
Lecture 7:
Heapsort / Priority Queues

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.stonybrook.edu/˜skiena

http://www.cs.stonybrook.edu/~skiena

Problem of the Day

Take as input a sequence of 2n real numbers. Design an
O(n log n) algorithm that partitions the numbers into n pairs,
with the property that the partition minimizes the maximum
sum of a pair.
For example, say we are given the numbers (1,3,5,9).
The possible partitions are ((1,3),(5,9)), ((1,5),(3,9)), and
((1,9),(3,5)). The pair sums for these partitions are (4,14),
(6,12), and (10,8). Thus the third partition has 10 as
its maximum sum, which is the minimum over the three
partitions.

Importance of Sorting

Why don’t CS profs ever stop talking about sorting?

• Computers spend a lot of time sorting, historically 25%
on mainframes.

• Sorting is the best studied problem in computer science,
with many different algorithms known.

• Most of the interesting ideas we will encounter in the
course can be taught in the context of sorting, such as
divide-and-conquer, randomized algorithms, and lower
bounds.

You should have seen most of the algorithms, so we will
concentrate on the analysis.

Efficiency of Sorting
Sorting is important because that once a set of items is sorted,
many other problems become easy.
Further, usingO(n log n) sorting algorithms leads naturally to
sub-quadratic algorithms for all these problems.

n n2/4 n lg n
10 25 33

100 2,500 664
1,000 250,000 9,965

10,000 25,000,000 132,877
100,000 2,500,000,000 1,660,960

1,000,000 250,000,000,000 13,815,551

Large-scale data processing is impossible with Ω(n2) sorting.

Application of Sorting: Searching

Binary search lets you test whether an item is in a dictionary
in O(lg n) time.
Search preprocessing is perhaps the single most important
application of sorting.

Application of Sorting: Closest pair

Given n numbers, find the pair which are closest to each other.
Once the numbers are sorted, the closest pair will be next to
each other in sorted order, so an O(n) linear scan completes
the job.

Application of Sorting: Element Uniqueness

Given a set of n items, are they all unique or are there any
duplicates?
Sort them and do a linear scan to check all adjacent pairs.
This is a special case of closest pair above.

Application of Sorting: Mode

Given a set of n items, which element occurs the largest
number of times? More generally, compute the frequency
distribution.
Sort them and do a linear scan to measure the length of all
adjacent runs.
The number of instances of k in a sorted array can be found in
O(log n) time by using binary search to look for the positions
of both k − ε and k + ε.

Application of Sorting: Median and Selection

What is the kth largest item in the set?
Once the keys are placed in sorted order in an array, the kth
largest can be found in constant time by simply looking in the
kth position of the array.
There is a linear time algorithm for this problem, but the idea
comes from partial sorting.

Application of Sorting: Convex hulls

Given n points in two dimensions, find the smallest area
polygon which contains them all.

The convex hull is like a rubber band stretched over the
points.
Convex hulls are the most important building block for more
sophisticated geometric algorithms.

Finding Convex Hulls

Once you have the points sorted by x-coordinate, they can be
inserted from left to right into the hull, since the rightmost
point is always on the boundary.

Sorting eliminates the need check whether points are inside
the current hull.
Adding a new point might cause others to be deleted.

Pragmatics of Sorting: Comparison Functions

Alphabetizing is the sorting of text strings.
Libraries have very complete and complicated rules con-
cerning the relative collating sequence of characters and
punctuation.

• Is Skiena the same key as skiena?

• Is Brown-Williams before or after Brown America before
or after Brown, John?

Explicitly controlling the order of keys is the job of the
comparison function we apply to each pair of elements,
including the question of increasing or decreasing order.

Pragmatics of Sorting: Equal Elements

Elements with equal keys will all bunch together in any total
order, but sometimes the relative order among these keys
matters.
Often there are secondary keys (like first names) to test after
the primary keys. This is a job for the comparison function.
Certain algorithms (like quicksort) require special care to run
efficiently with large numbers of equal elements.

Pragmatics of Sorting: Library Functions

Any reasonable programming language has a built-in sort
routine as a library function.
You are almost always better off using the system sort than
writing your own routine.
For example, the standard library for C contains the function
qsort for sorting:

void qsort(void *base, size t nel, size t width,
int (*compare) (const void *, const void *));

Selection Sort

Selection sort scans throught the entire array, repeatedly
finding the smallest remaining element.

For i = 1 to n
A: Find the smallest of the first n− i + 1 items.
B: Pull it out of the array and put it first.

Selection sort takes O(n(T (A) + T (B)) time.

The Data Structure Matters

Using arrays or unsorted linked lists as the data structure,
operation A takes O(n) time and operation B takes O(1), for
an O(n2) selection sort.
Using balanced search trees or heaps, both of these operations
can be done within O(lg n) time, for an O(n log n) selection
sort called heapsort.
Balancing the work between the operations achieves a better
tradeoff.
Key question: “Can we use a different data structure?”

Priority Queues

Priority queues are data structures which provide extra
flexibility over sorting.
This is important because jobs often enter a system at
arbitrary intervals. It is more cost-effective to insert a new
job into a priority queue than to re-sort everything on each
new arrival.

Priority Queue Operations
The basic priority queue supports three primary operations:

• Insert(Q,x): Given an item x with key k, insert it into the
priority queue Q.

• Find-Minimum(Q) or Find-Maximum(Q): Return a
pointer to the item whose key is smaller (larger) than
any other key in the priority queue Q.

• Delete-Minimum(Q) or Delete-Maximum(Q) – Remove
the item from the priority queueQwhose key is minimum
(maximum).

Each of these operations can be easily supported using heaps
or balanced binary trees in O(log n).

Applications of Priority Queues: Dating

What data structure should be used to suggest who to ask out
next for a date?
It needs to support retrieval by desirability, not name.
Desirability changes (up or down), so you can re-insert the
max with the new score after each date.
New people you meet get inserted with your observed
desirability level.
There is no reason to delete anyone until they rise to the top.

Applications of Priority Queues: Discrete Event
Simulations

In simulations of airports, parking lots, and jai-alai – priority
queues can be used to maintain who goes next.
The stack and queue orders are just special cases of orderings.
In real life, certain people cut in line, and this can be modeled
with a priority queue.

Heap Definition

A binary heap is defined to be a binary tree with a key in each
node such that:

1. All leaves are on, at most, two adjacent levels.

2. All leaves on the lowest level occur to the left, and all
levels except the lowest one are completely filled.

3. The key in root is ≤ all its children, and the left and right
subtrees are again binary heaps.

Conditions 1 and 2 specify shape of the tree, and condition 3
the labeling of the tree.

Binary Heaps
Heaps maintain a partial order on the set of elements which
is weaker than the sorted order (so it can be efficient to
maintain) yet stronger than random order (so the minimum
element can be quickly identified).

4

6

7

1

2

5

10

3

8

9

1941

2001

1918

1963

1804

1945

1865

1492

1783

1776

1783

2001 1941

1865

1918

1492

1804

1776

1945 1963

A heap-labeled tree of important years (l), with the corre-
sponding implicit heap representation (r)

Heapsort Animation

Watch as

• We build the heap by repeated insertion.

• Embed it in an array.

• Then repeatedly remove the maximum to sort:

https://upload.wikimedia.org/wikipedia/commons/4/4d/Heapsort-example.gif

The partial order defined by the heap structure is weaker than
sorting, which explains why it is easier to build: linear time
if you do it right.

https://upload.wikimedia.org/wikipedia/commons/4/4d/Heapsort-example.gif

Array-Based Heaps

The most natural representation of this binary tree would
involve storing each key in a node with pointers to its two
children.
However, we can store a tree as an array of keys, using
the position of the keys to implicitly satisfy the role of the
pointers.
The left child of k sits in position 2k and the right child in
2k + 1.
The parent of k is in position bn/2c.

Can we Implicitly Represent Any Binary Tree?

The implicit representation is only efficient if the tree is
sparse, meaning that the number of nodes n < 2h.
All missing internal nodes still take up space in our structure.
This is why we insist on heaps as being as balanced/full at
each level as possible.
The array-based representation is also not as flexible to
arbitrary modifications as a pointer-based tree.

Constructing Heaps

Heaps can be constructed incrementally, by inserting new
elements into the left-most open spot in the array.
If the new element is greater than its parent, swap their
positions and recur.
Since all but the last level is always filled, the height h of an
n element heap is bounded because:

h∑
i=1

2i = 2h+1 − 1 ≥ n

so h = blg nc.
Doing n such insertions really takes Θ(n log n), because the
last n/2 insertions require O(log n) time each.

Heap Insertion

pq insert(priority queue *q, item type x)
{

if (q->n >= PQ SIZE)
printf(”Warning: overflow insert”);

else {
q->n = (q->n) + 1;
q->q[q->n] = x;
bubble up(q, q->n);

}
}

Bubble Up

bubble up(priority queue *q, int p)
{

if (pq parent(p) == -1) return;

if (q->q[pq parent(p)] > q->q[p]) {
pq swap(q,p,pq parent(p));
bubble up(q, pq parent(p));

}
}

An Even Faster Way to Build a Heap

Given two heaps and a fresh element, they can be merged
into one by making the new one the root and bubbling down
(heapify).

Build-heap(A)
n = |A|
For i = bn/2c to 1 do

Heapify(A,i)

Bubble Down Implementation

bubble down(priority queue *q, int p)
{

int c; (* child index *)
int i; (* counter *)
int min index; (* index of lightest child *)

c = pq young child(p);
min index = p;

for (i=0; i<=1; i++)
if ((c+i) <= q->n) {

if (q->q[min index] > q->q[c+i]) min index = c+i;
}

if (min index ! = p) {
pq swap(q,p,min index);
bubble down(q, min index);
}

}

Exact Analysis of Heapify

In fact, build-heap performs better than O(n log n), because
most of the heaps we merge are extremely small.
It follows the same analysis as dynamic arrays (Chapter 3).
In a full binary tree on n nodes, there are at most dn/2h+1e
nodes of height h, so the cost of building a heap is:

blg nc∑
h=0
dn/2h+1eO(h) = O(n

blg nc∑
h=0

h/2h)

Since this sum is not quite a geometric series, we can’t apply
the usual identity to get the sum. But it should be clear that
the series converges.

Proof of Convergence (*)

The identify for the sum of a geometric series is
∞∑
k=0

xk =
1

1− x
If we take the derivative of both sides, . . .

∞∑
k=0

kxk−1 =
1

(1− x)2

Multiplying both sides of the equation by x gives:
∞∑
k=0

kxk =
x

(1− x)2

Substituting x = 1/2 gives a sum of 2, so Build-heap uses at
most 2n comparisons and thus linear time.

Is our Analysis Tight?

“Are we doing a careful analysis? Might our algorithm be
faster than it seems?”
Doing at most x operations of at most y time each takes total
time O(xy). But, if we overestimate too much, our bound
may not be as tight!

Heapsort
Heapify can be used to construct a heap, using the observation
that an isolated element forms a heap of size 1.

Heapsort(A)
Build-heap(A)
for i = n to 1 do

swap(A[1],A[i])
n = n− 1
Heapify(A,1)

Exchanging the maximum element with the last element
and calling heapify repeatedly gives an O(n lg n) sorting
algorithm. Why is it not O(n)?

