
10/15/2008

1

Transport Layer (Layer 4)

• Sits between the application and network layers.
N t k l (IP) id b i dd i• Network layer (e.g., IP) provides basic addressing
and routing service.
– Best effort.
– No guarantee of delivery, integrity of datagram, ordering or

duplicate removal.

• Transport layer (e.g., UDP and TCP) provides
other basic services needed by application
– Delivery to process rather than host (application

multiplexing/demultiplexing) using port numbers.
– Error checking. Error detection fields (checksum) in headers.
– UDP does little more than this. TCP does a lot more.

Key Features of TCP
• Connection oriented

– Establishes an end-to-end connection using a 3-way
handshaking protocol before transfer.handshaking protocol before transfer.

• Point to Point – two end points
• Reliable transfer

– Uses end-to-end acknowledgments and retransmissions
– Ordering. Duplicate removal.

• Full duplex
– One connection establishment necessary for two-way data

transfer.

• Stream oriented
– Continuous sequence of octets
– User has no control over packetization
– MSS: Maximum segment size. Implementation dependent.

10/15/2008

2

Key Features of TCP

• Flow control
– Sender will not overwhelm receiver.Sender will not overwhelm receiver.

• Congestion control
– Sender will not overwhelm network.

• Reliable connection of startup.
– Data on old connection does not confuse new

connection.

G f l ti h td• Graceful connection shutdown
– Data sent before closing a connection is not lost.

• Assumption: you should be somewhat
familiar with all the above features.

Automatic Repeat/reQuest (ARQ)

• Motivation: congestion/flow control
intertwined with reliable transport

• Basis for most reliable transport schemes

• Relies on acknowledgments (ACK) and
timeouts

• Source sends packet

• Receiver ACKs each packetReceiver ACKs each packet

• If data or ACK lost, timeout triggers and
source re-transmits

• Simplest version: Stop-and-Wait

10/15/2008

3

What if ACK is Dropped?

• Receiver will receive duplicate
packets, but unaware of this
problem.

• Use sequence numbers.

H bit i• How many bits in sequence
numbers? (Size of sequence number
space?)

Alternating Bit Protocol

A B
msg, #0 • 1-bit sequence number.

msg, #1

ack, #0

ack, #1

q
Stop-and-wait protocol.

• Why is this inefficient?

• Consider 1Mb/s link,
100ms path delay, 1000

msg, #0

ack, #0

byte packets

• Send rate is only 40kb/s
<< 1Mb/s!

10/15/2008

4

Sliding Window
• Pipelining: transmit next packet

before current one ACK'd

• Window limits the amount of
outstanding data

• How large should this window be?
– Another question: How many bits in

sequence numbers?sequence numbers?

• Window size = Twice bandwidth-
delay product
– Keep the “pipe” full

Window Based
Congestion Control

Window (Transmitted, but not ack’ed)Ack’ed

2 3 4 5 6 7 8 9 10 11 131 12

Ack 5

Not transmitted

2 3 4 5 6 7 8 9 10 11 131 12

Window

10/15/2008

5

Ideal Window Size
• Ideal window size = Twice (delay * bandwidth)

product of the network.
View the network as a “pipe” with two parameters• View the network as a “pipe” with two parameters
– End to end delay for each bit (latency)
– Bandwidth (rate at which data can be pumped in)

• How much data can be pumped into the pipe
while the first bit is still in flight?
– = delay*bandwidth
– This is the max amount that can be in flight.g

delay

Window Based Congestion
Control

• Window bounds the amount of data
that can be in flight.

• Throughput <= W / RTT
– Where, W = window size and RTT = round-

trip time.

Sends no more than W before the first ack– Sends no more than W before the first ack
comes back, which will take RTT time.

10/15/2008

6

Ideal Window Size

• What if window size > 2 * delay *
bandwidth?
– More data in flight than network can support.
– Increased queuing at routers. Increased RTT should

reduce amount of data in flight.
– Will eventually lead to packet drops. Downsize

window.

• What if window size < 2 * delay*bandwidth
– Network can support more data in flight.
– Inefficient (wasted bandwidth).
– Step up window size as long as one window worth

of data can be acknowledged without problem.

TCP Send & Receive Buffers,
Receive Window

socket
door

socket
door

application
writes data

application
reads data

door
TCP

send buffer
TCP

receive buffer

door

segment

Spare room
TCP data
in buffer

To applicationFrom IP

Receive window

• Note that each side maintains independent send
and receive buffers.

in buffer

Receive buffer

10/15/2008

7

TCP Header Format

source port # dest port #

32 bits

sequence number

URG: urgent data
(generally not used)

ACK ACK #

counting
by bytes
of dataq m

acknowledgement number
rcvr window size
ptr urgent datachecksum

FSRPAUhead
len

not
used

Options (variable length)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

d)

bytes
rcvr willing
to accept

of data
(not segments!)

application
data

(variable length)

commands)

Internet
checksum

TCP Sequence Numbers and
Acknowledgments

• TCP uses byte sequence numbers
– Number is for the first byte in the TCP segment.

– We may use packet sequence no.s to simplify
examples.

• Acknowledgment is cumulative
– ACK seq no. n means all bytes up to and including

byte n-1 have been received; and receiver isbyte n-1 have been received; and receiver is
expecting the next segment with seq no. n.

– We may use ACK i to mean than packet i has been
received to simplify examples.

10/15/2008

8

TCP Acknowledgments

• Delayed acknowledgment
Typically only alternate segments are– Typically only alternate segments are
acknowledged.

• Exceptions:
– ACK Timer expiry (typically 200ms).

– Receipt of out-of-order segments.

• Duplicate acknowledgments for these• Duplicate acknowledgments for these
exceptions.
– Note ACK is always cumulative.

TCP Sender Side

• Sender sets up a retransmission timer for
each segment transmittedeach segment transmitted.
– Timer is based on round-trip time estimate.

Dynamically calculated.

• If no ACK before timer expiry, sender
retransmits segment.

• Sender also retransmits if it receives 3• Sender also retransmits, if it receives 3
consecutive dupacks (fast retransmit)

10/15/2008

9

Calculation of the Retransmission
Timeout (RTO)

• RTO = estimated RTT + 4 * estimated deviation.
Deviation = average of |sample mean|– Deviation = average of |sample – mean|

– Note, std. deviation is sq root of average of (sample –
mean)^2.

– Deviation is easier to calculate than std. deviation.

• Estimated RTT = weighted average of sample RTTs
– Estimated RTT = (1-x) * estimated RTT + x * sample RTT.
– Similarly, estimated deviation = (1-x) estimated destination + x

* |sample RTT estimated RTT|* |sample RTT – estimated RTT|

• RTO is measured in discrete, large grain clock
ticks (typically, 500ms, but tends to be finer in
some recent stacks).

• RTO is doubled after timeout (exponential backoff).

Fast Retransmit

• Timeouts may take too long. How to
t t i i i kl ?generate retransmissions quickly?

• Dupcaks indicate missed reception of a
segment. Could be packet loss or packet
delay.

• TCP sender retransmits after 3 dupacks.

• Note may not indicate packet loss. Makes
sense only when the lower layer delivers
packets “almost ordered.”

10/15/2008

10

Window Based Flow and
Congestion Control

• Sliding window protocol. Window
determines amount of unacknowledged
data.
– Size controlled dynamically.

• Window is minimum of congestion
window and receiver window (advertised
by receiver on Acks).by receiver on Acks).
– Receiver window – how much more receiver can

take.
– Congestion window – how much more network

can take.

TCP Slow Start

• Initially, congestion window
cwnd = 1 (in MSS unit).

Host A Host B
• cwnd = cwnd + 1 after each

ack.

• Until, cwnd > slow start
threshold (ssthresh) or packet
loss.

• Exponential increase in cwnd

Host A

RT
T

Host B

per RTT (not so slow!)
– Factor of 2 if every segment is

ack’ed.

– Factor of 1.5 if alternate
segments are ack’ed. time

10/15/2008

11

TCP Congestion Avoidance

• Slow start is over when cwnd > ssthresh.
• cwnd = cwnd + 1/cwnd after each ack.

– That is, after a whole window worth of segments are
acked cwnd is incremented by 1.

– Linear increase per RTT -- by 1 if every segment is
acked, by ½ if alternate segments are acked.

• After timeout, ssthresh = half of window size
before packet loss.
– More precisely, ssthresh = min(rcvwnd,cwnd)/2. Min.

must be 2.

• Initiate slow start with cwnd = 1.
• Note slow start will continue until the half-way

point where congestion occurred last time.

Congestion
avoidance
phase After timeout

Slow start
phasephase

10/15/2008

12

Various Flavors of TCP

• TCP has a long history of refinement.

• TCP Tahoe is original TCP.g
– Does slow start and congestion avoidance.

– Sender only retransmits after timeout.

• TCP Reno adds fast retransmit and fast
recovery.
– Fast retransmit = Also retransmit after three

consecutive dupacks regardless of timer.

– Fast recovery = No slow start after fast retransmit.

Congestion Control in TCP Reno

• Fast Retransmit
– Several consecutive dupacks may indicate a “low

level” of congestion Some segments are gettinglevel of congestion. Some segments are getting
through, but some are missing.

– Should retransmit the missing segment, but no
need to scale back cwnd too much.

• Fast Recovery
– Follows after fast retransmit.

ssthresh is set as before– ssthresh is set as before.
– cwnd = ssthresh + #dupacks.
– Enter congestion avoidance phase directly.
– Note cwnd size is cut in half.

10/15/2008

13

AIMD (Additive Increase,
Multiplicative Decrease)

TCP connection 1

• TCP Reno – AIMD style control of congestion window.

bottleneck
router

capacity R

TCP
connection 2

• AIMD can be shown to converge to a “fair” state.
• “Fairness” goal: If N TCP sessions share a bottleneck

router, each should get 1/N of the router capacity
– assuming that each session has at least that much demand.

Back to TCP: AIMD Ensures “fairness”

Two competing sessions:
• Additive increase gives slope of 1, as throughout increases

• multiplicative decrease decreases throughput proportionally

R Equal bandwidth share (45 degree slope)

l ss: d cr s ind b f ct r f 2
congestion avoidance: additive increase
loss: decrease window by factor of 2

RConnection 1 throughput

congestion avoidance: additive increase
loss: decrease window by factor of 2

Combined throughput = R

10/15/2008

14

Some Analysis
• TCP throughput <= W / RTT. Actually, on average

0.75W/RTT.
• Assume packet loss probability is pAssume, packet loss probability is p
• For each transmitted segment

– Segment delivered with prob. (1-p), window increases by 1 / W.
– Segment lost with prob. p, window decreases by ½ W.

• At steady state, (1-p)*(1/W) = p* ½ *W
• For small p, upper bound of throughput is inversely

proportional to √p and RTTp p p
• Weakness of TCP: Throughput very sensitive to

delay and loss
– Satellite link has long delay
– Wireless links may have intermittent losses, unrelated to

congestion

Approaches for
Congestion Control

• TCP’s approach is implicit.
Probe a “black box” (the network)– Probe a “black box” (the network).

– Infer congestion from end system observed loss or
delay.

• Explicit congestion control
– Use “feedback” from the network elements.

– Tell sender the max sending rate to avoidTell sender the max. sending rate to avoid
congestion.

– Need “intelligent” network elements (e.g., routers).

10/15/2008

15

Heuristics for Congestion
Avoidance

• Still implicit, but does not wait for packet
loss. Use cwnd and RTT stats to inferloss. Use cwnd and RTT stats to infer
congestion.

• Example: TCP Vegas
– Expected throughput = Wnow / RTTmin
– Actual throughput = Wnow / RTTnow
– Expected – Actual > indicates congestion. Backoff.
– Expected – Actual < indicates possible additional

capacity. Probe.
– Condition: Also, if Expected < Actual, refine

RTTmin estimate.

Explicit Congestion Control: RED

• Random early detection (RED) technique built
into the router.

• Idea: Drop packets randomly with small
probability if router queue is close to full.

• Advantage: Helps source to fold back congestion
window earlier. Less packet losses than drop-tail
queues.

• Implementationp e e tat o
– Maintain a weighted running average of queue length

(avg_len).

– Drop an arriving packet with prob. p depending on the
relationship of avg_len with two preset thresholds.

10/15/2008

16

RED Details
Drop Prob.

1.0

MaxPMaxP

MinThreshold MaxThreshold

0.0
avg_len

Explicit Congestion Notification
(ECN)

• Idea: Don’t drop packets. Notify sender directly about
incipient congestion.
– Similar idea used in non-IP networks. Examples: DECbit scheme in

DNA, Resource management (RM) cells in ATM.

• Use ECN field in IP header. Router marks the ECN field in
packets when average queue size is too high.
– Marking only a fraction of packets using a probabilistic mechanism

like RED is sufficient.

• Receiver echoes back the ECN marks on Ack packets.

S t b k b th th h d d b h lf (?)• Source cuts back both ssthresh and cwnd by half (?) on
receiving ECN marked Ack.
– Source enters congestion avoidance.

– Source does not respond to ECN until all outstanding packets are
ack’ed.

10/15/2008

17

Queuing in a
Router or Switch

Arrivals Departures
Buffer Server

Queueing delay
(waiting time)

Service time
(transmit time on link)
Service rate

p
to outgoing
linkArrival

rate

• Assume, arrival rate () < service rate ().
– Needed for stability.

• Link utilization () =
– Mean service time = .
– In unit time, packets are transmitted, each taking time on

average.

Multiplexing and Scheduling
Buffer Server

• A queue can multiplex many “flows” or
“connections ”

Queueing delay
(waiting time)

Service time
(transmit time on link)

Service rates i

Arrival
rates i

connections.
• How the server should “schedule” packets from

different flows?
– Scheduling = mechanism to choose the next packet for

transmission. Specifies how the resource (link) should be
shared.

– First-In-First-Out ??

10/15/2008

18

Best Effort and
Guaranteed Service

• Best effort service = No guarantees. Used
b d ti li tiby adaptive applications.
– Example: email, file transfer.

• Guaranteed service = specific service
guarantees. Needed
– For example, bandwidth, delay, delay jitter, or drop

or a combination.

• Multimedia applications typically will not
perform meaningfully if no guarantee
– Example: Interactive voice needs about 64 kbps

BW and 150 ms delay bound.

