
Debugging Malware Classification Models Based on
Event Logs with Explainable AI

Joon-Young Gwak1, Priti Wakodikar1, Meng Wang1, Guanhua Yan1, Xiaokui Shu2, Scott D. Stoller3, and Ping Yang1

1State University of New York at Binghamton, Binghamton, NY, USA
2IBM Research, Yorktown Heights, NY, USA

3State University of New York at Stony Brook, Stony Brook, NY, USA

Abstract—As machine learning models find broader applica-
tions in cybersecurity, the importance of model explainability
becomes more evident. In the area of malware detection, where
the consequence of misclassification can be severe, explainability
becomes crucial. AI explainers not only help understand the
reasons behind malware classifications but also assist in fine-
tuning models to improve detection accuracy. Additionally, AI
explainers can serve as a valuable tool for error detection,
ensuring accountability, and mitigating potential biases. In this
paper, we demonstrate how AI explainers can play a vital
role in identifying issues in data collection and enhancing our
comprehension of the model’s classification results. Our analysis
of explanation results reveals several issues within the data
collection process, including event loss and the presence of
environment-specific information. Additionally, we have identified
mislabelled samples based on the explanation results and shared
lessons learned from our data collection efforts.

I. INTRODUCTION

The efficacy of machine learning models depends on the
quality of the training dataset. When training malware clas-
sification models, three biases can impact their accuracy.
Firstly, as benign and malware samples are labelled by human
based on their domain knowledge, the distinction between
malware and benign samples can be ambiguous, which could
cause labelling bias. Secondly, malware execution logs are
typically collected in controlled environments such as inside
virtual machines, which may not accurately represent real-
world scenarios. Logs collected may also contain machine or
environment specific information, leading to potential environ-
ment bias. Lastly, it is often challenging to determine which
events to log during the data collection process, and the events
selected can significantly influence the classification model’s
detection performance.

Evaluating the training dataset’s quality and determining
whether a model’s classification results are based on behav-
ioral differences between benign and malicious samples or
external factors/biases can be intricate. It is also challenging to
assess a model’s potential for generalization to other datasets,
as the training and testing dataset may lack the necessary
diversity and may only be suitable for specific types of
malware. AI explainers can serve as a diagnostic tool in the
data collection and model analysis process, offering insights
into the model’s performance and the quality of the dataset.
They may also shed light on the decision-making process

of the model by identifying top features that are key for
understanding the model’s classification results [1]. The top
features identified can help reveal potential biases and issues
in the dataset, and assess the model’s generalizability.

In this paper, we demonstrate how AI explainers can help
identify issues in data collection and enhance our understand-
ing of the model’s malware classification results. We gath-
ered event logs of benign and malicious applications running
on the Windows operating system using the Event Tracing
for Windows (ETW) tool. Two datasets were collected: the
first consists of event logs of Windows PE (Portable Exe-
cutable) malware collected from VirusShare [2] and benign PE
applications including Microsoft Word, PowerPoint, Google
Chrome, etc., whereas the second comprises logs of benign
and malicious PowerShell Scripts obtained from [3]–[22]. Our
analysis of explanation results reveals significant event loss
when utilizing the ETW for log collection. This problem arises
when the event generation rate substantially outpaces the event
processing rate, causing new logs to overwrite old ones before
they can be saved to disk. We devised multiple solutions to
address event loss, including utilizing Elasticsearch [23] as our
log storage solution, developing a selective collection method
that gathers only logs of the target process and processes
executed after it, and excluding unimportant features during
the log collection process.

Our analysis of explanation results also reveals the presence
of machine or environment-specific data within ETW logs.
Such data could potentially be used by models to differentiate
between benign and malicious samples, especially when be-
nign and malicious logs are collected from different machines.
Therefore, it is crucial to collect both benign and malicious
samples from a large and diverse pool of computers to enhance
the model’s robustness and generalizability.

In a nutshell, our contributions are summarized below.
• We collected two datasets containing logs from both

benign and malicious applications running on the Win-
dows operating system using ETW. Our Random Forest
classification model achieves an accuracy of 99.6% for
one dataset and 85% for the other.

• We utilized the TreeSHAP [24] explainer to analyze
the model’s prediction results to gain insights into the
model’s performance and the data collection process.

1

Through the analysis, we identified several issues within
the data collection process, including event loss and
the presence of environment-specific information, and
proposed solutions to address these issues.

• We used the explainer to identify mislabelled samples and
shared lessons learned from our data collection efforts.

Organization: The rest of the paper is organized as follows.
Section II provides a brief overview of ETW and the SHAP
explainer. Section III presents the general workflow for de-
bugging the malware classification model using explainable
AI and highlights common biases encountered in practice.
Section IV provides detailed information about our datasets
and the machine learning algorithm we employed. Section V
illustrates how TreeSHAP helps identify issues and biases in
the two datasets and shares lessons learned during our data
collection efforts. Related works are discussed in Section VI.
Section VII concludes the paper.

II. BACKGROUND

This section presents background on the SHAP explainer
and ETW.

A. SHAP Explainer

SHAP (SHapley Additive Explanation) [25] is a type of
additive feature attribution methods, which measure the con-
tributions made by simplified input features to the prediction
results by a target machine learning model. Simplified input
features, such as superpixels in images, are commonly used by
XAI (Explainable AI) methods to explain model predictions
as they are usually more concise and human-understandable
than the raw features. Formally speaking, given a blackbox
prediction model f and M simplified input features, an
additive feature attribution method uses a linear explanation
model g as defined below:

g(z′) = ϕ0 +

M∑
i=1

ϕiz
′
i, (1)

where z′ ∈ {0, 1}M and ϕi ∈ R provides the effect of the i-th
simplified input feature. Such a model can be used to explain
locally prediction made by model f at data point x, which can
be mapped from a simplified input x′ with a mapping function
hx (i.e., x = hx(x

′)) while having x′ ≈ z′.
Let fx(z′) = f(hx(z

′)) and z′ \ i denote setting z′i = 0 in
z′. It has been proven that when additive feature attribution
methods are considered, the only explanation model that sat-
isfies local accuracy, missingness, and consistency properties
must have feature attributions defined below:

ϕi(f, x) =
∑
z′∈x′

|z′|!(M − |z′| − 1)!

M !
[fx(z

′)−fx(z
′ \ i)], (2)

where |z′| is the number of non-zero entries in z′. The ϕi

in Eq. (2) are known as Shapley values in cooperative game
theory.

The SHAP explainer uses conditional expectations to define
the simplified input mapping function as follows: fx(z

′) =

f(hx(z
′)) = E[f(z)|zS], where S is the set of non-zero

indices in z′ and zS means that features not in set S are
assumed to have missing values. Moreover, ϕ0 = f(hx(0)) is
the same as E[f(z)], where all simplified inputs are assumed
to be missing or unknown.

Eq. (2) can be used to explain locally the classification result
made by model f at data point x with ϕi(f, x) giving the
attribution score of the i-th feature. By averaging the absolute
Shapley values of each individual feature among all the data
in dataset X , we can obtain its global importance as follows:

Φi(f) =
1

|X|
∑
x∈X

|ϕi(f, x)|. (3)

A significant hurdle in applying the SHAP explainer in
practice is its high computational burden. A straightforward
implementation of SHAP shown in Eq. (2) requires to iterate
all feature permutations, which can be prohibitive if the
classification model uses a large number of features. When
the classification model is tree-based, such as random forests
and gradient boosted trees, a variant of SHAP explainer called
TreeSHAP can significantly reduce the computational com-
plexity [24]. In this paper, we utilize the Random Forest model
for malware classification. While Random Forest provides
measures for computing the global importance of features
using model internals [26], TreeSHAP can be used to generate
both local and global explanations. TreeSHAP also offers
both positive and negative attributions for each feature in the
prediction, enabling effective model debugging.

B. Event Tracing for Windows (ETW)

ETW is a logging and tracing software for Windows
operating system developed by Microsoft, offering real-
time monitoring, diagnostics, and performance analysis. It
comprises three main components: producers, controllers,
and consumers. Producers generate detailed event data from
the operating system and applications, controllers manage
logging configurations, and consumers analyze and process log
messages. The Windows operating system features numerous
essential built-in event providers, such as Microsoft-
Windows-Kernel, Microsoft-Windows-Security-Auditing,
Microsoft-Windows-Diagnostics-Performance, Microsoft-
Windows-EventLog, Microsoft-Windows-PowerShell,
Microsoft-Windows-TaskScheduler, Microsoft-Windows-
Networking-Correlation, and Microsoft-Windows-Sysmon.
These providers generate event traces that capture a wide
range of critical system activities, including kernel-level
events, security-related actions, performance metrics, event
log changes, PowerShell usage, task scheduling, network
events, and detailed system activity. System administrators
and security analysts rely on event providers, especially
kernel-level providers such Microsoft-Windows-Kernel-
Process, to monitor system behaviors, diagnose issues,
optimize performance, and enhance security. These kernel-
level providers offer insights into core system operations,
including process creation, thread management, and other
crucial low-level activities.

2

Fig. 1. An example of an ETW event log entry.

Figure 1 gives an example of an ETW log entry
collected by the Microsoft-Windows-Kernel-File provider
identified by ‘ProviderId’ {EDD08927-9CC4-4E65-B970-
C2560FB5C289} [27]. It contains a key called “Event-
Header” [28], which specifies the event’s origin, timing, na-
ture, and other information that can aid users in interpreting
and analyzing the event. Providers are associated with vari-
ous keys. Some keys are shared across all providers, while
some are specific to individual providers. For example, the
‘ProviderId’ key is shared across all providers, while ‘FileKey’
is specific to the File provider. In ETW logs, system activ-
ities are categorized by the ‘TaskName’ and ‘Opcode’ keys.
‘TaskName’ (e.g., ‘READ’) is a human-readable description of
an activity, and ‘Opcode’ (e.g., 0) serves as a numeric identifier
for a specific operation. Both keys can be valuable features for
training machine learning models.

III. DEBUGGING WORKFLOW BASED ON EXPLAINABLE AI
Malware classification models trained from event logs can

be applied for both offline and online malware detection.
In offline malware detection, suspicious applications (e.g.,
Windows PE files or PowerShell scripts) are dynamically
executed within a controlled environment, where ETW logs
are collected. These logs are used to predict whether these
applications are benign or malicious based on pre-trained
machine learning models. In online malware detection, ETW
logs are continuously collected as audit logs, from which
classification models can be trained and used to detect whether
there are suspicious activities in a real computer system.

The solid-lined box in Figure 2 illustrates the common
practice for training malware classification models for both
scenarios, which includes the following four steps: (1) obtain
labelled benign/malicious samples; (2) set up controlled exe-
cution environments and collect ETW event logs from sample
executions; (3) extract features from ETW event logs; and
(4) train malware classification models. During this process,
three types of biases can occur in practice:

• Labelling bias: Malware samples are usually humanly la-
belled based on domain knowledge. However, the distinc-
tion between malware and benign samples can sometimes
be blurry. The same file deletion PowerShell script can be

malicious if it is used by the attacker to cause damage to
the computer system, or can be benign if it is executed
by a normal user to clean her files. When a malicious
program executes as a process, it may have subsequent
malicious activities not directly issued by the malicious
process. For example, it may spawn another proprietary
process or a PowerShell process to implement malicious
activities or utilize system services such as Remote
Desktop Services to execute commands on another host.
It is challenging to define the the boundary of activities
between benign and malicious programs. Labelling bias
could be introduced in such scenarios.

• Environment bias: Due to the destructive nature of
malware executions, execution logs are usually collected
within a controlled environment (e.g., virtual machines)
to prevent offensive malware traffic from being leaked
into the operational network. However, these environ-
ments for collecting event logs to train the malware
classification models may differ significantly from those
where the models are deployed, particularly for online
malware detection. In addition, the data collected may
contain environment-specific information, leading to po-
tential inaccuracies in the classification result.

• Logging bias: Depending upon the providers used, there
can be a large volume of events recorded by ETW. The
ETW event tracing framework allows to capture only
certain events of interest by limiting the set of providers
for event logging. During development of malware clas-
sification models, however, it is unclear what providers
should be used or what events should be recorded from
the selected providers. Such logging bias can affect the
performance of the classification models later trained
from the event logs to a large degree.

As illustrated in Figure 2, this work enhances the standard
ML practice in training malware classification models by
leveraging model explanation (dotted box). Assumed to be
blackbox to the explainer, a malware classification model un-
der development provides sample predictions to the explainer.
Using the explanation results from the explainer, the human
analyst identifies biases in the previous model training cycle

3

Fig. 2. Debugging workflow based on Explainable AI

and rectifies the issues in the relevant steps. While some of
the same issues can be identified with an ad-hoc combination
of other tools, this becomes less efficient when the datasets
are larger. XAI methods offer a coherent approach to expose
various kinds of biases in the datasets, thus enabling effective
debugging of the malware classification models.

In this work we use the SHAP explainer to debug malware
classification models for the following reasons. First, SHAP
provides a unifying approach to interpreting model predictions
with a strong theoretic foundation. This enables the proposed
framework seen in Figure 2 to be a generic solution to
debugging different kinds of malware classification models.
Second, as discussed in Section II-A, the SHAP explainer can
be used for both local explanations and global explanations.
Such capabilities offer the human analysts more insights into
model predictions than other explainers focusing on local
explanations alone. Last but not least, the various options
and plotting tools available with the SHAP explainer allow
the human analysts to find the explanation method that suits
best the classification model and the datasets in the task.
For example, since the malware classification model uses the
Random Forest classifier in this work, we use the TreeSHAP
method to speed up explanation.

IV. DATASET COLLECTION AND MODEL DEVELOPMENT

A. Datasets

We collected two datasets for malware classification us-
ing ETW, namely Dataset I and Dataset II. The logs
in both datasets were collected from four event providers:
[27]: (1) Microsoft-Windows-Kernel-Process, which records
process and thread activities; (2) Microsoft-Windows-Kernel-
File, which captures all file-related activities; (3) Microsoft-
Windows-Kernel-Registry, which records Windows registry in-
formation; and (4) Microsoft-Windows-Kernel-Network, which
records processes’ and threads’ network activities.

We utilized the pywintrace library [29] to gather event data
from various ETW providers. This library offers a Python
interface for interacting with ETW providers. During the data
collection, we noted a considerable delay in the writing of
ETW logs to the disk. Consequently, we allowed for a signif-
icant accumulation period for each data collection session.

Dataset I comprises 700 Windows PE (Portable Executable)
malware samples collected from VirusShare [2] and 699
benign PE applications. Logs of malware samples were col-
lected within a virtual machine (VM) running Windows 10,
configured with a fake network environment [30] to isolate
any potential impact of the malware within the VM. Benign
logs were collected on Windows 10 machines to reflect the
realistic setting. We collected logs from both user applications
and system processes, with each sample corresponding to logs
collected from a specific application.

Dataset II comprises ETW event logs of 148 benign and
148 malicious PowerShell scripts obtained from [3]–[22].

Table I gives the mean and the standard deviation of the log
size (i.e., the number of log entries) of benign and malware
samples in Datasets I and II. Malware samples exhibit a higher
average number of log entries, suggesting that malware pro-
cesses are generally more active than the benign applications.
Additionally, both malicious and benign samples show great
variability in log sizes, as indicated by their high standard
deviations.

B. Machine Learning Algorithm and Data Pre-processing

We selected Random Forest [31], a tree ensemble
model [32]–[34], as our malware detection model. During
data pre-processing, our primary focus was to identify which
ETW log attributes to use, ensuring that we selected features
suitable for the model. Towards this end, we conducted a
comprehensive analysis of ETW log attributes. We observed
that certain ETW log attributes, such as the ‘FileName’

4

TABLE I
THE AVERAGE NUMBER OF LOG ENTRIES OF BENIGN OR MALWARE SAMPLES.

Dataset I (PE Executables) Dataset II (PowerShell Scripts)
Mean Standard deviation Mean Standard deviation

Benign 8920.67 26474.06 27741.41 25650.74
Malware 13134.27 24584.44 36428.23 32646.52

attribute, exhibit virtualization artifacts that are readily dis-
tinguishable. For instance, malicious logs collected from a
VM consistently included ‘HarddiskVolume2’ in their ‘File-
Name’ attribute (e.g., /Device/HarddiskVolume2/Users/puma-
4/AppData/Local/Temp/nsb83A0.tmp), whereas benign logs
obtained from a physical machine consistently featured ‘Hard-
diskVolume3’. Therefore, we excluded such attributes from
consideration. We also observed attributes related to memory
addresses, such as ‘KeyObject’, which represent hexadecimal
values corresponding to the memory addresses of registry keys.
Such attributes were excluded because address information
is not generalizable across different systems. Based on our
analysis, we concluded that the two most suitable choices
for attributes are ‘TaskName’ and ‘Opcode’. These attributes
are universally provided by all event providers and convey
essential information about the event type in a human-readable
format, as discussed in Section II-B. Since the information
provided by ‘TaskName’ and ‘Opcode’ are complementary, we
merged them into a collection of features, each corresponding
to a TaskName-Opcode combination. Our model uses only
these features; other keys in log entries are unused. In our
datasets, each data point corresponds to the logs generated by
a specific process and its child processes. Similar to Yewale
and Singh [35], we calculate the frequency of our Taskname-
Opcode features from logs associated with a data point. These
frequencies serve as the values for our features.

V. MODEL DEBUGGING

Our model debugging results involve both global and local
explanation, which are discussed in Section II-A. The global
importance of features (global explanation) offers a compre-
hensive overview of the features the model depends on at the
dataset level. This information guides us in determining which
features to prioritize for further analysis. Global explanation
is visualized using global bar plot [36] where the x-axis
represents the global importance value Φi(f) in Eq. (3), and
the y-axis represents the features.

Explanations on local predictions (local explanation) offer
sample-level insights into each feature’s contribution to the
prediction. Through these local explanations, we identified
issues within our datasets that caused model predictions to be
predominantly driven by external factors rather than behavioral
distinctions between malicious and benign applications. We
also identified samples that should be removed from our
dataset due to mislabeling. Local explanation is visualized
using waterfall plot [37] where the x-axis corresponds to the
predicted probability of the malware class when considering
the feature values along the y-axis for a specific sample.

Fig. 3. Global explanation of model results for Dataset I

Blue bars with left-pointing arrows indicate feature values
pushing for a benign classification, while red bars represent
the opposite effect. The bar length denotes the extent of impact
and corresponds to ϕi in Eq. (2). E[f(X)] on the x-axis, which
is the base value, is equivalent to E[f(z)] in Section II-A.
The base value represents the predicted probability of malware
class if we did not have any information of the feature values
of this sample [25]. f(X) on the x-axis is equivalent to the
sum of ϕi across all features, denoted as

∑
i ϕi(f, x), added

by the base value. This represents the extent to which a sample
resembles a malware sample.

A. Missing logs

The model trained on our initial collection of Dataset I
achieved a perfect accuracy of 100%, and the global explana-
tion (Figure 3) reveals that this exceptional performance results
from contributions of various file and registry features. ‘Query
information’, ‘close’, ‘create’, ‘read’, and ‘cleanup’ are file-
related features, while ‘query value key’, ‘query key’, ‘open
key’, ‘close key’, ‘set information key’, and ‘enumerate key’
are registry-related features. Local explanations on benign test
samples of Dataset I reveal that the model’s perfect prediction

5

Fig. 4. Local explanation of correctly predicted benign sample (Dataset I)

result on benign samples are primarily due to all benign
samples having zero feature values for all file and registry
related features, as illustrated along the y-axis of Figure 4.
This observation raises concerns about the correctness of the
collected benign logs. A closer examination of the dataset
shows that logs of many benign applications contained a
large number of process and thread events such as ‘thread
work on behalf update’, ‘cpu priority change’, and ‘image
load’, accounting for approximately 50% of the total events.
This issue is more noticeable in larger applications. While
the excessive occurrence of ‘thread work on behalf update’
events is not inherently problematic, such a high frequency
can serve as an indicator of missing events during the log
collection process [38]. Further investigation revealed that
this issue could stem from either (1) the slower disk I/O
speed compared to the faster logging rate or (2) the real-
time consumer’s inability to keep up with the event generation
rate, resulting in the overwriting of old logs by new ones
before they could be saved on disk. To address (1), we
stream the logs into Elasticsearch [23] rather than storing
them on the disk. To tackle (2), we developed a selective log-
collection method that collect only logs of the target process
and processes executed after it. Subsequently, we recollected
logs for benign applications. These strategies enabled us to
capture the majority of events, although some event loss
persisted as logs were collected from four providers and each
provider generates events at a high rate.

Figure 5 presents the test accuracy of the Random Forest

Fig. 5. Classification accuracy with top N features (Dataset I)

model trained using the top N features (1 ≤ N ≤ 71)
based on the recollected Dataset I. The x-axis denotes the
value of N and the y-axis represents the accuracy of the
Random Forest model when utilizing the top 1−N features.
The N features are arranged in descending order of their
global importance. The Random Forest model achieves the
overall accuracy of 99.6% with just its top 11 features. This
suggests there are cases where not all features are critical for
the model’s performance. Therefore, for this specific dataset,
we can leverage the information provided by the explainer
to selectively subscribe to the identified subset of features by
configuring the ETW session to emit only events of specific
types from providers [39]. Alternatively, we can exclude
the Microsoft-Windows-Kernel-Network provider without sig-
nificantly impacting detection accuracy, because none of the
top 11 features (‘set information key’, ‘read’, ‘enumerate
value key’, ‘name create’, ‘enumerate key’, ‘query ea’, ‘fsctl’,
‘thread stop’, ‘create’, ‘query security’, and ‘query value key’)
are generated by this provider. These approaches can help
mitigate event loss in real-time detection by reducing both the
volume of events to process and the associated event logging
overhead.

Lesson 1: Data collection through ETW can result
in data loss due to event generation rate significantly
exceeding event processing rate.

B. Environment bias

The model trained on our initial collection of Dataset II also
achieved perfect accuracy of 100%. Figure 6 gives the global
importance bar plot for Dataset II, which shows that ‘queryea’,
‘fsctl’, ‘query security’, and ‘name create’ are the features with
the greatest influence on overall predictions. ‘queryea’, ‘query

6

Fig. 6. Global explanation (Dataset II)

security’, ‘fstcl’, and ‘name create’ are file I/O operations
used to retrieve extended attributes of a file [40], inquire a
file’s security information [41], [42], request file system I/O
control [43], [44], and create new files [45], respectively. Local
explanations consistently indicate consistent low values for
these four features in malware samples and high values in
benign samples, as shown under the “With Env. Bias” column
in Table II. This raises concerns regarding the accuracy of
the collected dataset. As a result, we re-collected the benign
and malware samples from the same environment. As shown
under the “Without Env. Bias” column in Table II, both benign
and malicious samples have more similar values for these
4 features. Collecting benign and malware samples from a
single environment can potentially result in logs that contain
environment/machine specific information (e.g. hardware and
resource utilization). To prevent classification based on en-
vironment/machine specific information, we re-collected both
benign and malware samples from multiple environments.
Based on the re-collected Dataset II, Random Forest achieves
85% accuracy without exhibiting any consistent and significant
contrast in features between benign and malware samples.

Lesson 2: Malicious and benign samples should be
executed in a diverse pool of environments to prevent
classification based on environment-specific features.

TABLE II
TOP 4 FEATURE STATISTICS: MALWARE VS. BENIGN (DATASET II)

With Env. Bias Without Env. Bias
Benign Malware Benign Malware

Avg. Std. Avg. Std. Avg. Std. Avg. Std.
queryea 78.9 22.4 1.5 7.2 4.4 15.9 6.4 17.1
fsctl 235 64.7 23.4 13.8 34.7 39.2 35.6 43.3
querysec. 293 417 31.8 17.4 46.4 43.4 48.2 50.7
namecreate 244 329 33.2 50.4 51.9 55.9 151 160

Fig. 7. Local explanation of mispredicted malware sample (Dataset II)

C. Labelling Bias

Malicious samples are typically labelled by humans based
on domain knowledge. However, the distinction between ma-
licious and benign samples can sometimes be blurry, leading
to labelling bias. Local explanations on mispredicted sam-
ples can offer insights into how the model interprets these
cases. Figure 7 gives the local explanation of a mispre-
dicted malware sample from Dataset II. The predominance
of blue bars with left arrows shows that all of its important
features point to a benign classification, even though the
sample is labeled as malicious. We examined the corre-
sponding Powershell script [46], which includes a single line
of code: Get-EventLog -LogName * | ForEach {
Clear-EventLog $_.Log }. This script retrieves event
logs in the system and clears them. It is labeled as malicious as
it can be exploited by attackers to maliciously delete event logs
of a system. However, computer systems may also routinely
delete old event logs without malicious intent. We chose to

7

exclude these scripts from the training dataset instead of intro-
ducing a third label “ambiguous,” as doing so would require
a substantial amount of samples labeled as “ambiguous” to
achieve high accuracy in multi-class classification.

Similarly, a Powershell script Write-Host ’My voice
is my passport, verify me.’ [47], which simply
prints the specified string, has also been labeled as malicious.
The local explanation also shows a large number of left-
pointing blue bars suggesting that this sample is benign. As
this script does not perform any malicious activities, it is
unclear why it is labeled as malicious. We could upload these
ambiguous samples to some malware classification services
such as VirusTotal [48] for label confirmation. However, the
labeling results from these services can be inconsistent or
sometimes wrong [49], [50]. We thus opt for a more practical
approach by excluding them from the training datasets.

Lesson 3: Local explanations can help identify mis-
labeled samples and thus improve the accuracy of the
malware classification models.

VI. RELATED WORK

Nadeem et. al. [51] systematically studied how to utilize
explainable AI methods for security domains and identified
three cybersecurity stakeholders, including model users, model
designers, and adversaries. The work in [52]–[56] showed that
explainable AI can offer decision support to model users,
enabling them to prioritize threats, reduce workloads, and
enhance efficiency by concentrating on high-level threats.
Additionally, users can leverage explainable AI to identify
false alarms by examining the explanations provided by the
model for its predictions [57]–[61].

Explainable AI can also be leveraged by adversaries for
offensive purposes. It provides adversaries with insights into
the machine learning model, enabling them to execute attacks
that compromise data confidentiality [62]–[65], as well as
integrity and availability [64], [66]–[70].

Explainable AI can also serve as a tool for model designers
to debug and validate the correctness of a model. Angelini
et al. [71] propose to enhance the decision-making process
in malware detection by providing visual insights into data,
model decisions, and potential issues. Lemna [72] is a model-
agnostic tool for explaining the decisions of deep learning
security models. Kyadige et al. [73] proposed a multi-view
deep neural network which produces a detection score based
on feature vectors from PE file content and their respective
file paths. They used the LIME explainer to perform an
interpretability analysis, which aimed at verifying the classifier
has learned a sensible representation and examining how the
file path impacts changes in the classifier’s score. Becker et
al. [74] proposed a visual analytics system for deep learning
models in multi-class DGA classification. Their approach
addresses explainable AI challenges in understanding algorith-
mically generated data with complex semantics, particularly in
cybersecurity. CADE [75] is a method designed for detecting

and explaining concept drift samples in security applications.
It helps model designers enhance model performance by
understanding shifts in data patterns over time, allowing for
timely adjustments to the model to maintain its effectiveness
in dynamic environments. Dolej et al. [76] introduced a
method to enhance the interpretability of machine learning-
based results in malware detection by generating a set of
rules that explain the decision-making process of the model.
The above-mentioned works assume the correctness of the
dataset used in machine learing. Our work, in contrast, utilizes
explainable AI to identify issues and biases in the collected
data, thereby improving the quality of the training data.

Several explainers were developed for traditional ma-
chine learning models, including SHAP [25], LIME [77],
DALEX [78], and Grad-CAM [79]. Techniques have also
been developed to explain the prediction results of Graph
Neural Networks (GNNs), including GNNExplainer [80],
PGExplainer [81], SubgraphX [82], CFGExplainer [83],
PROVEXPLAINER [84], XGNN [85], RelEx [86], and
GraphLIME [87]. Many of these methods generate explana-
tions by identifying sub-graphs that have the most impact
on malware classification results. In contrast, this paper does
not introduce new explanation methods. Instead, it focuses on
utilizing the SHAP explainer to detect potential issues within
the datasets for malware classification.

VII. CONCLUSION

In this paper, we demonstrate how explainable AI (XAI)
methods can help identify issues in the data collection process
for malware detection and enhance understanding of the de-
tection model’s classification results. We utilized TreeSHAP
to analyze the model predication results, through which we
identified issues within the data collection process, including
event loss and the presence of environment-specific informa-
tion, and proposed solutions to address these issues. We also
identified mislabelled samples and shared lessons learned from
our data collection and classifier training efforts.

In the future we plan to extend this work as follows.
First, this work considers only malware classification models
trained from tabular feature data. Existing research suggests
that graph-represented data extracted from static and dynamic
analysis of malware samples, such as control flow graphs
and provenance graphs, can also be used to build malware
classification models with high predictive power. As SHAP
cannot be applied to explain predictions by such models
directly, we plan to investigate XAI methods for debugging
graph-based malware classification models. Second, the
effectiveness of XAI methods hinges upon how well they
can assist human analysts in identifying critical issues that
affect the performance of malware classification models. This
challenge is particularly pronounced in malware classification
tasks, where interpretation of explanation results hinges
upon domain knowledge, unlike other classification tasks
such as image classification where the explanations can
be inherently human-understandable. We plan to develop
methods that can bridge the gap between the explanations

8

produced by XAI tools and explanations expected by human
analysts. We believe that such human-computer interactions
are crucial to the success of XAI methods in cybersecurity
applications, including malware detection. Additionally, we
plan to investigate methods that leverage the human-in-the-
loop process to enhance the efficiency of the explanation
process [88]. Last but not least, in this work we have
demonstrated that XAI methods are valuable to model
developers in training malware classification models. We also
plan to investigate how XAI methods can assist model users
in understanding detection results from machine learning
models. It is also interesting to study how XAI methods can be
abused by attackers to develop more evasive malware variants.

Acknowledgement: This work is supported in part by a
SUNY-IBM AI Research Alliance grant. We thank the anony-
mous reviewers for their constructive comments.

REFERENCES

[1] B. Pfeifer, A. Holzinger, and M. G. Schimek, “Robust random forest-
based all-relevant feature ranks for trustworthy ai,” Studies in Health
Technology and Informatics, vol. 294, pp. 137–138, 2022.

[2] Virusshare. [Online]. Available: https://virusshare.com/
[3] C. Ross. (2019, May) Empire. [Online]. Available: https://github.com/

EmpireProject/Empire/tree/master/data
[4] RiskyDissonance. (2022, March) poshc2. [Online]. Available: https:

//github.com/nettitude/PoshC2/tree/master/resources/modules
[5] N. Mittal. (2023, Feb) nishang. [Online]. Available: https://github.com/

samratashok/nishang
[6] Will. (2020, Aug) Powersploit. [Online]. Available: https://github.com/

PowerShellMafia/PowerSploit
[7] J. Russell. (2021, Feb) powershell-scripts. [Online]. Available:

https://github.com/jrussellfreelance/powershell-scripts
[8] S. Sutherland. (2023, April) Powershellery. [Online]. Available:

https://github.com/nullbind/Powershellery
[9] C. Ross. (2017, Dec) Randomps-scripts. [Online]. Available: https:

//github.com/xorrior/RandomPS-Scripts
[10] RaouzRouik. (2022, Aug) smallposh. [Online]. Available: https:

//github.com/RaouzRouik/smallposh
[11] BlackSnufkin. (2022, mar) pt-toolkit. [Online].

Available: https://github.com/BlackSnufkin/PT-ToolKit/tree/
f78567ce9b4701acfd6af21196b95eef44bbc9c5/PowerShell-Scripts

[12] G. Tworek. (2023, Aug) Psbits. [Online]. Available: https://github.com/
gtworek/PSBits

[13] (2023, May) Offsec-powershell. [Online]. Available: https://github.com/
IAMinZoho/OFFSEC-PowerShell

[14] D. Nefedov. (2023, Aug) Sophia Community. [Online]. Available:
https://github.com/farag2/Utilities

[15] J. Briggs. (2023, May) Psscripts. Actuarial Open Source Community.
[Online]. Available: https://github.com/jimbrig/PSScripts

[16] B. Olin. (2023, Aug) Terminal-icons. [Online]. Available: https:
//github.com/devblackops/Terminal-Icons

[17] N. Rodriguez. (2023, feb) Powershell-scripts. [Online]. Available:
https://github.com/nickrod518/PowerShell-Scripts

[18] E. G. Godoy. (2021, Oct) Sysadmin-survival-kit-scripts. [Online].
Available: https://github.com/ErickRock/Sysadmin-Survival-Kit-Scripts

[19] M. Fleschutz. (2023, Aug) Powershell. [Online]. Available: https:
//github.com/fleschutz/PowerShell/tree/master/Scripts

[20] P. Larrubia. (2023, April) Win-debloat-tools. [Online]. Available:
https://github.com/LeDragoX/Win-Debloat-Tools/tree/main/src/scripts

[21] J. Hochwald. (2023, July) Powershell-collection. [Online]. Available:
https://github.com/jhochwald/PowerShell-collection

[22] stevencohn. (2023, June) Windowspowershell. [Online]. Available:
https://github.com/stevencohn/WindowsPowerShell

[23] P. Shukla and S. Kumar, Learning elastic stack 7. 0 : distributed search,
analytics, and visualization using elasticsearch, logstash, beats, and
kibana. Mumbai, India: Packt Publishing, 2019.

[24] S. M. Lundberg, G. G. Erion, and S.-I. Lee, “Consistent individualized
feature attribution for tree ensembles,” arXiv preprint arXiv:1802.03888,
2018.

[25] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model
predictions,” in Proceedings of the 31st International Conference on
Neural Information Processing Systems, ser. NIPS’17. Red Hook, NY,
USA: Curran Associates Inc., 2017, p. 4768–4777.

[26] G. Louppe, L. Wehenkel, A. Sutera, and P. Geurts, “Understanding
variable importances in forests of randomized trees,” Advances in neural
information processing systems, vol. 26, 2013.

[27] I. Yoshizaki. (20022, sept) Providers. github. [Online]. Available:
https://gist.github.com/guitarrapc/35a94b908bad677a7310

[28] Microsoft Team. (2022, August) Microsoft. [Online]. Avail-
able: https://learn.microsoft.com/en-us/windows/win32/api/evntcons/
ns-evntcons-event header

[29] (2023, Mar) pywintrace. fireeye. [Online]. Available: https://github.
com/fireeye/pywintrace/tree/master

[30] Fakenet-ng. [Online]. Available: https://github.com/mandiant/
flare-fakenet-ng

[31] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001. [Online]. Available: https://doi.org/10.1023/A:1010933404324

[32] E. Mushtaq, F. Shahid, and A. Zameer, “A comparative study of machine
learning models for malware detection,” in 2022 19th International
Bhurban Conference on Applied Sciences and Technology (IBCAST),
2022, pp. 677–681.

[33] H. Rathore, S. Agarwal, S. K. Sahay, and M. Sewak, “Malware detection
using machine learning and deep learning,” in Big Data Analytics: 6th
International Conference, BDA 2018, Warangal, India, December 18–
21, 2018, Proceedings 6. Springer, 2018, pp. 402–411.

[34] C. D. Morales-Molina, D. Santamaria-Guerrero, G. Sanchez-Perez,
H. Perez-Meana, and A. Hernandez-Suarez, “Methodology for malware
classification using a random forest classifier,” in 2018 IEEE Interna-
tional Autumn Meeting on Power, Electronics and Computing (ROPEC),
2018, pp. 1–6.

[35] A. Yewale and M. Singh, “Malware detection based on opcode fre-
quency,” in 2016 International Conference on Advanced Communication
Control and Computing Technologies (ICACCCT), 2016, pp. 646–649.

[36] S. Lundberg. (2020, Sep) Shap global bar plot. [Online].
Available: https://shap.readthedocs.io/en/latest/example notebooks/api
examples/plots/bar.html#Global-bar-plot

[37] ——. (2020, Jul) Shap waterfall plot. [Online].
Available: https://shap.readthedocs.io/en/latest/example notebooks/api
examples/plots/waterfall.html#waterfall-plot

[38] Karl-Bridge-Microsoft. (2021, Jan) About event tracing - missing
events. [Online]. Available: https://learn.microsoft.com/en-us/windows/
win32/etw/about-event-tracing#missing-events

[39] M. Baranauskas. (2020, June) Etw: Event tracing
for windows 101. [Online]. Available: https://www.ired.
team/miscellaneous-reversing-forensics/windows-kernel-internals/
etw-event-tracing-for-windows-101

[40] Microsoft. (2023, March) IRP-MJ-QUERY-EA (FS and filter
drivers). [Online]. Available: https://learn.microsoft.com/en-us/
windows-hardware/drivers/ifs/irp-mj-query-ea

[41] ——. (2023, March). [Online]. Available: https://learn.microsoft.com/
en-us/windows-hardware/drivers/ifs/irp-mj-query-security

[42] ——. (2021, Oct) Getsecurityinfo function (aclapi.h). [Online].
Available: https://learn.microsoft.com/en-us/windows/win32/api/aclapi/
nf-aclapi-getsecurityinfo

[43] ——. (2023, March) About FSCTLs. [Online]. Available: https:
//learn.microsoft.com/en-us/windows-hardware/drivers/ifs/about-fsctls

[44] ——. (2023, March) IRP-MJ-FILE-SYSTEM-CONTROL (FS and
filter drivers). [Online]. Available: https://learn.microsoft.com/en-us/
windows-hardware/drivers/ifs/irp-mj-file-system-control

[45] ——. (2021, Oct) Ntcreatefile function (winternl.h). [On-
line]. Available: https://learn.microsoft.com/en-us/windows/win32/api/
winternl/nf-winternl-ntcreatefile

[46] RaouzRouik. (2022, Aug) smallposh/cleareventlogs.ps1. [On-
line]. Available: https://github.com/RaouzRouik/smallposh/blob/main/
cleareventlogs.ps1

[47] nullbind. (2014, July) Powershellery/runme.ps1. [On-
line]. Available: https://github.com/nullbind/Powershellery/blob/master/
Brainstorming/runme.ps1

[48] Virustotal. [Online]. Available: https://www.virustotal.com/

9

[49] F. Maggi, A. Bellini, G. Salvaneschi, and S. Zanero, “Finding non-trivial
malware naming inconsistencies,” in Information Systems Security: 7th
International Conference, ICISS 2011, Kolkata, India, December 15-19,
2011, Procedings 7. Springer, 2011, pp. 144–159.

[50] G. Yan, N. Brown, and D. Kong, “Exploring discriminatory features
for automated malware classification,” in International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment.
Springer, 2013, pp. 41–61.

[51] A. Nadeem, D. Vos, C. Cao, L. Pajola, S. Dieck, R. Baumgartner, and
S. Verwer, “Sok: Explainable machine learning for computer security
applications,” in 2023 IEEE 8th European Symposium on Security and
Privacy (EuroS&P). IEEE, 2023, pp. 221–240.

[52] E. Holder and N. Wang, “Explainable artificial intelligence (xai) in-
teractively working with humans as a junior cyber analyst,” Human-
Intelligent Systems Integration, vol. 3, no. 2, pp. 139–153, 2021.

[53] A. Nadeem, S. Verwer, S. Moskal, and S. J. Yang, “Alert-driven attack
graph generation using s-pdfa,” IEEE Transactions on Dependable and
Secure Computing, vol. 19, no. 2, pp. 731–746, 2021.

[54] T. Van Ede, H. Aghakhani, N. Spahn, R. Bortolameotti, M. Cova,
A. Continella, M. van Steen, A. Peter, C. Kruegel, and G. Vigna,
“Deepcase: Semi-supervised contextual analysis of security events,” in
2022 IEEE Symposium on Security and Privacy (SP). IEEE, 2022, pp.
522–539.

[55] G. De La Torre Parra, L. Selvera, J. Khoury, H. Irizarry, E. Bou-Harb,
and P. Rad, “Interpretable federated transformer log learning for cloud
threat forensics,” NDSS 22, 2022.

[56] H. Li, J. Wu, H. Xu, G. Li, and M. Guizani, “Explainable intelligence-
driven defense mechanism against advanced persistent threats: A joint
edge game and ai approach,” IEEE Transactions on Dependable and
Secure Computing, vol. 19, no. 2, pp. 757–775, 2021.

[57] A. Sopan, M. Berninger, M. Mulakaluri, and R. Katakam, “Building
a machine learning model for the soc, by the input from the soc, and
analyzing it for the soc,” in 2018 IEEE Symposium on Visualization for
Cyber Security (VizSec). IEEE, 2018, pp. 1–8.

[58] B. Mahbooba, M. Timilsina, R. Sahal, and M. Serrano, “Explainable
artificial intelligence (xai) to enhance trust management in intrusion
detection systems using decision tree model,” Complexity, vol. 2021,
pp. 1–11, 2021.

[59] M. Szczepański, M. Choraś, M. Pawlicki, and R. Kozik, “Achieving
explainability of intrusion detection system by hybrid oracle-explainer
approach,” in 2020 International Joint Conference on neural networks
(IJCNN). IEEE, 2020, pp. 1–8.

[60] K. de Bie, A. Lucic, and H. Haned, “To trust or not to trust a regressor:
Estimating and explaining trustworthiness of regression predictions,”
arXiv preprint arXiv:2104.06982, 2021.

[61] M. Kinkead, S. Millar, N. McLaughlin, and P. O’Kane, “Towards
explainable cnns for android malware detection,” Procedia Computer
Science, vol. 184, pp. 959–965, 2021.

[62] X. Zhao, W. Zhang, X. Xiao, and B. Lim, “Exploiting explanations for
model inversion attacks,” in Proceedings of the IEEE/CVF international
conference on computer vision, 2021, pp. 682–692.

[63] R. Shokri, M. Strobel, and Y. Zick, “On the privacy risks of model
explanations,” in Proceedings of the 2021 AAAI/ACM Conference on
AI, Ethics, and Society, 2021, pp. 231–241.

[64] A. Kuppa and N.-A. Le-Khac, “Adversarial xai methods in cybersecu-
rity,” IEEE transactions on information forensics and security, vol. 16,
pp. 4924–4938, 2021.

[65] N. Papernot, P. McDaniel, A. Sinha, and M. P. Wellman, “Sok: Security
and privacy in machine learning,” in 2018 IEEE European Symposium
on Security and Privacy (EuroS&P). IEEE, 2018, pp. 399–414.

[66] L. Demetrio, B. Biggio, G. Lagorio, F. Roli, and A. Armando, “Explain-
ing vulnerabilities of deep learning to adversarial malware binaries,”
arXiv preprint arXiv:1901.03583, 2019.

[67] G. Severi, J. Meyer, S. Coull, and A. Oprea, “Explanation-guided
backdoor poisoning attacks against malware classifiers,” in 30th USENIX
security symposium (USENIX security 21), 2021, pp. 1487–1504.

[68] X. Wu, W. Guo, H. Wei, and X. Xing, “Adversarial policy training
against deep reinforcement learning,” in 30th USENIX Security Sympo-
sium (USENIX Security 21), 2021, pp. 1883–1900.

[69] J. Xu, M. Xue, and S. Picek, “Explainability-based backdoor attacks
against graph neural networks,” in Proceedings of the 3rd ACM Work-
shop on Wireless Security and Machine Learning, 2021, pp. 31–36.

[70] Z. Shu and G. Yan, “EAGLE: Evasion attacks guided by local expla-
nations against Android malware classification,” IEEE Transactions on
Dependable and Secure Computing, 2023.

[71] M. Angelini, L. Aniello, S. Lenti, G. Santucci, and D. Ucci, “The goods,
the bads and the uglies: Supporting decisions in malware detection
through visual analytics,” in 2017 IEEE Symposium on Visualization
for Cyber Security (VizSec). IEEE, 2017, pp. 1–8.

[72] W. Guo, D. Mu, J. Xu, P. Su, G. Wang, and X. Xing, “Lemna: Explaining
deep learning based security applications,” in proceedings of the 2018
ACM SIGSAC conference on computer and communications security,
2018, pp. 364–379.

[73] A. Kyadige, E. M. Rudd, and K. Berlin, “Learning from context: A
multi-view deep learning architecture for malware detection,” in 2020
IEEE Security and Privacy Workshops (SPW). IEEE, 2020, pp. 1–7.

[74] F. Becker, A. Drichel, C. Müller, and T. Ertl, “Interpretable visualizations
of deep neural networks for domain generation algorithm detection,” in
2020 IEEE Symposium on Visualization for Cyber Security (VizSec).
IEEE, 2020, pp. 25–29.

[75] L. Yang, W. Guo, Q. Hao, A. Ciptadi, A. Ahmadzadeh, X. Xing, and
G. Wang, “CADE: Detecting and explaining concept drift samples for
security applications,” in 30th USENIX Security Symposium (USENIX
Security 21), 2021, pp. 2327–2344.

[76] J. Dolejš and M. Jureček, “Interpretability of machine learning-based re-
sults of malware detection using a set of rules,” in Artificial Intelligence
for Cybersecurity. Springer, 2022, pp. 107–136.

[77] M. Ribeiro, S. Singh, and C. Guestrin, ““why should i trust you?”:
Explaining the predictions of any classifier,” 02 2016, pp. 97–101.

[78] P. Biecek, “Dalex: Explainers for complex predictive models in r,” The
Journal of Machine Learning Research, vol. 19, no. 1, pp. 3245–3249,
2018.

[79] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-cam: Visual explanations from deep networks via
gradient-based localization,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 618–626.

[80] R. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec, GNNEx-
plainer: Generating Explanations for Graph Neural Networks. Red
Hook, NY, USA: Curran Associates Inc., 2019.

[81] D. Luo, W. Cheng, D. Xu, W. Yu, B. Zong, H. Chen, and X. Zhang,
“Pgexplainer,” 2020. [Online]. Available: https://github.com/flyingdoog/
PGExplainer

[82] H. Yuan, H. Yu, J. Wang, K. Li, and S. Ji, “On explainability of graph
neural networks via subgraph explorations,” in International Conference
on Machine Learning. PMLR, 2021, pp. 12 241–12 252.

[83] J. D. Herath, P. P. Wakodikar, P. Yang, and G. Yan, “Cfgexplainer:
Explaining graph neural network-based malware classification from
control flow graphs,” in 2022 52nd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), 2022, pp.
172–184.

[84] K. Mukherjee, J. Wiedemeier, T. Wang, M. Kim, F. Chen, M. Kantar-
cioglu, and K. Jee, “Interpreting gnn-based ids detections using prove-
nance graph structural features,” 2023.

[85] H. Yuan, J. Tang, X. Hu, and S. Ji, “Xgnn: Towards model-level
explanations of graph neural networks,” in Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, 2020, pp. 430–438.

[86] Y. Zhang, D. Defazio, and A. Ramesh, “Relex: A model-agnostic
relational model explainer,” in Proceedings of the 2021 AAAI/ACM
Conference on AI, Ethics, and Society, 2021, pp. 1042–1049.

[87] Q. Huang, M. Yamada, Y. Tian, D. Singh, and Y. Chang, “Graphlime:
Local interpretable model explanations for graph neural networks,” IEEE
Transactions on Knowledge and Data Engineering, 2022.

[88] A. Gevaert, A. Saranti, A. Holzinger, and Y. Saeys, “Efficient approxi-
mation of asymmetric shapley values using functional decomposition,”
in International Cross-Domain Conference for Machine Learning and
Knowledge Extraction. Springer, 2023, pp. 13–30.

10

