Lecture 2: Asymptotic Notation

Steven Skiena

Department of Computer Science State University of New York Stony Brook, NY 11794–4400

http://www.cs.stonybrook.edu/~skiena

Problem of the Day

The knapsack problem is as follows: given a set of integers $S = \{s_1, s_2, \ldots, s_n\}$, and a given target number T, find a subset of S which adds up exactly to T. For example, within $S = \{1, 2, 5, 9, 10\}$ there is a subset which adds up to T = 22 but not T = 23.

Find counterexamples to each of the following algorithms for the knapsack problem. That is, give an S and T such that the subset is selected using the algorithm does not leave the knapsack completely full, even though such a solution exists.

Solution

- Put the elements of S in the knapsack in left to right order if they fit, i.e. the first-fit algorithm?
- Put the elements of S in the knapsack from smallest to largest, i.e. the best-fit algorithm?
- Put the elements of S in the knapsack from largest to smallest?

The RAM Model of Computation

Algorithms are an important and durable part of computer science because they can be studied in a machine/language independent way.

This is because we use the RAM model of computation for all our analysis.

- Each "simple" operation (+, -, =, if, call) takes 1 step.
- Loops and subroutine calls are *not* simple operations. They depend upon the size of the data and the contents of a subroutine. "Sort" is not a single step operation.

• Each memory access takes exactly 1 step.

We measure the run time of an algorithm by counting the number of steps.

This model is useful and accurate in the same sense as the flat-earth model (which *is* useful)!

Worst-Case Complexity

The *worst case complexity* of an algorithm is the function defined by the maximum number of steps taken on any instance of size n.

Problem Size

Best-Case and Average-Case Complexity

The *best case complexity* of an algorithm is the function defined by the minimum number of steps taken on any instance of size n.

The *average-case complexity* of the algorithm is the function defined by an average number of steps taken on any instance of size n.

Each of these complexities defines a numerical function: time vs. size!

Our Position on Complexity Analysis

What would the reasoning be on buying a lottery ticket on the basis of best, worst, and average-case complexity? Generally speaking, we will use the worst-case complexity as our preferred measure of algorithm efficiency. Worst-case analysis is generally easy to do, and "usually" reflects the average case. Assume I am asking for worstcase analysis unless otherwise specified! Randomized algorithms are of growing importance, and require an average-case type analysis to show off their merits.

Exact Analysis is Hard!

Best, worst, and average case are difficult to deal with because the *precise* function details are very complicated:

It easier to talk about *upper and lower bounds* of the function. Asymptotic notation (O, Θ, Ω) are as well as we can practically deal with complexity functions.

Names of Bounding Functions

- g(n) = O(f(n)) means $C \times f(n)$ is an upper bound on g(n).
- $g(n) = \Omega(f(n))$ means $C \times f(n)$ is a *lower bound* on g(n).
- $g(n) = \Theta(f(n))$ means $C_1 \times f(n)$ is an upper bound on g(n) and $C_2 \times f(n)$ is a lower bound on g(n).
- C, C_1 , and C_2 are all constants independent of n.

$O, \Omega, \text{and } \Theta$

The definitions imply a constant n_0 beyond which they are satisfied. We do not care about small values of n.

Formal Definitions

- f(n) = O(g(n)) if there are positive constants n_0 and c such that to the right of n_0 , the value of f(n) always lies on or below $c \cdot g(n)$.
- $f(n) = \Omega(g(n))$ if there are positive constants n_0 and c such that to the right of n_0 , the value of f(n) always lies on or above $c \cdot g(n)$.
- f(n) = Θ(g(n)) if there exist positive constants n₀, c₁, and c₂ such that to the right of n₀, the value of f(n) always lies between c₁ ⋅ g(n) and c₂ ⋅ g(n) inclusive.

Big Oh Examples

$$3n^{2} - 100n + 6 = O(n^{2}) because \ 3n^{2} > 3n^{2} - 100n + 6$$

$$3n^{2} - 100n + 6 = O(n^{3}) because \ .01n^{3} > 3n^{2} - 100n + 6$$

$$3n^{2} - 100n + 6 \neq O(n) because \ c \cdot n < 3n^{2} \ when \ n > c$$

Think of the equality as meaning in the set of functions.

Big Omega Examples

 $3n^{2} - 100n + 6 = \Omega(n^{2}) because 2.99n^{2} < 3n^{2} - 100n + 6$ $3n^{2} - 100n + 6 \neq \Omega(n^{3}) because 3n^{2} - 100n + 6 < n^{3}$ $3n^{2} - 100n + 6 = \Omega(n) because 10^{10^{10}}n < 3n^{2} - 100n + 6$

Big Theta Examples

$$3n^{2} - 100n + 6 = \Theta(n^{2}) \text{ because } O \text{ and } \Omega$$

$$3n^{2} - 100n + 6 \neq \Theta(n^{3}) \text{ because } O \text{ only}$$

$$3n^{2} - 100n + 6 \neq \Theta(n) \text{ because } \Omega \text{ only}$$

Big Oh Addition/Subtraction

Suppose $f(n) = O(n^2)$ and $g(n) = O(n^2)$.

- What do we know about g'(n) = f(n) + g(n)? Adding the bounding constants shows $g'(n) = O(n^2)$.
- What do we know about g''(n) = f(n) |g(n)|? Since the bounding constants don't necessary cancel, $g''(n) = O(n^2)$

We know nothing about the lower bounds on g' and g'' because we know nothing about lower bounds on f and g.