
Lecture 22:
The NP-Completeness Challenge

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.stonybrook.edu/˜skiena

http://www.cs.stonybrook.edu/~skiena

Problem of the Day

Show that the Hitting Set problem is NP-complete:
Input: A collection C of subsets of a set S, positive integer k.
Question: Does S contain a subset S ′ such that |S ′| ≤ k and
each subset in C contains at least one element from S ′?

Techniques for Proving NP -completeness

• Restriction – Show that a special case of your problem
is NP -complete. E.g. the problem of finding a path of
length k is really Hamiltonian Path.

• Local Replacement – Make local changes to the structure.
An example is the reduction SAT ∝ 3 − SAT . Another
is showing isomorphism is no easier for bipartite graphs:

For any graph, replacing an edge with makes it bipartite.

The Art of Proving Hardness

Proving that problems are hard is an skill. Once you get the
hang of it, it is surprisingly straightforward and pleasurable
to do.
The dirty little secret of NP-completeness proofs is that they
are usually easier to recreate than explain, in the same way
that it is usually easier to rewrite old code than the try to
understand it.
I offer the following advice to those needing to prove the
hardness of a given problem. . .

Make your source problem as simple (i.e.
restricted) as possible
Never use TSP as a source problem (Bandersnatch):

• Better is TSP on instances restricted to the triangle
inequality.

• Even better, use Hamiltonian cycle, where all the weights
are 1 or∞.

• Even better, use Hamiltonian path instead of cycle.

• Even better, use Hamiltonian path on directed, planar
graphs where each vertex has total degree 3.

All are equally hard, so the more you can restrict Bander-
snatch, the less work your reduction has to do.

Make your target problem as hard as possible

Don’t be afraid to add extra constraints or weights or
freedoms to the Bo-billy problem in order to make your
problem more general (at least temporarily).

Select the right source problem for the right
reason

Selecting the right source problem makes a big difference is
how difficult it is to prove a problem hard. This is the first
and easiest place to go wrong.
I usually consider four and only four problems as candidates
for my hard source problem. Limiting them to four means
that I know a lot about these problems:

• 3-Sat – that old reliable. . . When none of the three
problems below seem appropriate, I go back to the source.

• Integer partition – the one and only choice for problems
whose hardness seems to require using large numbers.

• Vertex cover – for any graph problems whose hardness
depends upon selection. Chromatic number, clique, and
independent set all involve trying to select the correct
subset of vertices or edges.

• Hamiltonian path – for any graph problems whose
hardness depends upon ordering, like when you are trying
to route or schedule something.

Amplify the penalties for making the undesired
transition

You are trying to translate one problem into another, while
making them stay the same as much as possible.
Be bold with your penalties, to punish anyone trying to
deviate from your proposed solution.
“If you pick this, then you have to pick up this huge set which
dooms you to lose.”
The sharper the consequences for doing what is undesired,
the easier it is to prove if and only if.

Think strategically at a high level, then build
gadgets to enforce tactics.

You should be asking these kinds of questions:

• How can I force that either A or B but not both are chosen?

• How can I force that A is taken before B?

• How can I clean up the things I did not select?

Alternate between looking for an algorithm or
a reduction if you get stuck

Sometimes the reason you cannot prove hardness is that there
is an efficient algorithm to solve your problem!
When you can’t prove hardness, it likely pays to change your
thinking at least for a little while to keep you honest.

Now watch me try it!

To demonstrate how one goes about proving a problem hard,
I accept the challenge of showing how a proof can be built on
the fly.
I need a volunteer to pick a random problem from the 400+
hard problems in the back of Garey and Johnson.
https://www.cs.stonybrook.edu/˜skiena/
373/hard.txt

https://www.cs.stonybrook.edu/~skiena/373/hard.txt
https://www.cs.stonybrook.edu/~skiena/373/hard.txt

The Problem

The Solution

Other NP -complete/hard Problems

• Bin Packing - how many bins of a given size do you need
to hold n items of variable size?

• Chromatic Number - how many colors do you need to
color a graph?

• N × N checkers - does black have a forced win from a
given position?

Open: Graph Isomorphism, Factoring Integers.

Polynomial or Exponential?

Just changing a problem a little can make the difference
between it being in P or NP -complete:

P NP -complete
Shortest Path Longest Path
Eulerian Circuit Hamiltonian Circuit
Edge Cover Vertex Cover

The first thing you should do when you suspect a problem
might be NP-complete is look in Garey and Johnson,
Computers and Intractability.

