Transport Layer (Layer 4)

Sits between the application and network layers.

Network layer (e.g., IP) provides basic addressing

and routing service.

— Best effort.

— No guarantee of delivery, integrity of datagram, ordering or
duplicate removal.

Transport layer (e.g., UDP and TCP) provides

other basic services needed by application

— Delivery to process rather than host (application
multiplexing/demultiplexing) using port numbers.

— Error checking. Error detection fields (checksum) in headers.

— UDP does little more than this. TCP does a lot more.

Key Features of TCP

Connection oriented

— Establishes an end-to-end connection using a 3-way
handshaking protocol before transfer.

Point to Point — two end points

Reliable transfer

— Uses end-to-end acknowledgments and retransmissions
— Ordering. Duplicate removal.

Full duplex

— One connection establishment necessary for two-way data
transfer.

Stream oriented

— Continuous sequence of octets

— User has no control over packetization

— MSS: Maximum segment size. Implementation dependent.

10/15/2008

Key Features of TCP

Flow control

— Sender will not overwhelm receiver.
Congestion control

— Sender will not overwhelm network.
Reliable connection of startup.

— Data on old connection does not confuse new
connection.

Graceful connection shutdown
— Data sent before closing a connection is not lost.

Assumption: you should be somewhat
familiar with all the above features.

Automatic Repeat/reQuest (ARQ)

» Motivation: congestion/flow control
intertwined with reliable transport

» Basis for most reliable transport schemes

* Relies on acknowledgments (ACK) and
timeouts

» Source sends packet
* Receiver ACKs each packet

 If data or ACK lost, timeout triggers and
source re-transmits

» Simplest version: Stop-and-Wait

10/15/2008

What if ACK is Dropped?

* Receiver will receive duplicate
packets, but unaware of this
problem.

* Use sequence numbers.

 How many bits in sequence
numbers? (Size of sequence number
space?)

Alternating Bit Protocol

1-bit sequence number.
Stop-and-wait protocol.
Why is this inefficient?
Consider 1Mb/s link,

100ms path delay, 1000
byte packets

Send rate is only 40kb/s
<< 1Mb/s!

10/15/2008

Sliding Window
Pipelining: transmit next packet
before current one ACK'd

Window limits the amount of
outstanding data
How large should this window be?

— Another question: How many bits in
seguence numbers?

Window size = Twice bandwidth-
delay product
— Keep the “pipe” full

Window Based
Congestion Control

Ack'ed Window (Transmitted, but not ack’ed)

Not transmitted

Ack 5

<>

Window

10/15/2008

Ideal Window Size

* lIdeal window size = Twice (delay * bandwidth)
product of the network.
* View the network as a “pipe” with two parameters
— End to end delay for each bit (latency)
— Bandwidth (rate at which data can be pumped in)
 How much data can be pumped into the pipe
while the first bit is still in flight?
— =delay*bandwidth
— This is the max amount that can be in flight.

delay

Window Based Congestion
Control

« Window bounds the amount of data
that can be in flight.

 Throughput <= W /RTT
— Where, W = window size and RTT = round-
trip time.
— Sends no more than W before the first ack
comes back, which will take RTT time.

10/15/2008

Ideal Window Size

 What if window size > 2 * delay *
bandwidth?
— More data in flight than network can support.

— Increased queuing at routers. Increased RTT should
reduce amount of data in flight.

— Will eventually lead to packet drops. Downsize
window.

 What if window size < 2 * delay*bandwidth
— Network can support more data in flight.
— Inefficient (wasted bandwidth).

— Step up window size as long as one window worth
of data can be acknowledged without problem.

TCP Send & Receive Buffers,
Receive Window

socket

socket
door — -

door

Receive window

TCP data To application

in buffer

Receive buffer

* Note that each side maintains independent send
and receive buffers.

10/15/2008

TCP Header Format

32 bits

URG: urgent data
(generally not used)

ACK: ACK #
valid —{—acknowledgement number

PSH: push data now M Rgh: rcvr window size

(generally not used)—| }heel(um ptr urgent data

RST, SYN, FIN:—| Op‘r/ia(s (variable length)

connection estab
(setup, teardown

counting

by bytes

of data

(not segments!)

source port # | dest port #
sequence humber

bytes
rcvr willing
to accept

commands) application
data

Internet '

chneceklﬂsr:;q (variable length)

TCP Sequence Numbers and
Acknowledgments

» TCP uses byte sequence numbers
— Number is for the first byte in the TCP segment.
— We may use packet sequence no.s to simplify
examples.
* Acknowledgment is cumulative

— ACK seq no. n means all bytes up to and including
byte n-1 have been received; and receiver is
expecting the next segment with seq no. n.

— We may use ACK i to mean than packet i has been
received to simplify examples.

10/15/2008

TCP Acknowledgments

* Delayed acknowledgment

— Typically only alternate segments are
acknowledged.

* Exceptions:
— ACK Timer expiry (typically 200ms).
— Receipt of out-of-order segments.
* Duplicate acknowledgments for these
exceptions.
— Note ACK is always cumulative.

TCP Sender Side

» Sender sets up a retransmission timer for
each segment transmitted.
— Timer is based on round-trip time estimate.
Dynamically calculated.
* If no ACK before timer expiry, sender
retransmits segment.

* Sender also retransmits, if it receives 3
consecutive dupacks (fast retransmit)

10/15/2008

Calculation of the Retransmission
Timeout (RTO)

RTO = estimated RTT + 4 * estimated deviation.
— Deviation = average of [sample — mean|

— Note, std. deviation is sq root of average of (sample —
mean)"2.

— Deviation is easier to calculate than std. deviation.
« Estimated RTT = weighted average of sample RTTs
— Estimated RTT = (1-X) * estimated RTT + x * sample RTT.
— Similarly, estimated deviation = (1-x) estimated destination + x
* |sample RTT — estimated RTT|
* RTO is measured in discrete, large grain clock
ticks (typically, 500ms, but tends to be finer in
some recent stacks).

* RTO is doubled after timeout (exponential backoff).

Fast Retransmit

* Timeouts may take too long. How to
generate retransmissions quickly?

* Dupcaks indicate missed reception of a
segment. Could be packet loss or packet
delay.

 TCP sender retransmits after 3 dupacks.

* Note may not indicate packet loss. Makes
sense only when the lower layer delivers
packets “almost ordered.”

10/15/2008

Window Based Flow and
Congestion Control

» Sliding window protocol. Window
determines amount of unacknowledged
data.

— Size controlled dynamically.

* Window is minimum of congestion
window and receiver window (advertised
by receiver on Acks).

— Receiver window — how much more receiver can
take.

— Congestion window — how much more network
can take.

TCP Slow Start

Initially, congestion window
cwnd = 1 (in MSS unit).

H
cwnd = cwnd + 1 after each @ osrA Host B@

ack. [—esegment
Until, cwnd > slow start
threshold (ssthresh) or packet W

loss

“—RTT—>

Exponential increase in cwnd
per RTT (not so slow!)

— Factor of 2 if every segment is
ack’ed.

— Factor of 1.5 if alternate
segments are ack’ed.

four se ments

time

10/15/2008

10

TCP Congestion Avoidance

Slow start is over when cwnd > ssthresh.

cwnd = cwnd + 1/cwnd after each ack.

— That is, after a whole window worth of segments are
acked cwnd is incremented by 1.

— Linear increase per RTT -- by 1 if every segment is
acked, by ¥ if alternate segments are acked.

After timeout, ssthresh = half of window size
before packet loss.

— More precisely, ssthresh = min(rcvwnd,cwnd)/2. Min.

must be 2.
Initiate slow start with cwnd = 1.

Note slow start will continue until the half-way
point where congestion occurred last time.

Congestion window (in segments)

13— Congestion

12— avoidance

11 phase \ —After timeout
10+

9 -

g threshaold

; : threshold
st N

4 Slow start

3 phase

2

1

I I I Sy I
012 34 56 7 8921011121314

Mumber of transmissions

10/15/2008

11

Various Flavors of TCP

* TCP has a long history of refinement.

 TCP Tahoe is original TCP.
— Does slow start and congestion avoidance.
— Sender only retransmits after timeout.

 TCP Reno adds fast retransmit and fast
recovery.

— Fast retransmit = Also retransmit after three
consecutive dupacks regardless of timer.

— Fast recovery = No slow start after fast retransmit.

Congestion Control in TCP Reno

 Fast Retransmit

— Several consecutive dupacks may indicate a “low
level” of congestion. Some segments are getting
through, but some are missing.

— Should retransmit the missing segment, but no
need to scale back cwnd too much.
* Fast Recovery
— Follows after fast retransmit.
— ssthresh is set as before.
— cwnd = ssthresh + #dupacks.
— Enter congestion avoidance phase directly.
— Note cwnd size is cut in half.

10/15/2008

12

AIMD (Additive Increase,
Multiplicative Decrease)

TCP connection 1

g

TCP@ bo‘r‘rlineck
connection 2 rou 'er'
capacity R

* TCP Reno — AIMD style control of congestion window.

* AIMD can be shown to converge to a “fair” state.

* “Fairness” goal: If N TCP sessions share a bottleneck
router, each should get 1/N of the router capacity
— assuming that each session has at least that much demand.

Back to TCP: AIMD Ensures “fairness”

Two competing sessions:
» Additive increase gives slope of 1, as throughout increases
* multiplicative decrease decreases throughput proportionally

Equal bandwidth share (45 degree slope)

loss: decrease window by factor of 2
congestion avoidance: additive increase

loss: decrease window by factor of 2
congestion avoidance: additive increase

+—— Combined throughput = R

Connection 1 throughput R

Connection 2 throughput

10/15/2008

13

Some Analysis

TCP throughput <= W/ RTT. Actually, on average
0.75W/RTT.

Assume, packet loss probability is p
For each transmitted segment

— Segment delivered with prob. (1-p), window increases by 1/ W.

— Segment lost with prob. p, window decreases by ¥2 W.

At steady state, (1-p)*(1/W) = p* 2 *W

For small p, upper bound of throughput is inversely
proportional to Vp and RTT
Weakness of TCP: Throughput very sensitive to
delay and loss

— Satellite link has long delay

— Wireless links may have intermittent losses, unrelated to
congestion

Approaches for
Congestion Control

« TCP’s approach is implicit.
— Probe a “black box” (the network).
— Infer congestion from end system observed loss or
delay.
» Explicit congestion control
— Use “feedback” from the network elements.

— Tell sender the max. sending rate to avoid
congestion.

— Need “intelligent” network elements (e.g., routers).

10/15/2008

14

Heuristics for Congestion
Avoidance

 Still implicit, but does not wait for packet
loss. Use cwnd and RTT stats to infer
congestion.

 Example: TCP Vegas
— Expected throughput = Wnow / RTTmin
— Actual throughput = Wnow / RTTnow

— Expected — Actual > 3 indicates congestion. Backoff.

— Expected — Actual < a indicates possible additional
capacity. Probe.

— Condition: a. < . Also, if Expected < Actual, refine
RTTmin estimate.

Explicit Congestion Control: RED

 Random early detection (RED) technique built
into the router.

* |Idea: Drop packets randomly with small
probability if router queue is close to full.

» Advantage: Helps source to fold back congestion
window earlier. Less packet losses than drop-tail
queues.

* Implementation
— Maintain a weighted running average of queue length
(avg_len).
— Drop an arriving packet with prob. p depending on the
relationship of avg_len with two preset thresholds.

10/15/2008

15

RED Details

Drop Prob.

10 +

MaxP 1

0.0 ; }
MinThreshold MaxThreshold

avg_len

Explicit Congestion Notification
(ECN)

Idea: Don’t drop packets. Notify sender directly about
incipient congestion.

— Similar idea used in non-IP networks. Examples: DEChit scheme in
DNA, Resource management (RM) cells in ATM.

Use ECN field in IP header. Router marks the ECN field in
packets when average queue size is too high.

— Marking only a fraction of packets using a probabilistic mechanism
like RED is sufficient.

Receiver echoes back the ECN marks on Ack packets.
Source cuts back both ssthresh and cwnd by half (?) on
receiving ECN marked Ack.

— Source enters congestion avoidance.

— Source does not respond to ECN until all outstanding packets are
ack’ed.

10/15/2008

16

Queuing in a
Router or Switch

Buffer Server

Arrivals Departures
SN -_O_ to outgoing
Arrival link

rate A

Queueing delay Service time
(waiting time) (transmit time on link)
Service rate p

« Assume, arrival rate (1) < service rate (u).
— Needed for stability.

e Link utilization (p) =A/p
— Mean service time = 1/p.

— Inunit time, A packets are transmitted, each taking 1/u time on
average.

Multiplexing and Scheduling

\ Buffer Server
- =

Arrival Queueing delay Service time
rates A (waiting time) (transmit time on link)

Service rates ;

* A queue can multiplex many “flows” or
“connections.”

* How the server should “schedule” packets from
different flows?

— Scheduling = mechanism to choose the next packet for
transmission. Specifies how the resource (link) should be
shared.

— First-In-First-Out ??

10/15/2008

17

Best Effort and
Guaranteed Service

» Best effort service = No guarantees. Used
by adaptive applications.
— Example: email, file transfer.

* Guaranteed service = specific service
guarantees. Needed
— For example, bandwidth, delay, delay jitter, or drop

or a combination.

* Multimedia applications typically will not

perform meaningfully if no guarantee

— Example: Interactive voice needs about 64 kbps
BW and 150 ms delay bound.

10/15/2008

18

