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Problem of the Day

The nuts and bolts problem 1s defined as follows. You
are given a collection of n bolts of different widths, and n
corresponding nuts. You can test whether a given nut and bolt
together, from which you learn whether the nut is too large,
too small, or an exact match for the bolt. The differences in
size between pairs of nuts or bolts can be too small to see by
eye, so you cannot rely on comparing the sizes of two nuts or
two bolts directly. You are to match each bolt to each nut.



1. Give an O(n?) algorithm to solve the nuts and bolts
problem.

2. Suppose that instead of matching all of the nuts and bolts,
you wish to find the smallest bolt and its corresponding
nut. Show that this can be done in only 2n — 2
comparisons.

3. Match the nuts and bolts in expected O(n logn) time.



Randomized Quicksort

Suppose you are writing a sorting program, to run on data
given to you by your worst enemy. Quicksort is good on
average, but bad on certain worst-case instances.

If you used Quicksort, what kind of data would your enemy
give you to run it on? Exactly the worst-case instance, to
make you look bad.

But suppose you picked the pivot element at random.

Now your enemy cannot design a worst-case instance to give
to you, because no matter which data they give you, you
would have the same probability of picking a good pivot!



Randomized Guarantees

Randomization is a very important and useful idea. By either
picking a random pivot or scrambling the permutation before
sorting it, we can say:

“With high probability, randomized quicksort runs in
O(nlgn) time.”

Where before, all we could say is:

“If you give me random input data, quicksort runs in
expected O(nlgn) time.”



Importance of Randomization

Since the time bound how does not depend upon your input
distribution, this means that unless we are extremely unlucky
(as opposed to ill prepared or unpopular) we will certainly get
good performance.

Randomization is a general tool to improve algorithms with
bad worst-case but good average-case complexity.

The worst-case 1s still there, but we almost certainly won’t
see it.



Is Quicksort really faster than Heapsort?

Since Heapsort is ©(nlgn) and selection sort is O(n?), there
1s no debate about which will be better for decent-sized files.
When Quicksort 1s implemented well, it 1s typically 2-3 times
faster than mergesort or heapsort.

The primary reason is that the operations in the innermost
loop are simpler.

Since the difference between the two programs will be limited
to a multiplicative constant factor, the details of how you
program each algorithm will make a big difference.



Can we sort in o(nlgn)?

Any comparison-based sorting program can be thought of as
defining a decision tree of possible executions.

Running the same program twice on the same permutation
causes it to do exactly the same thing, but running it on
different permutations of the same data causes a different
sequence of comparisons to be made on each.



al <a2?

(1,3.2) (3.1,2) (2,3.1) (3.2.1)

Claim: the height of this decision tree 1s the worst-case
complexity of sorting.



Lower Bound Analysis

Since any two different permutations of n elements requires
a different sequence of steps to sort, there must be at least n/!
different paths from the root to leaves in the decision tree.
Thus there must be at least n! different leaves in this binary
tree.

Since a binary tree of height  has at most 2" leaves, we know
n! < 2" or h > Ig(n!).

By inspection n! > (n/2)"/?, since the last n/2 terms of the
product are each greater than n /2. Thus

log(n!) > log((n/2)"?) = n/2log(n/2) — O(nlogn)



Stirling’s Approximation

By Stirling’s approximation, a better bound is n! > (n/e)”
where e = 2.718.

h >lgn/e)" =nlgn —nlge=Q(nlgn)



Non-Comparison-Based Sorting

All the sorting algorithms we have seen assume binary
comparisons as the basic primative, questions of the form “is
x before y?”.

But how would you sort a deck of playing cards?

Most likely you would set up 13 piles and put all cards with
the same number 1n one pile.

With only a constant number of cards left in each pile, you can
use insertion sort to order by suite and concatenate everything
together.

If we could find the correct pile for each card in constant time,
and each pile gets O(1) cards, this algorithm takes O(n) time.



Bucketsort

Suppose we are sorting n numbers from 1 to m, where we
know the numbers are approximately uniformly distributed.
We can set up n buckets, each responsible for an interval of
m /n numbers from 1 to m
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Given an input number x, it belongs in bucket number

If we use an array of buckets, each item gets mapped to the
right bucket in O(1) time.



Bucketsort Analysis

With uniformly distributed keys, the expected number of
items per bucket is 1. Thus sorting each bucket takes O(1)
time!

The total effort of bucketing, sorting buckets, and concatenat-
ing the sorted buckets together is O(n).

What happened to our 2(n lgn) lower bound!



Worst-Case vs. Assumed-Case

Bad things happen to bucketsort when we assume the wrong
distribution.
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We might spend linear time distributing our items into
buckets and learn nothing.

Problems like this are why we worry about the worst-case
performance of algorithms!



Real World Distributions

The worst case “shouldn’t” happen if we understand the
distribution of our data.
Consider the distribution of names in a telephone book.

e Will there be a lot of Skiena’s?
e Will there be a lot of Smith’s?
e Will there be a lot of Shifflett’s?

Either make sure you understand your data, or use a good
worst-case or randomized algorithm!



The Shifflett’s of Charlottesville

For comparison, note that there are seven Shifflett’s (of
various spellings) in the 1000 page Manhattan telephone

directory.
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