## **Parsing**

(These slides are modified from Dan Jurafsky's slides.)

## **Today**

- Formal Grammars
  - Context-free grammar
  - Grammars for English
  - Treebanks
  - Dependency grammars

## **Syntax**

- By grammar, or syntax, we have in mind the kind of implicit knowledge of your native language that you had mastered by the time you were 3 years old without explicit instruction
- Not the kind of stuff you were later taught in "grammar" school

## **Syntax**

- Why should you care?
- Grammars (and parsing) are key components in many applications
  - Grammar checkers
  - Dialogue management
  - Question answering
  - Information extraction
  - Machine translation

## **Syntax**

- Key notions that we'll cover
  - Constituency
  - Grammatical relations and Dependency
    - Heads
- Key formalism
  - Context-free grammars
- Resources
  - Treebanks

## Constituency

- A sequence of words that acts as a single unit
  - Noun phrases
  - Verb phrases
- These units form coherent classes that behave in similar ways
  - For example, we can say that noun phrases can come before verbs

## Constituency

 For example, following are all noun phrases in English...

Harry the Horse a high-class spot such as Mindy's the Broadway coppers the reason he comes into the Hot Box three parties from Brooklyn

#### **Context-Free Grammars**

- Context-free grammars (CFGs)
- Also known as
  - Phrase structure grammars
  - Backus-Naur form
- · Consist of
  - Rules
  - Terminals
  - Non-terminals

# Context-Free Grammars

- Terminals
  - words
- Non-Terminals
  - The constituents in a language
  - Such as noun phrases, verb phrases and sentences
- Rules
  - Rules are equations that consist of a single non-terminal on the left and any number of terminals and nonterminals on the right.

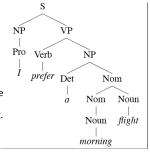
#### Some NP Rules

• Here are some rules for our noun phrases

 $NP \rightarrow Det Nominal$ 

 $NP \rightarrow ProperNoun$ 

Nominal → Noun | Nominal Noun


- Together, these describe two kinds of NPs.
  - One that consists of a determiner followed by a nominal
  - And another that says that proper names are NPs.
  - The third rule illustrates two things:
    - An explicit disjunction
  - A recursive definition

#### LO Grammar

| Grammar Rules |                    | Examples                        |
|---------------|--------------------|---------------------------------|
| S             | $\rightarrow NPVP$ | I + want a morning flight       |
| NP            | → Pronoun          | I                               |
|               | Proper-Noun        | Los Angeles                     |
|               | Det Nominal        | a + flight                      |
| Nominal       | → Nominal Noun     | morning + flight                |
|               | Noun               | flights                         |
| VP            | → Verb             | do                              |
|               | Verb NP            | want + a flight                 |
|               | Verb NP PP         | leave + Boston + in the morning |
|               | Verb PP            | leaving + on Thursday           |
| PP            | → Preposition NP   | from + Los Angeles              |

## **Derivations**

A "derivation" is a sequence of rules applied to a string that accounts for that string.



## Definition

- · More formally, a CFG consists of
- N a set of **non-terminal symbols** (or **variables**)
- $\Sigma$  a set of **terminal symbols** (disjoint from N)
- R a set of **rules** or productions, each of the form  $A \rightarrow \beta$ , where A is a non-terminal,

 $\beta$  is a string of symbols from the infinite set of strings  $(\Sigma \cup N)$ \*

S a designated start symbol

## **Parsing**

- · Parsing is the process of taking a string and a grammar and returning a (or multiple) parse tree(s) for that
- It is completely analogous to running a finite-state transducer with a tape
- It's just more powerful → there are languages we can capture with CFGs that we can't capture with finite-state machines.



## An English Grammar Fragment

- Sentences
- Noun phrases
  - Agreement
- · Verb phrases
  - Subcategorization

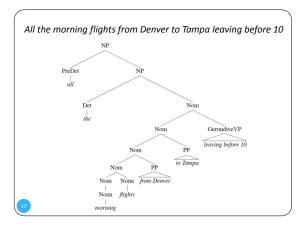
## **Sentence Types**

• Declaratives: A plane left.

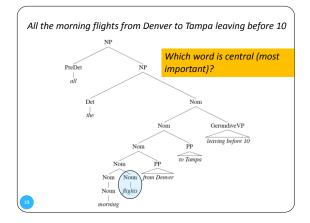
 $S \longrightarrow NP VP$ 

• Imperatives: Leave!

 $S \rightarrow VP$ 


• Yes-No Questions: Did the plane leave?


 $S \rightarrow Aux NP VP$ 


• WH Questions: When did the plane leave?

S → WH-NP Aux NP VP









#### **NP Structure**

- → All the morning flights from Denver to Tampa leaving before 10
- Clearly this NP is really about *flights*. That's the central critical noun in this NP. Such word is called as the head.
- We can dissect this kind of NP into the stuff that can come before the head, and the stuff that can come after it.

## **Determiners**

- Noun phrases can start with determiners...
- · Determiners can be
  - Simple lexical items: the, this, a, an, etc.
    A car
  - Or simple possessives
  - John's car
  - Or complex recursive versions of that
  - John's sister's husband's son's car

#### **Nominals**

- Contains the head and any pre- and post- modifiers of the head.
  - Pre-
    - Quantifiers, cardinals, ordinals...
    - Three cars
    - Adjectives and Aps
      - large cars
    - Ordering constraints
    - Three large cars
    - · ?large three cars

#### **Postmodifiers**

- Three kinds
  - <u>Prepositional phrases</u>
     Flights from Seattle
  - Non-finite clauses
  - Flights arriving before noon
  - Relative clauses
    - Flights that serve breakfast
- · Same general (recursive) rule to handle these
  - Nominal → Nominal PP
  - Nominal → Nominal GerundVP
  - Nominal → Nominal RelClause

## Agreement

- Constraints that hold among various constituents.
- For example, in English, determiners and the head nouns in NPs have to agree in their number.
- Which of the following cannot be parsed by the rule

 $NP \rightarrow Det Nominal$ ?

- (O) This flight
- (X) This flights
- (O) Those flights
- (X) Those flight

## Agreement

- Constraints that hold among various constituents.
- For example, in English, determiners and the head nouns in NPs have to agree in their number.
- · Which of the following cannot be parsed by the rule

 $NP \rightarrow Det Nominal$ ?

- → This rule does not handle agreement! (The rule does not detect whether the agreement is correct or not.)
  - (O) This flight
- (X) This flights
- (O) Those flights
- (X) Those flight

#### **Problem**

- Our earlier NP rules are clearly deficient since they don't capture the agreement constraint
  - NP → Det Nominal
  - Accepts, and assigns correct structures, to grammatical examples (this flight)
  - But its also happy with incorrect examples (\*these flight)
  - Such a rule is said to overgenerate.
  - · We'll come back to this in a bit

#### **Verb Phrases**

 English VPs consist of a head verb along with 0 or more following constituents which we'll call arguments.

*VP* → *Verb* disappear

 $VP \rightarrow Verb NP$  prefer a morning flight

 $VP \rightarrow Verb \ NP \ PP$  leave Boston in the morning

 $VP \rightarrow Verb PP$  leaving on Thursday

## Subcategorization

- But, even though there are many valid VP rules in English, not all verbs are allowed to participate in all those VP rules.
- We can subcategorize the verbs in a language according to the sets of VP rules that they participate in
- This is a modern take on the traditional notion of transitive/intransitive.
- Modern grammars may have 100s or such classes.

## Subcategorization

- Sneeze: John sneezed
- Find: Please find [a flight to NY]<sub>NP</sub>
- Give: Give [me]<sub>NP</sub>[a cheaper fare]<sub>NP</sub>
- Help: Can you help [me]<sub>NP</sub>[with a flight]<sub>PP</sub>
- Prefer: I prefer [to leave earlier]<sub>TO-VP</sub>
- Told: I was told [United has a flight]s
- •

## Subcategorization

- \*John sneezed the book
- \*I prefer United has a flight
- \*Give with a flight
- As with agreement phenomena, we need a way to formally express the constraints!

## Why?

- Right now, the various rules for VPs overgenerate.
  - They permit the presence of strings containing verbs and arguments that don't go together
  - For example
  - VP -> V NP therefore

Sneezed the book is a VP since "sneeze" is a verb and "the book" is a valid NP

#### Possible CFG Solution

- Possible solution for agreement.
- Can use the same trick for all the verb/VP classes.
- SgS -> SgNP SgVP
- PIS -> PINp PIVP
- SgNP -> SgDet SgNom
- PINP -> PIDet PINom
- PIVP -> PIV NPSgVP ->SgV Np
- ...

## **CFG Solution for Agreement**

- It works and stays within the power of CFGs
- But its ugly
- And it doesn't scale all that well because of the interaction among the various constraints explodes the number of rules in our grammar.

#### To conclude

- CFGs are simple and capture a lot of basic syntactic structure in English.
- But there are problems
  - Don't handle "agreement" and "subcategorization"
- Overgenerate!
- Advanced grammars
- LFG
- HPSG
- Construction grammar
- XTAG

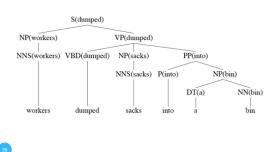
#### **Treebanks**

 Treebanks are corpora in which each sentence has been paired with a parse tree (presumably the right one).

## Penn Treebank

- Penn TreeBank is a widely used treebank.
- •Most well known is the Wall Street Journal section of the Penn TreeBank.
  - •1 M words from the 1987-1989 Wall Street Journal.

```
(FF.MD would)
(FF.MD (FF.MD (FF.MD would)
(FF.MD (FF.MD (FF.MD would)
(FF.MD (FF.MD (FF.MD would)
(F
```


## **Treebank Grammars**

- Such grammars tend to be very flat due to the fact that they tend to avoid recursion.
  - To ease the annotators burden
- For example, the Penn Treebank has 4500 different rules for VPs. Among them...

## **Heads in Trees**

- Finding heads in treebank trees is a task that arises frequently in many applications.
  - Particularly important in statistical parsing
- We can visualize this task by annotating the nodes of a parse tree with the heads of each corresponding node.

## Lexically Decorated Tree

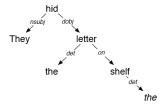


## **Head Finding**

 The standard way to do head finding is to use a simple set of tree traversal rules specific to each non-terminal in the grammar.

# 

## **Treebank Uses**


- Treebanks (and headfinding) are particularly critical to the development of statistical parsers
  - Chapter 14
- Also valuable to Corpus Linguistics
  - Investigating the empirical details of various constructions in a given language

## **Dependency Grammars**

- In CFG-style phrase-structure grammars the main focus is on constituents.
- But it turns out you can get a lot done with just binary relations among the words in an utterance.
- In a dependency grammar framework, a parse is a tree where
- the nodes stand for the words in an utterance
- The links between the words represent dependency relations between pairs of words.
  - Relations may be typed (labeled), or not.

| Dependency Relatio           | ns                     |
|------------------------------|------------------------|
| <b>Argument Dependencies</b> | Description            |
| nsubj                        | nominal subject        |
| csubj                        | clausal subject        |
| dobj                         | direct object          |
| iobj                         | indirect object        |
| pobj                         | object of preposition  |
| Modifier Dependencies        | Description            |
| tmod                         | temporal modifier      |
| appos                        | appositional modifier  |
| det                          | determiner             |
| prep                         | prepositional modifier |
| Speech and Language          | 10/24/2010             |

## **Dependency Parse**



They hid the letter on the shelf

## **Dependency Parsing**

- The dependency approach has a number of advantages over full phrase-structure parsing.
  - Deals well with free word order languages where the constituent structure is quite fluid
  - Parsing is much faster than CFG-bases parsers
  - Dependency structure often captures the syntactic relations needed by later applications
    - CFG-based approaches often extract this same information from trees anyway.

## **Dependency Parsing**

- There are two modern approaches to dependency parsing
  - Optimization-based approaches that search a space of trees for the tree that best matches some criteria
  - Shift-reduce approaches that greedily take actions based on the current word and state.

## **Summary**

- Context-free grammars can be used to model various facts about the syntax of a language.
- When paired with parsers, such grammars constitute a critical component in many applications.
- Constituency is a key phenomena easily captured with CFG rules.
- But agreement and subcategorization do pose significant problems
- Treebanks pair sentences in corpus with their corresponding trees.