

Fairness

- Could be framed as a more general economic question.
- Many definitions possible. Need to form an appropriate definition relevant to context.

Must be able to implement with reasonable efficiency.

Notion of Max-Min Fairness

- Basic idea: "Envy-free" allocation. Maximize the minimum.
 - No connection gets more than what it wants.
 - After a max-min fair allocation, only way to make a connection "richer" will be to make another equal or poorer flow further poorer.
- Formally, assume a feasible allocation $X = (x_1, \ldots, x_n)$ means that $\sum_i^n x_i \leq C$ and $x_i \leq d_i$. If $X = (x_1, \ldots, x_n)$ is the max-min fair allocation, then it is feasible and the following must be true for any alternative feasible allocation $Y = (y_1, \ldots, y_n)$. If $y_i > x_i$, then there must exist some j such that $x_j \leq x_i$ and $y_j < x_j$.

Implementing Max-Min Fairness

• Intuitive mechanism:

- Each connection gets no more than what it wants.
- If any connection's demand is unmet, then all connections with unmet demand get an equal share.

Allocation algorithm:

- Sort N connections with increasing demand.
- Allocate resource equally (C/N).
- For connection i = 1 to N, do
 - If demand of connection i is less than its current allocation,
 - distribute the excess equally among the rest.

Other Notions of Fairness: Proportional Fairness

- Usually used in the context of congestion control.
- Based on a notion of utility function.
- Maximize $\sum_{i=1}^{N} U_i(x_i)$, where x_i is the allocation for connection i, and $U_i()$ is an utility function, modeling *i*-th connection's utility when it gets an allocation x_i .
- For proportional fairness, the utility function is $U_i(x_i) = \log(x_i)$.

Other Notions of Fairness: Proportional Fairness (contd.)

It can shown that for proportional fairness if $X^* = (x_1^*, \ldots, x_n^*)$ is the optimal (i.e., proportionally fair) allocation, then for any other allocation X different from X^* ,

$$\sum_{1}^{n} \frac{x_i - x_i^*}{x_i^*} \le 0$$

- It can be shown that max-min fairness can also be modeled as utility maximization, however, for a very different definition of utility.
- TCP's congestion control also can be shown to a utility maximization for another definition of utility.

Max-Min Weighted Fair Share Allocation

- Assign weights (*w*₁, *w*₂, ..., *w*_n) for different sources to indicate their relative share.
- Allocate resource in the order of increasing demand, but in proportion to weights.
- No connection gets more than its demand.
- Excess redistributed in proportion to the weights of the connections with unsatisfied demand.

Example					
Demands	4	2	10	4	
Weights	2.5	4	0.5	1	
Capacity	16				
Normalize weights	5	8	1	2	
 5+8+1+2 = 16 total s connections in pro- 	shares. A portion t	Alloca o wei	ite shar ghts.	es to	
 Allocation 	5	8	1	2	
 7 shares excess (co 3 & 4 in proportion 	onnectio to weigh	ns 1 a nts.	& 2). Re	distribute t	
 Allocation 	4	2	3.33	6.67	
	s at conr	nectio	on 4.		
Redistribute excess	5 at com				

- Similar to GPS.
- But still is unrealistic. Need a header for every bit.
- Need more realistic solutions.

Round Robin (RR) and Its Weighted Version (WRR)

- Serves <u>one packet</u> from each non-empty connection in a round.
 - Proportional no. for weighted.
- Simplest emulation of GPS.
- If unequal packet sizes (but fixed for a connection), divide weights by packet sizes to get a new set of weights.
- If packet size varies, use the mean value.
 Problem: May not know the mean ahead of time.

Fairness of WRR

- Not fair in timescales shorter than a round time.
 - Of course, in time scales shorter than a packet time any packet-oriented discipline is unfair.
- Note that the round time could be large for many connections.

Deficit Round Robin (DRR)

- Handles variable packet sizes without knowing the mean in advance.
- Init: deficit counter = 0.
- Visit each non-empty connection and serve a quantum worth of bits in each round.
- deficit counter = deficit counter + quantum.
- If deficit counter is equal to or larger than the packet at the head of the connection queue
 - transmit that packet and
 - reduce deficit counter by packet size.
- For efficiency, DRR should serve at least one packet in each round.
 - Thus, quantum size = max. possible packet size.

Fairness Measure (FM)

Define,

$$FM(t_1, t_2) = \frac{\operatorname{sent}_i(t_1, t_2)}{f_i} - \frac{\operatorname{sent}_j(t_1, t_2)}{f_j},$$

where $\operatorname{sent}_i(t_1, t_2)$ is the number of bits sent for connection *i* over the output link in the time interval (t_1, t_2) , and f_i is the number of bits would have been sent with a GPS scheduler.

FM is the maximum value of $FM(t_1, t_2)$ over all possible execution of the algorithm and all possible values (t_1, t_2) .

- Suppose, we make the quantum size = 1 bit.
- Is DRR same as bit-by-bit round robin?
- Prove or disprove.

• Round number does not increase with a constant rate with time.

- Depends on no. of active connections.
- $\delta R(t)/dt = C / N_{conn}$, where C is the link speed (capacity) and N_{conn} is the # active connections.
- It is more appropriate to view R(t) as each active connection's instantaneous share of link bandwidth.
- Thus, R(t) is a real no. that increases at a rate inversely proportional to N_{conn}
- With this view FQ emulates GPS rather than bitby-bit RR.

How Good is Fair Queuing?

- Fairness measure FM = Max.
- This is because after a connection sends out a max sized packet, it cannot send another immediately after if another connection is also continuously backlogged.

	Fairness Measure (FM)	Computation per packet
Fair Queuing	Max	O(log n)
Deficit Round Robin	3Max	O(1)