## Deconvolving Sequence Variations in Mixed DNA Populations

 $\square$

Andy Wildenberg, Steven Skiena, Pavel Sumazin
Department of Computer Science SUNY Stony Brook

## Overview

- Motivation
- Problem Definition
- Theoretical Results
- Experimental Results
- SNPs
- Future Directions


## Gel electrophorisis sequencing

- homogeneous DNA sample
- four output traces
- largest peak defines underlying sequence
- likelihood of correct call
ca=



## More accurate sequencing

By using advanced single-photon detectors and other technologies, BioPhotonics has the capability to not only detect but accurately determine the relative frequency of each base at each position to within $10 \%$, and expects to reduce this error rate in the near future.

## Sequencing inhomogeneous data


relative weights may yield info on presence/frequency of mutations

## BioPhotonics sequencers

- smaller (8"x8"x16" -- $20 \times 20 \times 40 \mathrm{~cm}$ )
- cheaper (\$10k-20k)
- more accurate
- ideal for diagnostic situations (one in every doctor's office)


## Detecting acquired mutations

- individualized medicine
- microarrays can diagnose leukemia and breast cancer subtypes
- Sanger sequencing is more general tool
- must be able to sequence heterogeneous mix if dealing with acquired mutations


## Problem Definitions

- Base calling
- Deconvolution
- Population frequency determination


## Base calling

- Assume external program provides
$F(i, j)$, the percentage of base i observed at position $j$
$\square \mathrm{F}(\mathrm{i}, \mathrm{j})$ contains errors


## Mutation deconvolution

## - Input

-S, a wildtype sequence

- V, a set of legal variations/mutations
- Experimental profile


## TGTTGACTCATCCC ААССАСТССТ С <br> Wildtype <br> other

## Mutation deconvolution

- Output
- smallest subset $\mathrm{V}^{\prime} \subseteq \mathrm{V}$ such that the mutations cover the experimental profile

Profile
TGTTGACTCATCCC
AACCACTCCT C A

Solution TGTTGACTCATCCC tgttgCACTCATCCC tgAACactcatccc tgttgactcaccc

Wildtype
other

Wildtype Ins(6,C) Sub(3,AAC) Del(11,1)

## Population Frequency Determination

- Input:

S, a Wildtype sequence
V , a set of allowable variations
$F(i, j)$, an observed profile

- Output:
$\mathrm{w}_{\mathrm{i}}$, a list of weights assigned to each variation so that their sum most closely matches $\mathrm{F}(\mathrm{i}, \mathrm{j})$.


## Theoretical Results

## Kinds of Mutations

АСтGтtGACTCATCCC Wildtype ACTGTT CACTCATCCC Substitution - Sub (7,C) ACTGTTCGATCATCCC Substitution-Sub(7,CGA)<br>ACTGTTACTCATCCC Deletion- Del(7,1)<br>ACTGTT TGACTCATCCC Insertion - Ins(7,T)

# Some mutation classes are easy to deconvolve 

- All SNPs
- All substitutions up to a given length
- Both solved by greedy algorithm, working left to right

Most mutation classes are hard to deconvolve

- All mutations from a list
- All possible deletions
- All possible insertions
- Hard by reduction from Set-Cover
- hard to solve, hard to approximate


## Substitutions from a list

 (reduction from set cover)- Set cover problem

$$
N=\{1,2,3,4\}, \quad M=\{\{1,2\},\{2,3\},\{3,4\}\}
$$

- Deconvolution problem

AAAA Wildtype
CCCC rest of profile
CCAA -- $\{1,2\}$
ACCA $--\{2,3$
AACC $--\{3,4\}$
mutation list

## Arbitrary Insertion/Deletion

- Construct long wildtype encouraging certain kinds of insertions/deletions, penalizing others
- Insertion reduction example

- Deletion reduction similar


## Same length deletions mask each other

Mutation set тGTtGACTCATCCC TGTGACTCATCCC TGTtGATCATCCC

Wildtype
D(4,1)
D(7,1)
Profile
тGTtGACTCATCCC
GACTCATC
Wildtype other

## Insertions may mask each other

Mutation set TGTTGACTCATCCC TGTATGACTCATCCC TGTTGACTTCATCCC

Wildtype
I(4,A)
$\mathrm{I}(8, \mathrm{~T})$
Profile
тGTtGACTCATCCC
АтGACTCATCCC other

Wildtype

## Experimental Results

## Assumptions

- F(i,j) -- observed frequency of base i at location j
■ $F(\mathrm{i}, \mathrm{j})$ is corrupted by Uniform noise
- list of all possible mutations is known in advance


## Base calling

- Set thresholds $t_{\text {hi }}, t_{\mathrm{lo}}$

■ $\mathrm{C}(\mathrm{i}, \mathrm{j})=$

- Present if $\mathrm{F}(\mathrm{i}, \mathrm{j})>\mathrm{t}_{\text {ni }}$
- Absent if $\mathrm{F}(\mathrm{i}, \mathrm{j})<\mathrm{t}_{10}$
- NoCall if $t_{10}<F(i, j)<t_{\text {hi }}$


## Mutation Deconvolution

- Find a minimal set of mutations so that
- all Present are covered
- no Absent are covered
- all mutations are from the specified list
- A* search (DFS)
- Aggressive pruning


## Population Frequency Determination

- Take solution to Deconvolution
- Find weights for the mutations so that they match observed weights F(i,j)


## Deconvolution solution as

 overconstrained linear system tgttgact Wildtype TGTACACT mutation 1 Sub(4,AC) TGAGACT mutation $2 \operatorname{Sub}(3, A A)$```
\(F(T, 3)=w w+w 1\)
\(\mathrm{F}(\mathrm{A}, 3)=\mathrm{w} 2\)
\(\mathrm{F}(\mathrm{T}, 4)=\mathrm{ww}\)
\(\mathrm{F}(\mathrm{A}, 4)=\mathrm{w} 1+\mathrm{w} 2\)
\(F(C, 5)=w 1\)
\(F(G, 5)=w w+w 2\)
\(F(A, 6)=w w+w 1+w 2\)
```

plus lots of degenerate equations

## Simulated Results

- p53 Mutation catalog
- International Agency for Research on Cancer, Lyon, France, Version R5 (June 2001)
- 2362 distinct mutations from many sources (14755 reported)


## Simulated results

- p53 gene, exon 4
- 167 substitutions (single \& multiple)
- 22 insertion
- 76 deletion
- Mixes of up to 6 mutations + wildtype
- 1\%-30\% error
- Weights of [error/2, 0.6*numMut]


## Likelihood at least 1 mutation correctly detected



## Likelihood all mutations correctly detected



## Frequency correlation



## Frequency correlation given correct deconvolution


almost all error is from mistakes in deconvolution

## Detecting SNPs

- Detecting substitution mutations
- All mutations allowable

■ O(n) trivial algorithm to detect them
■ Increase throughput by mixing samples

## Detecting SNPs


$\square$ Unambiguous measurements
$\square$ Ambiguous measurementsImpossible measurements

## SNP Results

Percent of ambiguous basepairs


## Future Directions

- Real experiments
- Improved noise models
- Different energy models
- Prior information on mutations


## Questions



## The future of Sanger sequencing

- Cheaper machines
- Longer sequences
- More accurate estimates at each basepair


## Much cheaper sequencing

- physically small (8" x 8 " x 16")
- relatively cheap ( $\$ 10 k$ ?)
- sequencer in every doctor's office
- replace/supplement traditional lab tests


## Idealized (future) Sanger sequencing

- Presence/absence of each base ACTGTTGACTCATCCC AGTC CTCATCG
- weight of each base at each position Basepair 10: $A=1 \% \mathrm{C}=25 \% \mathrm{G}=2 \% \mathrm{~T}=71 \%$


## Motivation

- Acquired mutations in cancer/virus sequencers in doctors office


## Mutation Convolution

Sequence input TGTTGACTCATCCC TGTTCACTCATCCC TGA GACTCATCCC TGTTGACTC TGTTGCACTCATCCC

Sequence output TGTTGACTCATCCC

AACCACTCCT C A

Wildtype
Sub(5,C)
Sub $(3, A A)$
Del(10,2)
$\operatorname{lns}(6, C)$
Wildtype
other

## Deconvolution can have many

profile
TGTTGACTCATCCC AACCACTCCT $C$ Wildtype other
solution 1
CACTCATCCC $\operatorname{lns}(6, C)$ AAC Sub $(3, A A C)$
Sub $(11, C)$

## solution 2

 CACTCATCCC $\operatorname{lns}(6, C)$ AACCACTCC $\quad \operatorname{Sub}(3$, AACCACTCC $)$
## Sequencing Mixed DNA

- Base calling
- Mutation deconvolution
- Population frequency determination


## Gel electrophorisis

- produce curves registering amount of each base at each position
- for homogeneous samples, "largest" peak defines underlying sequence
- for inhomogeneous samples, relative weights may yield info on presence/frequency of mutations


## Goals

- Simultaneously detect multiple p53 mutations
- High-throughput method for detecting SNPs
- Viral population analysis


## Three ways to solve

- Pseudo-inverse
- min. squared error, allows negative weights
- 4s linear equations -- fast
- Linear Programming
- min. absolute error, weights non-negative
- 4s constraints, 8s dummy variables -- slow
- Quadratic Programming
- min. squared error, weights non-negative
- 4s constraints, 4s dummy variables -- slower


## Inhomogeneous sample

- relative weights may yield info on presence/frequency of mutations

