

Andy Wildenberg, Steven Skiena, Pavel Sumazin Department of Computer Science SUNY Stony Brook

Overview

- Motivation
- Problem Definition
- Theoretical Results
- Experimental Results
- SNPs
- Future Directions

Gel electrophorisis sequencing

- homogeneous DNA sample
- four output traces
- largest peak defines underlying sequence
 likelihood of correct call

More accurate sequencing

By using advanced single-photon detectors and other technologies, BioPhotonics has the capability to not only detect but accurately determine the relative frequency of each base at each position to within 10%, and expects to reduce this error rate in the near future.

Sequencing inhomogeneous data

relative weights may yield info on presence/frequency of mutations

BioPhotonics sequencers

- smaller (8"x8"x16" -- 20 x 20 x 40 cm)
 cheaper (\$10k-20k)
 - more accurate
- ideal for diagnostic situations (one in every doctor's office)

Detecting acquired mutations

- individualized medicine
- microarrays can diagnose leukemia and breast cancer subtypes
- Sanger sequencing is more general tool
 - must be able to sequence heterogeneous mix if dealing with acquired mutations

Problem Definitions

Base calling
Deconvolution
Population frequency determination

Base calling

 Assume external program provides F(i,j), the percentage of base i observed at position j

F(i,j) contains errors

Mutation deconvolution

Input

- S, a wildtype sequence
- V, a set of legal variations/mutations
- Experimental profile

TGTTGACTCATCCC AACCACTCCT C A Wildtype other

Mutation deconvolution

Output

- smallest subset V' \subseteq V such that the mutations cover the experimental profile

Profile TGTTGACTCATCCC AACCACTCCT C A

Wildtype other

Solution TGTTGACTCATCCC tgttgCACTCATCCC tgAACactcatccc tgttgactcaCcc

Wildtype Ins(6,C) Sub(3,AAC) Del(11,1)

Population Frequency Determination

Input:

- S, a Wildtype sequence
- V, a set of allowable variations
- F(i,j), an observed profile
- Output:

w_i, a list of weights assigned to each variation so that their sum most closely matches F(i,j).

Theoretical Results

Kinds of Mutations

ACTGTTGACTCATCCCWildtypeACTGTTCACTCATCCCSubstitution - Sub(7,C)ACTGTTCGATCATCCCSubstitution - Sub(7,CGA)ACTGTTACTCATCCCDeletion- Del(7,1)ACTGTTTGACTCATCCCInsertion - Ins(7,T)

Some mutation classes are easy to deconvolve

- All SNPs
- All substitutions up to a given length
- Both solved by greedy algorithm, working left to right

Most mutation classes are hard to deconvolve

- All mutations from a list
- All possible deletions
- All possible insertions
 - Hard by reduction from Set-Cover – hard to solve, hard to approximate

Substitutions from a list (reduction from set cover)
Set cover problem N={1,2,3,4}, M={{1,2},{2,3},{3,4}}

Deconvolution problem
 AAAA Wildtype
 CCCC rest of profile

mutation list

Arbitrary Insertion/Deletion

Construct long wildtype encouraging certain kinds of insertions/deletions, penalizing others
 Insertion reduction example

Deletion reduction similar

Same length deletions mask each other

Mutation set TGTTGACTCATCCC TGTGACTCATCCC TGTTGATCATCCC

Wildtype D(4,1) D(7,1)

ProfileTGTTGACTCATCCCWildtypeGACTCATCother

Insertions may mask each other

Mutation setTGTTGACTCATCCCWildtypeTGTATGACTCATCCCI(4,A)TGTTGACTTCATCCCI(8,T)

ProfileTGTTGACTCATCCCWildtypeATGACTCATCCCother

Experimental Results

Assumptions

- F(i,j) -- observed frequency of base i at location j
- F(i,j) is corrupted by Uniform noise
 - Iist of all possible mutations is known in advance

Base calling

Set thresholds t_{hi} , t_{lo} C(i,j) = *- Present* if $F(i,j) > t_{hi}$ *- Absent* if $F(i,j) < t_{lo}$ *- NoCall* if $t_{lo} < F(i,j) < t_{hi}$

Mutation Deconvolution

Find a minimal set of mutations so that

- all Present are covered
- no Absent are covered
- all mutations are from the specified list
- A* search (DFS)
- Aggressive pruning

Population Frequency Determination

 Take solution to Deconvolution
 Find weights for the mutations so that they match observed weights F(i,j)

Deconvolution solution as overconstrained linear system

TGTTGACT TGTACACT TGAAGACT Wildtype mutation 1 Sub(4,AC) mutation 2 Sub(3,AA)

$$F(T,3) = ww + w1$$

$$F(A,3) = w2$$

$$F(T,4) = ww$$

$$F(A,4) = w1 + w2$$

$$F(C,5) = w1$$

$$F(G,5) = ww + w2$$

$$F(A,6) = ww + w1 + w2$$

plus lots of degenerate equations

Simulated Results

- p53 Mutation catalog
- International Agency for Research on Cancer, Lyon, France, Version R5 (June 2001)

 2362 distinct mutations from many sources (14755 reported)

Simulated results

p53 gene, exon 4

- 167 substitutions (single & multiple)
- -22 insertion
- 76 deletion
- Mixes of up to 6 mutations + wildtype
- 1%-30% error
- Weights of [error/2, 0.6*numMut]

Likelihood at least 1 mutation correctly detected

Likelihood all mutations correctly detected

number of mutations

Frequency correlation

Frequency correlation given correct deconvolution

almost all error is from mistakes in deconvolution

Detecting SNPs

- Detecting substitution mutations
- All mutations allowable
- O(n) trivial algorithm to detect them
- Increase throughput by mixing samples

Impossible measurements

SNP Results

Percent of ambiguous basepairs

Future Directions

Real experiments
Improved noise models
Different energy models
Prior information on mutations

Questions

The future of Sanger sequencing

- Cheaper machines
- Longer sequences
- More accurate estimates at each basepair

Much cheaper sequencing

physically small (8" x 8" x 16")
relatively cheap (\$10k?)
sequencer in every doctor's office
replace/supplement traditional lab tests

Idealized (future) Sanger sequencing

Presence/absence of each base ACTGTTGACTCATCCC AGTC CTCATCG

weight of each base at each position Basepair 10: A=1% C=25% G=2% T=71%

Motivation

Acquired mutations in cancer/virus
 sequencers in doctors office

Mutation Convolution

Sequence input TGTTGACTCATCCC TGTTCACTCATCCC TGAAGACTCATCCC TGTTGACTCCCC TGTTGCACTCCCC

Wildtype Sub(5,C) Sub(3,AA) Del(10,2) Ins(6,C)

Sequence output TGTTGACTCATCCC AACCACTCCT C

Wildtype other

Deconvolution can have many

profile TGTTGACTCATCCC AACCACTCCT C

Wildtype other

Solution 1 CACTCATCCC Ins AAC Su C Su

Ins(6,C) Sub(3,AAC) Sub(11,C)

solution 2 CACTCATCCC Ins(6,C) AACCACTCC Sub(3,AACCACTCC)

Sequencing Mixed DNA

Base calling

- Mutation deconvolution
- Population frequency determination

Gel electrophorisis

- produce curves registering amount of each base at each position
- for homogeneous samples, "largest" peak defines underlying sequence
- for inhomogeneous samples, relative weights may yield info on presence/frequency of mutations

Goals

- Simultaneously detect multiple p53 mutations
- High-throughput method for detecting SNPs
- Viral population analysis

Three ways to solve

– Pseudo-inverse

- min. squared error, allows negative weights
- 4s linear equations -- fast
- Linear Programming
 - min. absolute error, weights non-negative
 - 4s constraints, 8s dummy variables -- slow
- Quadratic Programming
 - min. squared error, weights non-negative
 - 4s constraints, 4s dummy variables -- slower

Inhomogeneous sample

relative weights may yield info on presence/frequency of mutations