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Plan for the Talk 
 Linguistic background for coreference resolution 

 supervised machine learning approach 

 weakly supervised approaches 



Reference resolution 

 Reference: the process by which speakers use expressions 
like “John Simon” and “his” to denote a  real-world entity 
 Referring expressions: NL expression used to perform reference 

 Referent: the entity that is referred to 

 Shorthand form: his refers to John Simon 

John Simon, Chief Financial Officer of Prime Corp. 

 since 1986, saw his pay jump 20%, to $1.3 million, 

 as the 37-year-old also became the financial- 

services company’s president... 
? 



Coreference 

 Coreference: two referring expressions that are used to refer to 
the same entity are said to corefer 

 John Simon is the antecedent of his. 

 Reference to an entity that has been previously introduced into 
the discourse is called anaphora; and the referring expression 
used is said to be anaphoric. 

John Simon, Chief Financial Officer of Prime Corp. 

 since 1986, saw his pay jump 20%, to $1.3 million, 

 as the 37-year-old also became the financial- 

services company’s president... 



Types of referring expressions 

 Definite Noun Phrases 

 

 Indefinite Noun Phrases 

 

 Pronouns 

 

 Demonstrative pronouns 

 

 One-Anaphora 



Indefinite noun phrases 
 Introduce entities that are new to the hearer into the discourse 

context 

 I saw a Subaru WRX today. 

 I saw this awesome Subaru WRX today. 
 

Definite noun phrases 
 Refer to an entity that is identifiable to the hearer 

 It has already been mentioned in the discourse 
 It is contained in the hearer’s set of beliefs about the world 
 The uniqueness of the object is implied by the description itself 

 I saw a Subaru WRX today.  The WRX was blue and needed a 
wash. 

 The Indy 500 is the most popular car race in the US. 
 The fastest car in the Indy 500 was a Subaru WRX. 



Pronouns 
 Another form of definite reference 

 Also known as Anaphora 

 Referent must have a high degree of activation or salience in 
the discourse model 
 John went to Bob’s party, and parked next to a beautiful 

Subaru WRX.  He went inside and talked to Bob for more 
than an hour. Bob told him that he recently got engaged. 

 (a)?? He also said that he bought it yesterday. 
 (a’)    He also said that he bought the WRX yesterday. 
 

 Cataphora: referring expression is mentioned before its 
referent 

 Before he bought it, John checked over the WRX carefully. 



Types of referring expressions 

 Definite Noun Phrases 

 

 Indefinite Noun Phrases 

 

 Pronouns 

 

 Demonstrative pronouns 

 

 One-Anaphora 



Demonstrative pronouns 
 Behave somewhat differently than simple definite pronouns 

 Can appear alone or as determiners 
 Choice of this or that depends on some notion of spatial or 

temporal proximity 
  I bought a WRX yesterday.  It’s similar to the one I bought a 

year ago.  That one was really nice, but I like this one even 
better. 

 

One-anaphora 
 Blends properties of definite and indefinite reference 

 I saw no fewer than 6 Subaru WRX’s today.  Now I want one. 
 May introduce a new entity into the discourse, but it is 

dependent on an existing referent for the description of this 
new entity. 



Noun Phrase Coreference Resolution 

 Identify all phrases that refer to each real-world entity 
mentioned in the text 

John Simon, Chief Financial Officer of Prime Corp. 

 since 1986, saw his pay jump 20%, to $1.3 million, 

 as the 37-year-old also became the financial- 

services company’s president... 



Why It’s Hard 
Many sources of information play a role 
 head noun matches 

 IBM executives = the executives 
 Microsoft executives 

 

 syntactic constraints 
 John helped himself to... 

 
 John helped him to… 

 

 discourse focus, recency, syntactic parallelism, 
semantic class, agreement, world knowledge, …  

 



Why It’s Hard 
No single source is a completely reliable indicator 
 

 semantic preferences 

 Mr. Callahan = president =?  the carrier 

 

 number and gender 

 assassination (of Jesuit priests) = these murders 

 the woman = she = Mary =? the chairman 



Why It’s Hard 
Coreference strategies differ depending on the type 

of referring NP 
 definiteness of NPs 

 … Then Mark saw  the man walking down the street. 
 … Then Mark saw  a man walking down the street. 

 

 pronoun resolution alone is notoriously difficult 
 resolution strategies differ for each type of pronoun 
 some pronouns refer to nothing in the text 

 
I went outside and it was snowing. 

 



Types of referents: complications 
 Inferable 

 A referring expression does not refer to an entity in the text, but to one 
that is inferentially related to it. 

 I almost bought a WRX today, but a door had a dent and the engine 
seemed noisy. 

 Mix the flour, butter, and water.  Stir the batter  until all lumps are 
gone. 

 Discontinuous sets 
 Referents may have been evoked in discontinuous phrases 

 John has a Volvo, and Mary has a Mazda.  They drive them all the 
time. 

 Generics – refer to a class of entities 
 I saw no fewer than 6 WRX’s today.  They are the coolest cars. 



Traditional Knowledge-Based 
Approaches 

 
 hand-crafted heuristics and filters 

 syntactic filters  [Lappin and McCord 1990a] 

 morphological filter 
 pleonastic pronoun filter (“It was raining.”) 
 procedure for identifying possible antecedents         [Lappin and 

McCord 1990b] 

 salience assignment w.r.t. grammatical role, proximity, 
parallelism,etc. 
 

 decision procedure 

Lappin and Leass [1994] 



Problems with hand-written rules 
 Portability 

 Robustness 

 Few large-scale evaluations 

 Evaluations make a number of simplifying 
assumptions 
 perfect parse 
 omit many difficult cases, e.g. pleonastic pronouns 

 Impose coreference resolution strategies rather 
than learn them empirically 



Plan for the Talk 
 Linguistic background for coreference resolution 

 supervised machine learning approach 

 weakly supervised approaches 



Noun Phrase Coreference 

Identify all noun phrases that refer to the same entity 

Queen Elizabeth set about transforming her husband,  

King George VI, into a viable monarch. Logue,  

a renowned speech therapist, was summoned to help 

the King overcome his speech impediment...  
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Noun Phrase Coreference 

Identify all noun phrases that refer to the same entity 

 

 

 

 

 

 

 

   Singletons! 
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Noun Phrase Coreference 

Identify all noun phrases that refer to the same entity 
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Typical Steps: 

 

 Step1: Noun Phrase Identification 

 Step2: Pairwise Classification 

 Step3: Clustering (Why?) 
 

 

 

A Machine Learning Approach 



 Step1: Find all noun phrases 

 Using “partial parsers” or “chunkers”  
 

 

 

[Queen Elizabeth] set about transforming [her] [husband], ...  

 

  

A Machine Learning Approach 



 Step2: Pair-wise Classification (using machine learning) 

 given a description of two noun phrases, NPi and NPj, 
classify the pair as coreferent or not coreferent 
 

 

 
[Queen Elizabeth] set about transforming [her] [husband], ...  

 

  

coref ? 

coref ? 

coref ? 

Aone & Bennett [1995]; Connolly et al. [1994]; McCarthy & Lehnert [1995];  

Soon et al. *2001+; Ng & Cardie *2002+; … 

A Machine Learning Approach 



husband 

King George VI 

the King 

his 

Clustering 
Algorithm 

Queen Elizabeth 

her 

Logue 

a renowned 
speech therapist 

Queen Elizabeth 

Logue 

 Step3: Clustering 
 coordinates pairwise coreference decisions 

[Queen Elizabeth], 

set about transforming 

[her]                                 

[husband]                  

...                                 

coref 

not coref 

not  

coref 

King George VI 

A Machine Learning Approach 



Machine Learning Issues 

 Training data creation 

 

 Instance representation 

 

 Learning algorithm for pair-wise decisions 

 

 Clustering algorithm (to combine pair-wise decisions) 



Supervised Inductive Learning 

(novel) pair of NPs       

(features) class 

Examples of NP pairs  (features + class) 

ML Algorithm 

Concept description 

(program) 



Training Data Creation 

 Creating training instances 
 texts annotated with coreference information 

 

 

 

 one instance inst(NPi, NPj) for each ordered pair of NPs 
  NPi precedes NPj 

 feature vector: describes the two NPs and context 

 class value:  

coref               pairs on the same coreference chain 

not coref         otherwise 

 

anaphor candidate antecedent 



Instance Representation 

 lexical  
 string matching for pronouns, proper names, common nouns 

 grammatical  
 pronoun_1, pronoun_2, demonstrative_2, indefinite_2, … 

 number, gender, animacy 

 appositive, predicate nominative 

 binding constraints, simple contra-indexing constraints, … 

 span, maximalnp, … 

 semantic  
 same WordNet class 

 alias 

 positional  
 distance between the NPs in terms of # of sentences 

 knowledge-based  

 naïve pronoun resolution algorithm 



Why It’s Hard 
Many sources of information play a role 

 string matching, syntactic constraints, semantic class, 

 number agreement, gender agreement,  

 discourse focus, recency, 

 world knowledge…  

 

 No single source is a completely reliable indicator 
 

 Identifying each of these features automatically, 
accurately, and in context, is hard 

 
 



Clustering Algorithm  

 Best-first single-link clustering 
 Mark each NPj as belonging to its own class: NPj  cj 

 Proceed through the NPs in left-to-right order.   
 For each NP, NPj, create test instances, inst(NPi, NPj), for all 

of its preceding NPs, NPi. 
 Select as the antecedent for NPj the highest-confidence 

coreferent NP, NPi, according to the coreference classifier 
(or none if all have below .5 confidence); 

 Merge cj and cj .  
 

Pros? 
Cons? 

 
 



Clustering Algorithm  

 Best-first single-link clustering 
 

Pros: Simple but works surprisingly well! 

Cons: Can’t go back and revise previous decisions 

 

 Clustering algorithms that make collective 
decisions: 

 Corelational Clustering 

 Multi-cut 

 NP-hard, often hard to beat single-link clustering 

 
 



Evaluation 

 MUC-6 and MUC-7 coreference data sets 

 documents annotated w.r.t. coreference 

 30 + 30 training texts (dry run) 

 30 + 20 test texts (formal evaluation) 

 scoring program 
 recall  

 precision  

 F-measure: 2PR/(P+R) 

System output 

C   D A   B 

Key 



Baseline Results 

 

 
MUC-6 MUC-7 

 
R P F R P F 

Baseline 40.7 73.5 52.4 27.2 86.3 41.3 

Worst MUC System 36 44 40 52.5 21.4 30.4 

Best MUC System 59 72 65 56.1 68.8 61.8 
 

 



Problem 1 

 Coreference is a rare relation 
 skewed class distributions (2% positive instances) 

 remove some negative instances 

NP3 NP4 NP5 NP6 NP7 NP8 NP9 NP2 NP1 

farthest antecedent 



Problem 2 

 Which pair do you think is harder for computers to 
learn/predict? 
 

 

Queen Elizabeth set about transforming her husband,  

King George VI, into a viable monarch. Logue,  

the renowned speech therapist, was summoned to help  

the King overcome his speech impediment...  



Problem 2 

 Order the following in the order of difficulties: 

    (assuming best-first single-link clustering) 

 Pronouns 

 Proper Nouns 

 Common nouns 
 

Queen Elizabeth set about transforming her husband,  

King George VI, into a viable monarch. Logue,  

the renowned speech therapist, was summoned to help  

the King overcome his speech impediment...  



Problem 2 

 Order the following in the order of difficulties 

 common nouns < pronouns < proper nouns 

          (hardest)                                     (easest) 

 
 

Queen Elizabeth set about transforming her husband,  

King George VI, into a viable monarch. Logue,  

the renowned speech therapist, was summoned to help  

the King overcome his speech impediment...  



Problem 2 

 Coreference is a discourse-level problem with different 
solutions for different types of NPs 

 positive example selection: selects easy positive training 
instances (cf. Harabagiu et al. (2001)) 

 

Queen Elizabeth set about transforming her husband,  

King George VI, into a viable monarch. Logue,  

the renowned speech therapist, was summoned to help  

the King overcome his speech impediment...  



Problem 3 

 Coreference is an equivalence relation 
 loss of transitivity during pair-wise classification 

 need to tighten the connection between classification 
and clustering 

[Queen Elizabeth] set about transforming [her] [husband], ... 

coref ? coref ? 

not coref ? 



Results 

 

 

 Ultimately: large increase in F-measure, due to gains in recall 

MUC-6 MUC-7 
 

R P F R P F 

Baseline 40.7 73.5 52.4 27.2 86.3 41.3 

NEG-SELECT 46.5 67.8 55.2 37.4 59.7 46.0 

POS-SELECT 53.1 80.8 64.1 41.1 78.0 53.8 

NEG-SELECT + POS-SELECT 63.4 76.3 69.3 59.5 55.1 57.2 

NEG-SELECT + POS-SELECT + RULE-SELECT 63.3  76.9 69.5 54.2 76.3 63.4 
 
 

 



Comparison with Best MUC Systems 

 

 
MUC-6 MUC-7 

 
R P F R P F 

NEG-SELECT + POS-SELECT + RULE-SELECT 63.3  76.9 69.5 54.2 76.3 63.4 

Best MUC System 59 72 65 56.1 68.8 61.8 
 

 



Plan for the Talk 
 noun phrase coreference resolution 

 a (supervised) machine learning approach 

 weakly supervised approaches 

 background 

 two techniques 

 evaluation 



Weakly Supervised Approaches 
 Idea:   

   bootstrap (NP coreference) classifiers using a small amount 
of labeled data (expensive) and a large amount of 
unlabeled data (cheap) 

 

 Methods 

 Co-training 

 Self-training 



Co-Training [Blum and Mitchell, 1998] 
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Co-Training [Blum and Mitchell, 1998] 
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Co-Training [Blum and Mitchell, 1998] 

most confident most confident 
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Potential Problems with Co-Training 

 Strong assumptions on the “views” (Blum and Mitchell, 1998) 

 each view must be sufficient for learning the target concept 

 the views must be conditionally independent given the class  

 empirically shown to be sensitive to these assumptions 
(Muslea et al., 2002) 

 

 A number of parameters need to be tuned 

 views, data pool size, growth size, number of iterations, 
initial size of labeled data 

 algorithm is sensitive to its input parameters (Nigam and Ghani, 

2000; Pierce and Cardie, 2001; Pierce 2003) 



 Multi-view algorithm 

 Is there any natural feature split for NP coreference? 
 view factorization is a non-trivial problem for coreference 

 Mueller et al.’s (2002) greedy method 

Potential Problems with Co-Training 
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Self-Training with Bagging [Banko and Brill, 2001] 



Self-Training with Bagging [Banko and Brill, 2001] 
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Evaluation 
 MUC-6 and MUC-7 coreference data sets 

 labeled data (L): one dryrun text 

 3500-3700 instances 

 unlabeled data (U): remaining 29 dryrun texts 

 vs. fully supervised ML 

 ~500,000 instances (30 dryrun texts) 



Learning Curve for Co-Training (MUC-6) 
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Learning Curve for Co-Training (MUC-6) 
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Self-Training Parameters 

 Number of bags 

 tested all odd number of bags between 1 and 25 

 

 25 bags are sufficient for most learning tasks (Breiman, 
1996) 

 

 



Results (Self-Training with Bagging) 

 

 

 Self-training performs better than co-training 

MUC-6 MUC-7 
 

R P F R P F 

Baseline 58.3 52.9 55.5 52.8 37.4 43.8 

Co-Training 47.5 81.9 60.1 40.6 77.6 53.3 

Self-Training with Bagging 54.1 78.6 64.1 54.6 62.6 58.3 
 

 



Self-Training: Effect of the Number of Bags (MUC-6) 
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Results 

 

 
MUC-6 MUC-7 

 
R P F R P F 

Baseline 58.3 52.9 55.5 52.8 37.4 43.8 

Co-Training 47.5 81.9 60.1 40.6 77.6 53.3 

Self-Training with Bagging 54.1 78.6 64.1 54.6 62.6 58.3 
 

 

Supervised ML*   (~500,000 insts)                        63.3      76.9      69.5      54.2      76.3       63.4 



Summary 

 Supervised ML approach to NP coreference resolution  

 Good performance relative to other approaches 

 Still lots of room for improvement 

 

 Weakly supervised approaches are promising 

 Not as good performance as fully supervised, but use much less 
manually annotated training data 

 

 For problems where no natural view factorization exists… 

 Single-view weakly supervised algorithms  

 Self-training with bagging 


