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Overview

■ Motivation
■ Problem Definition
■ Theoretical Results
■ Experimental Results
■ SNPs
■ Future Directions



Gel electrophorisis sequencing

■ homogeneous DNA sample
■ four output traces
■ largest peak defines underlying sequence

■ likelihood of correct call



More accurate sequencing

By using advanced single-photon
detectors and other technologies,
BioPhotonics has the capability to not
only detect but accurately determine the
relative frequency of each base at each
position to within 10%, and expects to
reduce this error rate in the near future.



Sequencing inhomogeneous data

0

10

20

30

40

50

60

70

80

90

A
C
G
T

Basepai r  10:  A=1% C=25% G=2% T=71%

relative weights may yield info on presence/frequency
of mutations



BioPhotonics sequencers

■ smaller (8”x8”x16” -- 20 x 20 x 40 cm)
■ cheaper ($10k-20k)
■ more accurate
■ ideal for diagnostic situations (one in

every doctor’s office)



Detecting acquired mutations

■ individualized medicine
■ microarrays can diagnose leukemia and

breast cancer subtypes
■ Sanger sequencing is more general tool
■ must be able to sequence

heterogeneous mix if dealing with
acquired mutations



Problem Definitions

■ Base calling
■ Deconvolution
■ Population frequency determination



Base calling

■ Assume external program provides
F(i,j), the percentage of base i observed
at position j

■ F(i,j) contains errors



Mutation deconvolution

■ Input
– S, a wildtype sequence

– V, a set of legal variations/mutations
– Experimental profile

TGTTGACTCATCCC   Wildtype
  AACCACTCCT  C  other
          A



Mutation deconvolution
■ Output

– smallest subset V’ ⊆ V such that the mutations
cover the experimental profile

Profile
TGTTGACTCATCCC   Wildtype
  AACCACTCCT  C  other
          A

Solution
TGTTGACTCATCCC   Wildtype
t gt t gCACTCATccC  Ins(6,C)
t gAACact cat ccc   Sub(3,AAC)
t gt t gact caCcc    Del(11,1)



Population Frequency Determination

■ Input:
S, a Wildtype sequence

V, a set of allowable variations
F(i,j), an observed profile

■ Output:
wi, a list of weights assigned to each

variation so that their sum most closely
matches F(i,j).



Theoretical Results



Kinds of Mutations

ACTGTTGACTCATCCC     Wildtype
ACTGTTCACTCATCCC    Substitution - Sub(7,C)

ACTGTTCGATCATCCC    Substitution - Sub(7,CGA)

ACTGTTACTCATCCC    Deletion- Del(7,1)

ACTGTTTGACTCATCCC  Insertion  - Ins(7,T)



Some mutation classes are easy
to deconvolve

■ All SNPs
■ All substitutions up to a given length
■ Both solved by greedy algorithm,

working left to right



Most mutation classes are hard to
deconvolve

■ All mutations from a list
■ All possible deletions
■ All possible insertions

■ Hard by reduction from Set-Cover
– hard to solve, hard to approximate



Substitutions from a list
(reduction from set cover)
■ Set cover problem

N={1,2,3,4},  M={{1,2},{2,3},{3,4}}

■ Deconvolution problem
AAAA Wildtype
CCCC rest of profile

CCAA -- {1,2}
ACCA -- {2,3}  mutation list
AACC -- {3,4}



Arbitrary Insertion/Deletion

■ Construct long wildtype encouraging
certain kinds of insertions/deletions,
penalizing others

■ Insertion reduction example
#* * - - #- * * - #- - * * #- - - - #* * - - #- * * - #- - * * #- - - - #* * - - #- * * - #- - * * #- - - -

                                                            #* * - - #- * * - #- - * * #- - - -

1- - * * 1* - - * 1* * - - 1* * * * 1- - * * 1* - - * 1* * - - 1* * * * 1- - * * 1* - - * 1* * - - 1* * * * 1- - * * 1* - - * 1* * - - 1* * * *

                1111                1111                1111                1111

■ Deletion reduction similar



Same length deletions mask each
other
Mutation set
TGTTGACTCATCCC   Wildtype
TGTGACTCATCCC    D(4,1)
TGTTGATCATCCC    D(7,1)

Profile
TGTTGACTCATCCC   Wildtype
   GACTCATC      other



Insertions may mask each other

Mutation set
TGTTGACTCATCCC   Wildtype
TGTATGACTCATCCC  I(4,A)
TGTTGACTTCATCCC  I(8,T)

Profile
TGTTGACTCATCCC   Wildtype
   ATGACTCATCCC  other



Experimental Results



Assumptions

■ F(i,j) -- observed frequency of base i at
location j

■ F(i,j) is corrupted by Uniform noise
■ list of all possible mutations is known in

advance



Base calling

■ Set thresholds thi, tlo

■ C(i,j) =
– Present if F(i,j) > thi

– Absent if F(i,j) < tlo

– NoCall if  tlo < F(i,j) < thi



Mutation Deconvolution

■ Find a minimal set of mutations so that
– all Present are covered

– no Absent are covered
– all mutations are from the specified list

■ A* search (DFS)
■ Aggressive pruning



Population Frequency Determination

■ Take solution to Deconvolution
■ Find weights for the mutations so that

they match observed weights F(i,j)



Deconvolution solution as
overconstrained linear system
TGTTGACT     Wildtype
TGTACACT     mutation 1   Sub(4,AC)
TGAAGACT    mutation 2   Sub(3,AA)

   F(T,3) = ww + w1
   F(A,3) = w2
   F(T,4) = ww
   F(A,4) = w1 + w2
   F(C,5) = w1
   F(G,5) = ww + w2
   F(A,6) = ww + w1 + w2

plus lots of degenerate equations



Simulated Results

■ p53 Mutation catalog
■ International Agency for Research on

Cancer, Lyon, France, Version R5
(June 2001)

■ 2362 distinct mutations from many
sources (14755 reported)



Simulated results

■ p53 gene, exon 4
– 167 substitutions (single & multiple)

– 22 insertion
– 76 deletion

■ Mixes of up to 6 mutations + wildtype
■ 1%-30% error
■ Weights of [error/2, 0.6*numMut]



Likelihood at least 1 mutation
correctly detected
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Likelihood all mutations
correctly detected
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Frequency correlation
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Frequency correlation given
correct deconvolution
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Detecting SNPs

■ Detecting substitution mutations
■ All mutations allowable
■ O(n) trivial algorithm to detect them
■ Increase throughput by mixing samples



Detecting SNPs



SNP Results



Future Directions

■ Real experiments
■ Improved noise models
■ Different energy models
■ Prior information on mutations



Questions
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The future of Sanger sequencing

■ Cheaper machines
■ Longer sequences
■ More accurate estimates at each

basepair



Much cheaper sequencing

■ physically small (8” x 8” x 16”)
■ relatively cheap ($10k?)
■ sequencer in every doctor’s office
■ replace/supplement traditional lab tests



Idealized (future) Sanger
sequencing

■ Presence/absence of each base
ACTGTTGACTCATCCC
 AGTC  CTCATCG

■ weight of each base at each position
Basepai r  10:  A=1% C=25% G=2% T=71%



Motivation

■ Acquired mutations in cancer/virus
■ sequencers in doctors office



Mutation Convolution

Sequence input
TGTTGACTCATCCC     Wildtype
TGTTCACTCATCCC     Sub(5,C)
TGAAGACTCATCCC    Sub(3,AA)
TGTTGACTCCCC      Del(10,2)
TGTTGCACTCATCCC  Ins(6,C)

Sequence output
TGTTGACTCATCCC   Wildtype
  AACCACTCCT  C  other
          A



Deconvolution can have many

profile
TGTTGACTCATCCC   Wildtype
  AACCACTCCT  C  other
          A

solution 1
     CACTCATCCC  Ins(6,C)
  AAC            Sub(3,AAC)
          C      Sub(11,C)

solution 2
     CACTCATCCC Ins(6,C)
  AACCACTCC     Sub(3,AACCACTCC)



Sequencing Mixed DNA

■ Base calling
■ Mutation deconvolution
■ Population frequency determination



Gel electrophorisis

■ produce curves registering amount of
each base at each position

■ for homogeneous samples, “largest”
peak defines underlying sequence

■ for inhomogeneous samples, relative
weights may yield info on
presence/frequency of mutations



Goals

■ Simultaneously detect multiple p53
mutations

■ High-throughput method for detecting
SNPs

■ Viral population analysis



Three ways to solve

– Pseudo-inverse
• min. squared error, allows negative weights
• 4s linear equations -- fast

– Linear Programming
• min. absolute error, weights non-negative
• 4s constraints, 8s dummy variables -- slow

– Quadratic Programming
• min. squared error, weights non-negative
• 4s constraints, 4s dummy variables -- slower



Inhomogeneous sample

■ relative weights may yield info on
presence/frequency of mutations


