
Lecture 2:
Asymptotic Notation

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.stonybrook.edu/˜skiena

http://www.cs.stonybrook.edu/~skiena

Problem of the Day

The knapsack problem is as follows: given a set of integers
S = {s1, s2, . . . , sn}, and a given target number T , find a
subset of S which adds up exactly to T . For example, within
S = {1, 2, 5, 9, 10} there is a subset which adds up to T = 22
but not T = 23.
Find counterexamples to each of the following algorithms for
the knapsack problem. That is, give an S and T such that
the subset is selected using the algorithm does not leave the
knapsack completely full, even though such a solution exists.

Solution

• Put the elements of S in the knapsack in left to right order
if they fit, i.e. the first-fit algorithm?

• Put the elements of S in the knapsack from smallest to
largest, i.e. the best-fit algorithm?

• Put the elements of S in the knapsack from largest to
smallest?

The RAM Model of Computation

Algorithms are an important and durable part of computer
science because they can be studied in a machine/language
independent way.
This is because we use the RAM model of computation for
all our analysis.

• Each “simple” operation (+, -, =, if, call) takes 1 step.

• Loops and subroutine calls are not simple operations.
They depend upon the size of the data and the contents
of a subroutine. “Sort” is not a single step operation.

• Each memory access takes exactly 1 step.

We measure the run time of an algorithm by counting the
number of steps.
This model is useful and accurate in the same sense as the
flat-earth model (which is useful)!

Worst-Case Complexity

The worst case complexity of an algorithm is the function
defined by the maximum number of steps taken on any
instance of size n.

1 2 3 4
N

.

.

Number of

Steps

Problem Size

Best Case

Average Case

Worst Case

Best-Case and Average-Case Complexity

The best case complexity of an algorithm is the function
defined by the minimum number of steps taken on any
instance of size n.
The average-case complexity of the algorithm is the function
defined by an average number of steps taken on any instance
of size n.
Each of these complexities defines a numerical function: time
vs. size!

Our Position on Complexity Analysis

What would the reasoning be on buying a lottery ticket on the
basis of best, worst, and average-case complexity?
Generally speaking, we will use the worst-case complexity as
our preferred measure of algorithm efficiency.
Worst-case analysis is generally easy to do, and “usually”
reflects the average case. Assume I am asking for worst-
case analysis unless otherwise specified!
Randomized algorithms are of growing importance, and
require an average-case type analysis to show off their merits.

Exact Analysis is Hard!

Best, worst, and average case are difficult to deal with
because the precise function details are very complicated:

1 2 3 4

It easier to talk about upper and lower bounds of the function.
Asymptotic notation (O,Θ,Ω) are as well as we can
practically deal with complexity functions.

Names of Bounding Functions

• g(n) = O(f (n)) means C × f (n) is an upper bound on
g(n).

• g(n) = Ω(f (n)) means C×f (n) is a lower bound on g(n).

• g(n) = Θ(f (n)) means C1 × f (n) is an upper bound on
g(n) and C2 × f (n) is a lower bound on g(n).

C, C1, and C2 are all constants independent of n.

O, Ω, and Θ

(c)

f(n)

c2*g(n)

n

n0

c1*g(n)
c*g(n)

f(n)

n
n0

f(n)

c*g(n)

n
n0

(b)(a)

The definitions imply a constant n0 beyond which they are
satisfied. We do not care about small values of n.

Formal Definitions

• f (n) = O(g(n)) if there are positive constants n0 and c
such that to the right of n0, the value of f (n) always lies
on or below c · g(n).

• f (n) = Ω(g(n)) if there are positive constants n0 and c
such that to the right of n0, the value of f (n) always lies
on or above c · g(n).

• f (n) = Θ(g(n)) if there exist positive constants n0, c1, and
c2 such that to the right of n0, the value of f (n) always lies
between c1 · g(n) and c2 · g(n) inclusive.

Big Oh Examples

3n2 − 100n + 6 = O(n2) because 3n2 > 3n2 − 100n + 6

3n2 − 100n + 6 = O(n3) because .01n3 > 3n2 − 100n + 6

3n2 − 100n + 6 6= O(n) because c · n < 3n2 when n > c

Think of the equality as meaning in the set of functions.

Big Omega Examples

3n2 − 100n + 6 = Ω(n2) because 2.99n2 < 3n2 − 100n + 6

3n2 − 100n + 6 6= Ω(n3) because 3n2 − 100n + 6 < n3

3n2 − 100n + 6 = Ω(n) because 1010
10
n < 3n2 − 100n + 6

Big Theta Examples

3n2 − 100n + 6 = Θ(n2) because O and Ω

3n2 − 100n + 6 6= Θ(n3) because O only

3n2 − 100n + 6 6= Θ(n) because Ω only

Big Oh Addition/Subtraction

Suppose f (n) = O(n2) and g(n) = O(n2).

• What do we know about g′(n) = f (n)+g(n)? Adding the
bounding constants shows g′(n) = O(n2).

• What do we know about g′′(n) = f (n) − |g(n)|? Since
the bounding constants don’t necessary cancel, g′′(n) =
O(n2)

We know nothing about the lower bounds on g′ and g′′

because we know nothing about lower bounds on f and g.

