺 𝐺∈𝑋 a set or nonnegative real-valued weights 

For any graph G ∈ X, let 

∀𝐻 ∈ 𝑋, 𝜙𝐻 𝐺 = |G′ is a subgraph of G : G′ ≅ H 

The subgraph kernel between any two graphs 𝐺1 and 𝐺2 ∈ X 

is defined by: 

𝐾𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐺1,𝐺2)  =  �λ𝐻
𝐻∈𝑋

𝜙𝐻 𝐺1 𝜙𝐻(𝐺2) 

NOTE: Computing the subgraph kernel is NP-hard. (Gärtner et al., 2003) 



Graph Kernel Terminology cont.  

Note that all subtree kernels compare subtree patterns in 
two graphs, not (strict) subtrees. 

Figure 1: A subtree pattern of height 2 rooted at the node 1. 
Note the repetitions of nodes in the unfolded subtree pattern 
on the right. 

subtree patterns (also called tree-walks, Bach, 2008) can 
have nodes that are equal .  



Path Kernel 

A path of a graph (V,E) is sequence of distinct vertices 
𝑣1, . . . , 𝑣𝑛 ∈ 𝑉 (𝑖 ≠ 𝑗 ⇒  𝑣𝑖  ≠ 𝑣𝑗  ) such that (𝑣𝑖 , 𝑣𝑖+1) ∈
𝐸 for i = 1, . . . , n − 1. 
Equivalently the paths are the linear subgraphs. 

The path kernel is the subgraph kernel restricted to paths, 
i.e., 

𝐾𝑠𝑠𝑝𝑠(𝐺1,𝐺2)  =  �λ𝐻
𝐻∈𝑃

𝜙𝐻 𝐺1 𝜙𝐻(𝐺2) 

where P ⊂ X is the set of path graphs. 

NOTE: Computing the path kernel is NP-hard. (Gärtner et al., 2003) 



Expressiveness vs Complexity trade-off 

 It is intractable to compute complete graph kernels. 

 It is intractable to compute the subgraph kernels. 

 Restricting subgraphs to be linear does not help:  

 it is intractable to compute the path kernel. 

 One approach to define polynomial time computable graph kernels 
is to have the feature space be made up of graphs homomorphic 
to subgraphs, e.g., to consider walks instead of paths. 



Three Classes of Graph Kernels 

 Graph kernels based on walks and paths 
 Compute the number of matching pairs of random walks (resp. 

paths) in two graphs  
 Random walk kernel are generated by direct product graph 

of two graphs  
 Walks (Kashima et al., 2003; G¨artner et al., 2003) 
 Paths (Borgwardt and Kriegel, 2005), 

 Graph kernels based on limited-size subgraphs 
 Kernels based on graphlets, that represent graphs as counts of 

all types (or certain type of) of subgraphs of size k ∈{3,4,5}. 
 (Horv´ath et al., 2004; Shervashidze et al., 2009), 



Three classes of graph kernels cont. 

 Graph kernels based on subtree patterns 
 Subtree kernels iteratively compares all matchings between 

neighbors of two nodes v from G and v’ from G’. In other 
words, for all pairs of nodes v from G and v’ from G’, it counts 
all pairs of matching substructures in subtree patterns rooted at 
v and v’.  

 (Ramon and G¨artner, 2003; Mah´e and Vert, 2009) 
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Walks 

A walk of a graph (V,E) is sequence of 𝑣1, . . . , 𝑣𝑛  ∈  𝑉 such 
that (𝑣𝑖 ,𝑣𝑖 + 𝐺) ∈ 𝐸 for 𝑖 =  𝐺, . . . ,𝑛 −  𝐺.  
 
We note 𝑾𝒏(𝑮) the set of walks with n vertices of the graph 
G, and 𝑾(𝑮) the set of all walks. 

walks Paths 



Walk Kernel 
• Let 𝑺𝒏 denote the set of all possible label sequences of walks 

of length n (including vertices and edges labels), and 
𝑆 = ∪𝑛≥1 𝑆𝑛. 

• For any graph X let a weight 𝜆𝐺(𝑤) be associated to each 
walk 𝑤 ∈  𝑊(𝐺). 

• Let the feature vector 𝜙 𝐺 =  𝜙𝑠 𝐺 𝑠∈𝑆 be defined by: 

𝜙𝑠(𝐺)  =  � 𝜆𝐺(𝑤)𝟏
 𝑤∈𝑊(𝐺)

(𝑠 is the label sequence of 𝑤) . 

• A walk kernel is a graph kernel defined by: 

𝐾𝑤𝑠𝑤𝑤(𝐺1,𝐺2)  = �𝜙𝑆 𝐺1 𝜙𝑆(𝐺2) 
𝑠∈𝑆

 



Walk Kernel Examples 

• The nth-order walk kernel is the walk kernel with 𝜆𝐺(𝑤) = 1 if the  
length of w is n, 0 otherwise. It compares two graphs through their  
common walks of length n. 
 

• The random walk kernel is obtained with 𝜆𝐺(𝑤) = 𝑃𝐺(𝑤), where 𝑃𝐺 is a 
Markov random walk on G. In that case we have:  

𝐾(𝐺1,𝐺2)  =  𝑃(𝑙𝑙𝑙𝑙𝑙(𝑊1)  =  𝑙𝑙𝑙𝑙𝑙(𝑊2)) ,  
     where 𝑊1 and 𝑊2 are two independent random walks on 𝐺1 and 𝐺2,         
     respectively (Kashima et al., 2003). 
 
• The geometric walk kernel is obtained (when it converges) with 
𝜆𝐺(𝑤) =  𝛽𝑤𝑙𝑛𝑠𝑝𝑠 𝑤 , for 𝛽 > 0. In that case the feature space is of infinite 
dimension (Gärtner et al., 2003). 

These three kernels (nth-order, random and geometric walk kernels) 
can be computed efficiently in polynomial time. 



Walk Kernel Example 



Subtree Kernels 

Like the walk kernel, amounts to compute 
the (weighted) number of subtrees in the 
product graph. 



Subtree Kernels 

Motivation 
• Compare tree-like substructures of graphs 
• May distinguish between substructures that walk kernel 

deems identical 
 
 

Algorithmic principle 
• for all pairs of nodes r from V1(G1) and s from V2(G2) and 

a predefined height h of subtrees: 
• recursively compare neighbors (of neighbors) of r and s 
• subtree kernel on graphs is sum of subtree kernels on nodes 



Marginalized Kernels Between Labeled Graphs 
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(Kashima et al., ICML 2003) 

Marginalized Kernels 

• Assume hidden variables  h ( ex> walk of a graph ) and make use 
of the probability  distribution of visible variables x, x’ ( structured 
data ex> Graph)  and hidden variables 

joint kernel  &  z = [x;h] 

posterior probability 

posterior probability p(h|x) can be interpreted as a feature 
extractor that extracts informative features for classification 
from x 

Marginalized Kernels: Expectation of the joint kernel over all 
possible values of h and h’ 
 

𝐾 𝒙,𝒙′ =  ��𝐾𝑧(𝒛, 𝒛′)𝒑 𝒉 𝒙 𝑝 𝒉 𝒙′
𝑠′𝑠

 



Note: Undirected Graph to Directed Graph 
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• A graph G =(𝑉,𝐸, 𝑙),  
• 𝑉 is the set of vertices,  
• 𝐸 ⊂ (𝑉 × 𝑉) is the set of undirected edges (Changed to 

directed for random walk), and  
• 𝑙 ∶  𝑉,𝐸 → Σ  is a function that assigns labels from an alphabet 
Σ to nodes in the graph.  

 
 

• ’s’ and ’d’ denote single 
and double bonds, 
respectively. 

• Kernel assumes a 
directed graph, 
undirected edges are 
replaced by directed 
edges 

Changing undirected graph to directed graph 

G =(𝑉,𝐸, 𝑙), 



First Order Markov Random Walks on Graphs 
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Hidden variable: Random Walks on Graphs 

• Hidden variable 𝒉 =  (ℎ1, … ,ℎ𝑤) associated with graph G is a 
sequence of natural numbers from 1 to |G|.   |G| : number of vertices 

• h is generated by a random walk 

1-st step) ℎ1 is sampled from the prior probability distribution 𝑝𝑠(𝒉). 
i-th step)  ℎ𝑖 sampled subject to the transition probability  𝑝𝑝(ℎ𝑖|ℎ𝑖−1)  
 and with walk termination probability  𝑝𝑞(ℎ𝑖−1): 

• Posterior probability for the walk h : p(h|G) 

where 𝑙 is the length of h 

uniform distribution can be used 
for uninformative prior 

• traversed labels are listed: 



Define Joint Kernel 
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Assume that two kernel functions are 
readily defined:  
• K(v, v’) : Kernel between vertex labels 
• K(e, e’):  Kernel between edge labels, 

Constrain both kernels to be nonnegative 
𝐾 𝑣, 𝑣′ ≥ 0;  𝐾 𝑙, 𝑙′ ≥ 0 

Define vertex  kernel & edge kernel 
Example of the vertex label 
kernels 

Dirac kernel: For Discrete labels 

Gaussian kernel: For Real value labels 

Joint Kernel 



Computing Joint Kernel 
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Where  

The straightforward 
enumeration is impossible, 
because 𝑙 spans 
from 1 to infinity. 



Computing Joint Kernel cont. 

5/20/2013 CSE 549 - Computational Biology 

39 



Computing Joint Kernel cont. 
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Restate this problem in recursive form 

Equilibrium equation: 



Computing Joint Kernel cont. 
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computation of the marginalized kernel finally comes down to 
iteratively solving for  

and substituting the solutions into  

until convergence starting from Proof of convergence in 
Section 3.4 of Kashima 

et al., 2003  



Extension to Marginalized Graph Kernel 
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Reduce Tottering effect by  
 Using 2nd Order Markov Random Walk instead of 1st order  

Iterative Label Enrichment:  
 Morgan Index (1965) 

Approaches:  
Size of product graph affects runtime of kernel computation 
• The more node labels, the smaller the product graph 
• Trick: Introduce new artificial node labels 

Focusing on non-tottering walks is a way to get closer to the path kernel  

1 

2 

(Mahé et al. ICML 2004) 
Model: Marginalized Graph Kernel with Dirac joint kernel 



Simplified Marginalized Graph Kernel 
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𝐾 𝐺,𝐺′ =  � 𝑝 𝒉|𝐺 𝑝′ 𝒉′|𝐺′ 𝐾𝐿(𝑙 𝒉 , 𝑙 𝒉′ )
𝒉,𝒉′ ∈𝑉∗×𝑉′∗

 

𝐾𝐿: Dirac kernel between labeled sequence 

𝐾𝐿 𝑙, 𝑙′ = �𝐺        if 𝑙 = 𝑙′
0  otherwise

 

𝐾: Marginalized graph kernel 

Simplified by  
1) not using edge kernel defined 
2) Using Dirac vertex kernel 



Simplified Marginalized Graph Kernel in Matrix  

5/20/2013 CSE 549 - Computational Biology 

44 

Tensor product graph is defined as labeled graph 𝐺𝑠 = 𝑉𝑠,Ε𝑠   with 
  𝑉𝑠 ⊂ 𝑉1 × 𝑉2 are pairs of vertices with identical labels  

𝑣1, 𝑣2 ∈ 𝑉𝑠 iff 𝑙 𝑣1 = 𝑙 𝑣2  
and edges connecting the vertices 

𝑢1,𝑢2 and 𝑣1, 𝑣2  iff 𝑢𝑖 ,𝑣𝑖 ∈ 𝐸𝑠, 𝑓𝑓𝑓  𝑖 = 𝐺,𝐺, … 𝑙 

 tensor product  of agency matrix G × H  G × H  G                 H  
Fig: http://en.wikipedia.org/wiki/Tensor_product_of_graphs 

http://en.wikipedia.org/wiki/Tensor_product_of_graphs
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G × H  G                 H  

A function 𝜋 on the set of walks(paths) 𝐻(𝐺𝑠) 

𝜋𝑝 

Simplified Marginalized Graph Kernel in 
Matrix 



Simplified Marginalized Graph Kernel in 
Matrix cont. 
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𝐾 𝐺1,𝐺2
=  � 𝑝1 𝒉𝟏|𝐺1 𝑝2 𝒉𝟐|𝐺1 𝐾𝐿(𝑙 𝒉𝟏 , 𝑙 𝒉𝟐 )

𝒉𝟏,𝑠2 ∈𝑉1∗×𝑉2∗
 



Label Enrichment with Morgan Index (1965) 

Problems: 
• The computation of graph kernels is time-consuming. 
• Need to increase the relevance of the features used to 

compare graphs.   

Expected outcome: 
• The computation of graph kernels is time-consuming. 
• Need to increase the relevance of the features used to 

compare graphs.   



Label Enrichment with Morgan Index cont.  
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Enrichment with vertex connectivity properties 
→ extended connectivity descriptor : 



Label Enrichment with Morgan Index cont.  
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𝑀𝑛: vector of labels in graph 
        Given adjacency matrix A and setting 𝑀0 = 𝟏  
 𝑀𝑛+1 = 𝐴 + 𝐼 𝑀𝑛 



Preventing Tottering  

A tottering walk is a walk 𝑤 =  𝑣1 . . . 𝑣𝑛 with 𝑣𝑖  =  𝑣𝑖 + 𝐺 for 
some i. 
• A walk can visit the same cycle of nodes all over again 
• Kernel measures similarity in terms of common walks 
• Hence a small structural similarity can cause a huge 

kernel value 
• Focusing on non-tottering walks is a way to get closer to 

the path kernel (e.g., equivalent on trees). 



Preventing Tottering Cont. 

5/20/2013 CSE 549 - Computational Biology 

51 



Preventing Tottering Cont. 
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Preventing Tottering Cont. 
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2nd order Markov Random Walk 
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The function is still a valid kernel but the implementation described for the 
first order Markov random walk cannot be directly used anymore.  

=> Instead of explicitly working with 2nd Order Markov Random walk, 
transform the original graph 𝐺 to 𝐺′ such that  𝐺′ contains the look ahead 
information.   



Graph Transformation Cont.  
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* Don’t confuse G’ used in the last 
notation for compared Graph 



Graph Transformation Cont.  
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Graph Transformation Cont.  

5/20/2013 CSE 549 - Computational Biology 

57 



Graph Transformation Cont.  
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Original Graph Corresponding directed graph G = (V,E,l) 

Transformed Graph  Labels in the transformed graph 



Modified Kernel Computation cont.  
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Modified Kernel Computation cont. 
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one-to-one correspondence 



Review Bijection 
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• Bijection (or bijective function or one-to-one correspondence) is a 
function giving an exact pairing of the elements of two sets. 

http://en.wikipedia.org/wiki/Bijection 

A bijection composed of an injection (left) 
and a surjection (right). 

• Bijective function f: X → Y is a one to one and onto mapping of a 
set X to a set Y. 

http://en.wikipedia.org/wiki/Bijection


Review Bijection cont. 
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Theorem 1. f is a Bijective function between 𝐻0(𝐺) and 𝐻1(𝐺𝐺), and 
for any path 𝐡 ∈ 𝐻0(𝐺) we have  

𝑓:𝐻0 𝐺 → 𝐻1(𝐺𝐺) 
 

� 𝑙 𝒉|𝐺 = 𝑙′(𝑓 𝒉 |𝐺′)
𝑝 𝒉|𝐺 = 𝑝′ 𝑓 𝒉 |𝐺′  

Corollary 1. For any two graphs 𝐺1 and 𝐺2, the marginalized graph 
kernel can be expressed in terms of the transformed 
graphs 𝐺′1 and 𝐺′2 by:  
 

𝐾 𝐺1,𝐺2 = � 𝑝1′ ℎ1′ 𝑝2′ ℎ2′

𝑠1′ ,𝑠2′ ∈ Σ1′
∗
× Σ2′

∗

𝐾𝐿(𝑙1′ ℎ1′ 𝑙2′ ℎ2′ ) 
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