Lecture 2: Asymptotic Notation

Steven Skiena

Department of Computer Science State University of New York Stony Brook, NY 11794-4400
http://www.cs.stonybrook.edu/~skiena

Problem of the Day

The knapsack problem is as follows: given a set of integers $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$, and a given target number T, find a subset of S which adds up exactly to T. For example, within $S=\{1,2,5,9,10\}$ there is a subset which adds up to $T=22$ but not $T=23$.
Find counterexamples to each of the following algorithms for the knapsack problem. That is, give an S and T such that the subset is selected using the algorithm does not leave the knapsack completely full, even though such a solution exists.

Solution

- Put the elements of S in the knapsack in left to right order if they fit, i.e. the first-fit algorithm?
- Put the elements of S in the knapsack from smallest to largest, i.e. the best-fit algorithm?
- Put the elements of S in the knapsack from largest to smallest?

The RAM Model of Computation

Algorithms are an important and durable part of computer science because they can be studied in a machine/language independent way.
This is because we use the RAM model of computation for all our analysis.

- Each "simple" operation (,,$+-=$, if, call) takes 1 step.
- Loops and subroutine calls are not simple operations. They depend upon the size of the data and the contents of a subroutine. "Sort" is not a single step operation.
- Each memory access takes exactly 1 step.

We measure the run time of an algorithm by counting the number of steps.
This model is useful and accurate in the same sense as the flat-earth model (which is useful)!

Worst-Case Complexity

The worst case complexity of an algorithm is the function defined by the maximum number of steps taken on any instance of size n.

Best-Case and Average-Case Complexity

The best case complexity of an algorithm is the function defined by the minimum number of steps taken on any instance of size n.
The average-case complexity of the algorithm is the function defined by an average number of steps taken on any instance of size n.
Each of these complexities defines a numerical function: time vs. size!

Our Position on Complexity Analysis

What would the reasoning be on buying a lottery ticket on the basis of best, worst, and average-case complexity?
Generally speaking, we will use the worst-case complexity as our preferred measure of algorithm efficiency. Worst-case analysis is generally easy to do, and "usually" reflects the average case. Assume I am asking for worstcase analysis unless otherwise specified!
Randomized algorithms are of growing importance, and require an average-case type analysis to show off their merits.

Exact Analysis is Hard!

Best, worst, and average case are difficult to deal with because the precise function details are very complicated:

It easier to talk about upper and lower bounds of the function. Asymptotic notation (O, Θ, Ω) are as well as we can practically deal with complexity functions.

Names of Bounding Functions

- $g(n)=O(f(n))$ means $C \times f(n)$ is an upper bound on $g(n)$.
- $g(n)=\Omega(f(n))$ means $C \times f(n)$ is a lower bound on $g(n)$.
- $g(n)=\Theta(f(n))$ means $C_{1} \times f(n)$ is an upper bound on $g(n)$ and $C_{2} \times f(n)$ is a lower bound on $g(n)$.
C, C_{1}, and C_{2} are all constants independent of n.

O, Ω, and Θ

The definitions imply a constant n_{0} beyond which they are satisfied. We do not care about small values of n.

Formal Definitions

- $f(n)=O(g(n))$ if there are positive constants n_{0} and c such that to the right of n_{0}, the value of $f(n)$ always lies on or below $c \cdot g(n)$.
- $f(n)=\Omega(g(n))$ if there are positive constants n_{0} and c such that to the right of n_{0}, the value of $f(n)$ always lies on or above $c \cdot g(n)$.
- $f(n)=\Theta(g(n))$ if there exist positive constants n_{0}, c_{1}, and c_{2} such that to the right of n_{0}, the value of $f(n)$ always lies between $c_{1} \cdot g(n)$ and $c_{2} \cdot g(n)$ inclusive.

Big Oh Examples

$$
\begin{aligned}
& 3 n^{2}-100 n+6=O\left(n^{2}\right) \text { because } 3 n^{2}>3 n^{2}-100 n+6 \\
& 3 n^{2}-100 n+6=O\left(n^{3}\right) \text { because } .01 n^{3}>3 n^{2}-100 n+6 \\
& 3 n^{2}-100 n+6 \neq O(n) \text { because } c \cdot n<3 n^{2} \text { when } n>c
\end{aligned}
$$

Think of the equality as meaning in the set of functions.

Big Omega Examples

$$
\begin{aligned}
& 3 n^{2}-100 n+6=\Omega\left(n^{2}\right) \text { because } 2.99 n^{2}<3 n^{2}-100 n+6 \\
& 3 n^{2}-100 n+6 \neq \Omega\left(n^{3}\right) \text { because } 3 n^{2}-100 n+6<n^{3} \\
& 3 n^{2}-100 n+6=\Omega(n) \text { because } 10^{10^{10}} n<3 n^{2}-100 n+6
\end{aligned}
$$

Big Theta Examples

$$
\begin{aligned}
& 3 n^{2}-100 n+6=\Theta\left(n^{2}\right) \text { because } O \text { and } \Omega \\
& 3 n^{2}-100 n+6 \neq \Theta\left(n^{3}\right) \text { because } O \text { only } \\
& 3 n^{2}-100 n+6 \neq \Theta(n) \text { because } \Omega \text { only }
\end{aligned}
$$

Big Oh Addition/Subtraction

Suppose $f(n)=O\left(n^{2}\right)$ and $g(n)=O\left(n^{2}\right)$.

- What do we know about $g^{\prime}(n)=f(n)+g(n)$? Adding the bounding constants shows $g^{\prime}(n)=O\left(n^{2}\right)$.
- What do we know about $g^{\prime \prime}(n)=f(n)-|g(n)|$? Since the bounding constants don't necessary cancel, $g^{\prime \prime}(n)=$ $O\left(n^{2}\right)$

We know nothing about the lower bounds on g^{\prime} and $g^{\prime \prime}$ because we know nothing about lower bounds on f and g.

