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When Will the Platypus be Sequenced?



The State of Genome Sequencing

Sequencing the human genome was a tremendous scientific
accomplishment, requiring large-scale collaboration between
computational and life sciences.
Over 300 bacterial genomes have been sequenced to date,
plus a few dozen higher organisms.
However, sequencing each new genome through conventional
techniques remains an expensive experiment.
Thus cheaper technologies must be developed in order to
sequence the full diversity of life.



The Future of Genome Sequencing

Exciting new DNA sequencing technologies are on the way.
However, the sequence reads produced by these technologies
are very different from current gel/capillary sequencing
machines.
These new technologies are designed for efficiently re-
sequencing human genes for medical diagnosis/research.
However, we propose new classes of assembly algorithms
which make it possible and practical to use these new
technologies for de novo sequencing.



Talk Outline

• Review of shotgun sequencing and assembly.

• Short-read technologies for DNA sequencing.

• Assembly for short paired-read technologies.

• Assembly for mixed read-length protocols.



Traditional Sequencing Machines

Standard sequencing machines use the same basic principles
as the original Gilbert-Sanger method.

Read lengths have gotten slightly longer with time, perhaps
from 500 bp to 700 bp, with a base error rate of about 2%, at
a cost of about $1-$2 per read.



Fragment Assembly

In shotgun sequencing, whole genomes are sequenced by
making clones, breaking them into small pieces, and trying
to put the pieces together again based on overlaps.

A Fragment Assembly Program
finds a Common SuperString.

Unknown Sequence (Genome)

Genome-Level Shotgun Sequencing

Sequence Reconstruction

Reconstructed Sequence (Genome)
Sampling

Fragments

Note that the fragments are randomly sampled, and thus no
positional information is available.



Coverage

The coverage of a sequencing project is the ratio of the total
sequenced fragment length to the genome length, i.e. nl/T .

5 7.5 10 12.5 15 17.5 20
Coverage

20

40

60

80

100

120

140

Gaps 1MB, 100MB, and 1GB Genomes

Gaps are very difficult and expensive to close, meaning that
very high coverage is necessary to shotgun sequence a large
genome.



Double-Ended Sequencing Strategies

By sequencing both ends of a given clone/fragment, we know
roughly how far apart they should be in the final assembly.
Selecting the right mix of insert sizes can simplify assembly.
Small inserts give tight assembly constraints, but big inserts
help us build a scaffolding across the entire genome.
The internals of clones can be sequenced, but at much greater
cost than end sequencing.



Why is Assembly Difficult?

The most natural notion of assembly is to order the fragments
so as to form the shortest string containing all of them.

A  B  R  A  C
A  C  A  D  A
A  D  A  B  R
D  A  B  R  A
R  A  C  A  D

A  B  R  A  C

R  A  C  A  D

A  C  A  D  A

A  D  A  B  R

D  A  B  R  A

A  B  R  A  C  A  D  A  B  R  A

However, the problem of finding the shortest common
superstring of a set of strings is NP-complete.



Even Worse. . .

• We must deal with significant errors in the sequence
fragments.

• Genomes have many repeats (approximate copies of the
same sequence), which are very hard to identify and
reconstruct.

• The size of the problem is very large. Celera’s
Human Genome sequencing project contained roughly
26.4 million fragments, each about 550 bases long.



But Difficult Does Not Mean Impossible

Genome assembly projects have increased from tens of
thousands of bases to billions of bases over 10 years or so.
In 1996, our Stroll shotgun sequence assembler (Chen and
Skiena) was used by Brookhaven National Laboratory to
sequence the bacteria Borrelia burgdorferi.
Today, assembler design for bacterial projects (and to a lesser
extent mammalian projects) is largely a solved problem.
However, the algorithms in today’s assemblers rely heavily on
today’s assumptions of read length, error rate, and coverage.



New Technology: Pyrosequencing

Pyrosequencing (Nyren, Ronaghi) is a “sequencing by
synthesis” technology, which proceeds in rounds of base
extensions, alternating A, C, G, and T.
Each base-incorporation event releases visible light, which is
detected by a CCD camera with the signal proportional to the
number of bases incorporated.
Reads of up to 40 bases are typical.
Primary applications are SNP detection / analysis.



New Technology: Polony Sequencing

Single molecules are dispersed over a gel and amplified.
A single surface can have millions such polonies (or PCR
colonies) as opposed to a fixed number of mechanical wells.
Polony sequencing, (Church, Shendure and Mitra) simul-
taneously sequences all polonies via a pyrosequencing-like
technology.
They have projected that this method can yield raw sequence
at $0.10 per megabase!
Thus one megabase bacterial genome can be sequenced with
one thousand-fold coverage for only $100.
They currently get high-accuracy 13-base paired reads.



New Technology: 454

The 454 Corporation www.454.com is pursuing massively
parallel short-read sequencing for whole genome analysis,
using hundreds of thousands of picoliter wells to achieve
parallelism.
In July 2005, they reported sequencing the 580 kilobase
genome of M. genitalium with 96% coverage at 99.96%
accuracy in one run of their machine.
Their single-ended reads averaged 110 bp long, so they are
not so short.
Fairly conventional techniques can be used to assemble reads
of this length.



Other Short Read Contenders

Short read sequencing technologies are under development
by

• Helicos BioSciences www.helicosbio.com,

• Lynx Therapeutics www.lynxgen.com,

• Solexa www.solexa.co.uk,

• Sequenom www.sequenom.com

and other companies and research laboratories



Previous Work on Short-Read Assembly

• Chaisson, Pevnzer, and Tang (2004) demonstrate the
limits of assembly using 80-200 base reads.

• Whiteford, et.al. (2005) shows that “large” contigs
“should” result with reads of length 20-30 for bacterial
sequences and length 50 for human sequences, with
arbitrarily high, error-free coverage.

We are unaware of other work on assembly for very short
double-ended reads.



Why Are Short Reads Bad?

• Real genomic sequences contain large numbers of repeat
sequences of hundreds or even thousands of bases.

• It is impossible to completely assemble any genome
whenever there is a repeat which is longer than the read
length.

• Repeats are a major problem in assembling mammalian
sequences with reads of length 500 or more.

How can I possibly hope to do it with reads of length 15 to
40?



A Short-Read Genome Sequencing Protocol

• Fragment multiple target clones and separate out frag-
ments of length a ± b%, or (equivalently stated) of length
d to d + w for given integers d and w.

• Sequence both ends of enough clones to ensure that every
possible read-pair is sequenced at least once.

Insert sizes of 1000 ± 25% base-pairs easily can be selected
in practice, with a variation of ±10% achievable with more
effort.
For what values of d, w, coverage c, and read length k is a
random n-base sequence reconstructible?



Why Should Such a Protocol Work?

Suppose the read length k is long enough that a given k-base
sequence s often occurs uniquely on the genome.
Thus all reads pairs which consist of s plus a different k-base
read must come from length-w sequence windows starting d
positions to the left or right of s.
Reconstructing these two length-w windows from the pairing
reads gives us the equivalent of length-w reads, which can
then be conventionally assembled!



How Can We Assemble Such Short
Read-Pairs?

• Suppose the matching pairs of unique sequence s com-
prise all the 2w possible k-base reads from the flanking
windows.

• If k is long enough and w is small enough, it is unlikely
that any k − 1 base sequence repeats in these windows.

• Thus we can assemble the windows by repeatedly
merging any two reads which overlap by k − 1 bases.



Sequencing by Hybridization

Similar ideas arise in sequencing by hybrdization (SBH),
where the sequences consistent with complete set of k-mers
are defined by Eulerian walks on the appropriate subgraph of
the de Bruijn graph.

CAA

ACGCGC

GCA

AAA

AAC

ACA

CAC ACT

CTT

TTA

Suppose exactly AAA, AAC, ACA, CAC, CAA, ACG, CGC,
GCA, ACT, CTT, TTA occur in the target. . .



Main Result

Theorem 1 The variable insert-length, double-ended read
protocol suffices to determine a random n-base sequence S
with high-probability, even for k = 2/3 log4 n + o(lg n) and
w = c0 log n.

This is so short that k-mers reads frequently repeat in S.
However, for short enough w the set of all mate pairs for a
given k-mer are unlikely to contain a repeated (k − 1)-mer.
We need w to be long relative to the expected repeat length of
the target, yet have enough reconstructed windows to define
sufficient coverage for assembly.



Proof

Since any given k-mer occurs ≈ n/4k times in S, each
given k-mer has ≈ (n/4k)w mate pair k-mers, drawn from
a universe of 4k possible k-mers.
We are unlikely to see a duplicate until we have sampled on
the order of the square root of the universe.

c
√

4k ≥
n

4k
w −→ k ≥ lg4((nw/c))

Any given sequence of length c0 lg4 n will appear within S
with probability 1/(4c0−1).
Hence the probability of a duplicate of length w = c0 lg4 n
decreases exponentially with increasing c0, and so suffices to
exceed all repeats in S.



Simulation Results (I)

We first simulated two different reconstruction algorithms
under zero error and infinite coverage:

• The basic algorithm finds Eulerian paths in the de Bruijn
subgraph, as above.

• The less stable extension algorithm uses the single k-mer
difference between neighboring windows to walk along
the sequence once a large contig is formed.

For both, we report the fraction of the genome which exists
contigs larger than 2w as our measure of assembly quality.



Simulation Results: Random Sequences

k = 8 k = 9 k = 10 k = 11 k = 12 k = 13

length w bas ext bas ext bas ext bas ext bas ext bas ext
10

4 250 0.99 1.00 1.00 1.00
10

4 500 0.24 0.24 1.00 1.00
10

4 1000 0.00 0.00 0.31 1.00 1.00 1.00
10

4 2000 0.00 0.00 0.45 1.00 0.99 1.00 1.00 1.00
10

4 5000 0.00 0.00 0.00 1.00 1.00 1 .00
10

5 250 0.99 1.00 1.00 1.00 1.00 1.00
10

5 500 0.29 0.29 1.00 1.00 1.00 1.00
10

5 1000 0.42 0.46 1.00 1.00
10

5 2000 0.00 0.00 0.71 0.86 0.99 1.00 1.00 1.00
10

5 5000 0.39 0.98 1.00 1.00 1.00 1 .00
10

6 250 0.45 0.45 1.00 1.00 1.00 1.00
10

6 500 0.00 0.00 0.99 1.00 1.00 1.00
10

6 1000 0.43 0.43 0.99 1.00 1.00 1.00
10

6 2000 0.00 0.00 0.70 0.74 0.99 1.00 0.99 1.00 1.00 1.00
10

6 5000 0.62 0.99 0.99 1.00 1.00 1 .00
10

7 250 0.98 0.98 1.00 1.00 1.00 1.00
10

7 500 0.99 1.00 1.00 1.00
10

7 1000 0.96 0.96 1.00 1.00
10

7 2000 0.45 0.45 1.00 1.00 1.00 1.00
10

7 5000 0.54 0.55 0.99 0.99 1.00 1.00



Simulation Results: Bacterial Sequences

k=13 k=14 k=15 k=16 k=17
species Length bas ext bas ext bas ext bas ext bas ext
Borrelia burgdorferi 910,681 0.75 0.75 0.97 0.98 0.99 1.00 0.99 1.00 0.99 1.00
Haemophilus influenzae 1,830,023 0.93 0.94 0.97 0.98 0.98 0.99 0.98 0.99 0.98 1.00
Helicobacter pylori 1,667,825 0.85 0.86 0.95 0.96 0.96 0.99 0.97 0.99 0.97 1.00
Mycoplasma genitalium 580,074 0.95 0.96 0.97 1.00 0.97 1.00 0.97 1.00 0.97 1.00
Pseudomonas aeruginosa 4,164,955 0.86 0.86 0.98 0.98 0.99 0.99 0.99 1.00 0.99 1.00
Staphylococcus aureus 2,814,816 0.89 0.90 0.94 0.95 0.95 0.97 0.96 0.99 0.96 0.99
Streptococcus pneumoniae 1,326,684 0.91 0.92 0.94 0.97 0.96 0.98 0.96 0.99 0.96 0.99
Thermoplasma acidophilum 1,564,906 0.99 1.00 0.99 1.00 0.99 1.00 0.99 1.00 0.99 1.00



Simulation Results: 100kb Human Sequences

k=15 k=20 k=25 k=30 k=50 k=100 max
chrm genbank-ID bas ext bas ext bas ext bas ext bas ext bas ext repeat

1 NT 032977.6 0.36 0.57 0.76 0.94 0.89 0.95 0.98 1.00 1.00 1.00 1.00 1.00 102
2 NT 005058.14 0.75 0.93 0.91 0.98 0.93 1.00 0.95 1.00 0.99 1.00 1.00 1.00 520
3 NT 022459.13 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 60
4 NT 016606.16 0.85 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 205
5 NT 029289.10 0.31 0.59 0.54 0.77 0.85 0.99 0.99 1.00 1.00 1.00 1.00 1.00 85
6 NT 007592.13 0.93 1.00 0.99 1.00 0.99 1.00 0.99 1.00 1.00 1.00 1.00 1.00 115
7 NT 007819.14 0.12 0.21 0.45 0.60 0.66 0.85 0.69 0.89 0.80 1.00 0.96 1.00 255
8 NT 008183.17 0.75 0.94 0.97 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 105
9 NT 008413.16 0.82 0.98 0.93 0.98 0.97 1.00 0.99 1.00 1.00 1.00 1.00 1.00 80
Y NT 011903.10 0.83 0.92 0.97 1.00 0.98 1.00 0.98 1.00 0.99 1.00 0.99 1.00 1665



What about Errors?

Fortunately, assembly heuristics based on looking for “long-
enough” overlaps and frequency counting for repeats are
robust to sampling errors.
Further, the very high coverage levels inherent in our protocol
makes it easy identify and resolve most substitution errors.
Why? With enough coverage and a low base-error rate,
we expect to see k-mers in the target far more times than
incorrectly-sequenced, absent k-mers.



Error Analysis: Numerical Evaluation

The key to distinguishing correct reads the ratio of the
frequencies of absent k-mers (Ms) over real k-mers (Es+Ms).

The discrimination ratio rapidly approaches 0 for k > lg4 n,
even for base-sequencing error rates as high as 20%.



Shorty: Assembly from Short Paired Reads

1. Clean input read-pairs to correct base-sequencing errors,
using read frequency analysis and consensus read correc-
tion.

2. Construct the de Bruijn subgraph on “left” reads so as to
group associated the “right” reads.

3. Construct the de Bruijn graph on the “right” reads of each
left group.

4. Select contigs of sufficient size to pass through a shotgun
assembler.

5. Post-assembly contig extension.



Read Correction vs. Base-Error Rate

raw Effective Coverage Surviving False Reads %
k coverage 0% 1% 2% 3% 0% 1% 2% 3%
25 100 100 82 59 36 0.0% 0.1% 1.4% 2.2%

150 150 137 115 77 0.0% 1.0% 2.5% 3.7%
200 200 188 158 121 0.0% 1.7% 4.1% 5.8%
250 250 235 165 161 0.0% 2.6% 6.2% 8.4%
350 350 331 289 234 0.0% 0.1% 0.6% 1.3%
500 500 351 409 323 0.0% 0.0% 0.9% 2.0%

20 100 100 91 76 58 0.0% 0.6% 1.9% 3.1%
150 150 143 127 106 0.0% 1.4% 3.6% 5.6%
200 200 192 175 150 0.0% 2.3% 6.0% 8.9%
250 250 240 219 191 0.0% 3.6% 9.0% 13.0%
350 350 337 307 267 0.0% 0.1% 0.6% 1.6%
500 500 481 434 364 0.0% 0.2% 1.7% 2.0%

15 100 100 94 85 75 0.0% 1.1% 3.3% 5.7%
150 150 141 130 118 0.0% 2.3% 6.8% 11.0%
200 200 188 174 158 0.0% 4.1% 11.3% 17.7%
250 250 235 215 193 0.0% 0.1% 1.3% 3.8%
350 350 328 298 263 0.0% 0.3% 3.0% 8.1%
500 500 467 419 360 0.0% 0.1% 7.0% 3.8%

Remaining (a) effective coverage and (b) percentage of
surviving erroneous reads after read-error correction, as a
function of input coverage, read-length, and base-error rate



M. Genitalium Assembly: k = 15
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Most of the genome is in reasonable-sized contigs for
coverage of 250-300, even with base-error rates up to 3%.



M. Genitalium Assembly: k = 25
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Increasing the read length up to k = 25 gives better assembly
at lower coverages, but not dramatically better.



Detecting and Correcting Miss-assemblies

Mapping read pairs back to contigs detects breaks/deletions
and repeats, due to the high “overlap” coverage.

Scaffolds of contigs can be built from pairs which only have
one matching read.



Mixed Read-Length Sequencing Strategies

Although substantial assembly appears possible with only
short paired reads, very high coverage seems necessary to
build even 500-base contigs.
More practical may be a mixed read-length sequencing
strategy, combining short paired reads with a small amount
(say, 0.1x coverage) using conventional Sanger sequencing.
We use the long “anchor” reads as the initial base of a chain
of large contigs, constructed by building the de Bruijn graph
of the right-mers whose left-mers overlap the previous anchor
region.



Building Chains from Anchors
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With a small volume of seeded reads, we construct large
“reads” over almost the entire genome with 30-fold coverage
of 18-base paired reads.



Coverage in Large Pieces: k = 18
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The effective coverage in terms of large reads is similar to
typical bacterial assembly projects.



Coverage in Large Pieces: k = 13
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The same holds for 13-base paired reads, although they
require a higher coverage (70-fold).



Heavy Coverage by Large Pieces: k = 18
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We get a nice distribution of these large “reads”, enough so
that they should be readily assembled.



Heavy Coverage by Large Pieces: k = 13
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The same holds for 13-base paired reads, although they
require a higher coverage (70-fold).



Assembling Chains into Contigs
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We currently use the TIGR assembler to put our contigs into
larger sequence contigs.



Conclusions

We have demonstrated that genome-level sequence assembly
is possible with very short reads, given high enough coverage.
Assembly with lower short-read coverage is possible given
very low coverage in longer seed reads.
We are now developing shorty, a production-quality assem-
bler double-ended short read data.
We are obtaining a 50-node computing cluster, which will
greatly speed development/assembly.
We seek to collaborate with groups developing short-read
technologies on a proof-of-concept project to de novo
assemble a bacterial genome.



For all Your Short Read Assembly Needs. . .

http://www.algorithm.cs.sunysb.edu/shorty



For Further Reading


