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Statistical Parsing 

(Following slides are modified from Prof. Raymond Mooney’s slides.) 

Statistical Parsing 
 Statistical parsing uses a probabilistic model of 

syntax in order to assign probabilities to each 
parse tree. 

 Provides principled approach to resolving syntactic 
ambiguity. 

 Allows supervised learning of parsers from tree-
banks of parse trees provided by human linguists. 

 Also allows unsupervised learning of parsers from 
unannotated text, but the accuracy of such 
parsers has been limited. 
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Probabilistic Context Free Grammar 
(PCFG) 

 A PCFG is a probabilistic version of a CFG where each 
production has a probability. 

 Probabilities of all productions rewriting a given non-
terminal must add to 1, defining a distribution for 
each non-terminal. 

 String generation is now probabilistic where 
production probabilities are used to non-
deterministically select a production for rewriting a 
given non-terminal. 

Simple PCFG for ATIS English 

S → NP VP                      

S → Aux NP VP                

S → VP                            

NP → Pronoun 

NP → Proper-Noun 

NP → Det Nominal 

Nominal → Noun 

Nominal → Nominal Noun 

Nominal → Nominal PP 

VP → Verb 

VP → Verb NP 

VP → VP PP 

PP → Prep NP 

Grammar 
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Det → the | a   | that | this 

            0.6  0.2  0.1    0.1 

Noun → book | flight | meal | money 

                0.1     0.5      0.2     0.2 

Verb → book | include | prefer 

               0.5      0.2        0.3 

Pronoun → I    | he | she | me 

                   0.5  0.1  0.1    0.3 

Proper-Noun → Houston | NWA 

                              0.8         0.2 

Aux → does 

             1.0 

Prep → from | to   | on | near | through 

             0.25  0.25  0.1    0.2     0.2 

Lexicon 
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Sentence Probability 
 Assume productions for each node are chosen 

independently. 

 Probability of derivation is the product of the 
probabilities of its productions. 

 
 

 

 

 

P(D1) = 0.1 x 0.5 x 0.5 x 0.6 x 0.6 x  

              0.5 x 0.3 x 1.0 x 0.2 x 0.2 x  

              0.5 x 0.8 
               =  0.0000216 
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Verb          NP 
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Nominal     PP 
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Syntactic Disambiguation 
 Resolve ambiguity by picking most probable parse 

tree. 
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D2 

VP 

Verb          NP 

     Det    Nominal book 

Prep        NP 

through 

Houston 

Proper-Noun 

the 

flight 

Noun 
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VP 
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P(D2) = 0.1 x 0.3 x 0.5 x 0.6 x 0.5 x 

              0.6 x 0.3 x 1.0 x 0.5 x 0.2 x 

              0.2 x 0.8 
               =  0.00001296 
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Sentence Probability 
 Probability of a sentence is the sum of the 

probabilities of all of its derivations. 
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P(“book the flight through Houston”) =  

P(D1) + P(D2) = 0.0000216 + 0.00001296 

                       = 0.00003456 
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Three Useful PCFG Tasks 
 Observation likelihood: To classify and order sentences. 

 Most likely derivation: To determine the most likely 
parse tree for a sentence. 

 Maximum likelihood training: To train a PCFG to fit 
empirical training data. 

PCFG: Most Likely Derivation 
 There is an analog to the Viterbi algorithm to 

efficiently determine the most probable derivation 
(parse tree) for a sentence. 

S → NP VP 

S → VP 

NP → Det A N 

NP → NP PP 

NP → PropN 

A → ε 

A → Adj A 

PP → Prep NP 

VP → V NP 

VP → VP PP 
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English 

PCFG  

Parser 

John liked the dog in the pen. 
S 

NP           VP 

John       V     NP          PP 

liked    the dog  in the pen X 
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PCFG: Most Likely Derivation 
 There is an analog to the Viterbi algorithm to 

efficiently determine the most probable derivation 
(parse tree) for a sentence. 

S → NP VP 

S → VP 

NP → Det A N 

NP → NP PP 

NP → PropN 

A → ε 

A → Adj A 

PP → Prep NP 

VP → V NP 

VP → VP PP 
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English 

PCFG  

Parser 

John liked the dog in the pen. 

S 

NP           VP 

John       V     NP  

liked    the dog  in the pen 

Probabilistic CKY 
 CKY can be modified for PCFG parsing by including in 

each cell a probability for each non-terminal. 

 Cell[i,j] must retain the most probable derivation of 
each constituent (non-terminal) covering words i +1 
through j together with its associated probability. 

 When transforming the grammar to CNF, must set 
production probabilities to preserve the probability of 
derivations. 

 

 Probabilistic Grammar Conversion 

S → NP VP 
S → Aux NP VP 
 
S → VP 
 
 
 
NP → Pronoun 
 
NP → Proper-Noun 
 
NP → Det Nominal 
Nominal → Noun  
 
Nominal → Nominal Noun 
Nominal → Nominal PP 
VP → Verb 
 
VP → Verb NP 
VP → VP PP 
PP → Prep NP 

Original Grammar Chomsky Normal Form 

S → NP VP 
S → X1 VP 
X1 → Aux NP 
S → book | include | prefer 
          0.01     0.004    0.006 
S → Verb NP 
S → VP PP 
NP →  I   |  he  |  she |  me 
          0.1   0.02  0.02    0.06 
NP → Houston | NWA 
             0.16           .04 
NP → Det Nominal 
Nominal → book | flight | meal | money 
                      0.03    0.15   0.06     0.06 
Nominal → Nominal Noun 
Nominal → Nominal PP 
VP → book | include | prefer 
             0.1      0.04        0.06 
VP → Verb NP 
VP → VP PP 
PP → Prep NP 
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Probabilistic CKY Parser 

13 

  Book       the        flight    through  Houston 

S :.01, VP:.1,  

Verb:.5  

Nominal:.03 

Noun:.1 

Det:.6 

 

Nominal:.15 

Noun:.5 

None 

 

NP:.6*.6*.15 

     =.054 

Probabilistic CKY Parser 
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  Book       the        flight    through  Houston 

S :.01, VP:.1,  

Verb:.5  

Nominal:.03 

Noun:.1 

Det:.6 

 

Nominal:.15 

Noun:.5 

None 

 

NP:.6*.6*.15 

     =.054 

 

VP:.5*.5*.054 

     =.0135 

Probabilistic CKY Parser 
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  Book       the        flight    through  Houston 

S :.01, VP:.1,  

Verb:.5  

Nominal:.03 

Noun:.1 

Det:.6 

 

Nominal:.15 

Noun:.5 

None 

 

NP:.6*.6*.15 

     =.054 

VP:.5*.5*.054 

     =.0135 

S:.05*.5*.054 

     =.00135 

Probabilistic CKY Parser 
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  Book       the        flight    through  Houston 

S :.01, VP:.1,  

Verb:.5  

Nominal:.03 

Noun:.1 

Det:.6 

 

Nominal:.15 

Noun:.5 

None 

 

NP:.6*.6*.15 

     =.054 

VP:.5*.5*.054 

     =.0135 

S:.05*.5*.054 

     =.00135 

None 

None 

None 

Prep:.2 

Probabilistic CKY Parser 
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  Book       the        flight    through  Houston 

S :.01, VP:.1,  

Verb:.5  

Nominal:.03 

Noun:.1 

Det:.6 

 

Nominal:.15 

Noun:.5 

None 

 

NP:.6*.6*.15 

     =.054 

VP:.5*.5*.054 

     =.0135 

S:.05*.5*.054 

     =.00135 

None 

None 

None 

Prep:.2 

NP:.16 
PropNoun:.8 

PP:1.0*.2*.16 
       =.032 

Probabilistic CKY Parser 
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  Book       the        flight    through  Houston 

S :.01, VP:.1,  

Verb:.5  

Nominal:.03 

Noun:.1 

Det:.6 

 

Nominal:.15 

Noun:.5 

None 

 

NP:.6*.6*.15 

     =.054 

VP:.5*.5*.054 

     =.0135 

S:.05*.5*.054 

     =.00135 

None 

None 

None 

Prep:.2 

NP:.16 
PropNoun:.8 

PP:1.0*.2*.16 
       =.032 

Nominal: 
.5*.15*.032 
=.0024 
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Probabilistic CKY Parser 
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  Book       the        flight    through  Houston 

S :.01, VP:.1,  

Verb:.5  

Nominal:.03 

Noun:.1 

Det:.6 

 

Nominal:.15 

Noun:.5 

None 

 

NP:.6*.6*.15 

     =.054 

VP:.5*.5*.054 

     =.0135 

S:.05*.5*.054 

     =.00135 

None 

None 

None 

Prep:.2 

NP:.16 
PropNoun:.8 

PP:1.0*.2*.16 
       =.032 

Nominal: 
.5*.15*.032 
=.0024 

 

NP:.6*.6* 

       .0024 

     =.000864 

Probabilistic CKY Parser 
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  Book       the        flight    through  Houston 

S :.01, VP:.1,  

Verb:.5  

Nominal:.03 

Noun:.1 

Det:.6 

 

Nominal:.15 

Noun:.5 

None 

 

NP:.6*.6*.15 

     =.054 

VP:.5*.5*.054 

     =.0135 

S:.05*.5*.054 

     =.00135 

None 

None 

None 

Prep:.2 

NP:.16 
PropNoun:.8 

PP:1.0*.2*.16 
       =.032 

Nominal: 
.5*.15*.032 
=.0024 

 

NP:.6*.6* 

       .0024 

     =.000864 

S:.05*.5* 

     .000864 

   =.0000216 

Probabilistic CKY Parser 
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  Book       the        flight    through  Houston 

S :.01, VP:.1,  

Verb:.5  

Nominal:.03 

Noun:.1 

Det:.6 

 

Nominal:.15 

Noun:.5 

None 

 

NP:.6*.6*.15 

     =.054 

VP:.5*.5*.054 

     =.0135 

S:.05*.5*.054 

     =.00135 

None 

None 

None 

Prep:.2 

NP:.16 
PropNoun:.8 

PP:1.0*.2*.16 
       =.032 

Nominal: 
.5*.15*.032 
=.0024 

 

NP:.6*.6* 

       .0024 

     =.000864 

S:.0000216 

S:.03*.0135* 

    .032 

  =.00001296 

Probabilistic CKY Parser 
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  Book       the        flight    through  Houston 

S :.01, VP:.1,  

Verb:.5  

Nominal:.03 

Noun:.1 

Det:.6 

 

Nominal:.15 

Noun:.5 

None 

 

NP:.6*.6*.15 

     =.054 

VP:.5*.5*.054 

     =.0135 

S:.05*.5*.054 

     =.00135 

None 

None 

None 

Prep:.2 

NP:.16 
PropNoun:.8 

PP:1.0*.2*.16 
       =.032 

Nominal: 
.5*.15*.032 
=.0024 

 

NP:.6*.6* 

       .0024 

     =.000864 

S:.0000216 
Pick most probable 
parse, i.e. take max to 
combine probabilities 
of multiple derivations 
of each constituent in 
each cell. 
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PCFG: Observation Likelihood 
 There is an analog to Forward algorithm for HMMs 

called the Inside algorithm for efficiently 
determining how likely a string is to be produced 
by a PCFG. 

 Can use a PCFG as a language model to choose 
between alternative sentences for speech 
recognition or machine translation.  

S → NP VP 

S → VP 

NP → Det A N 

NP → NP PP 

NP → PropN 

A → ε 

A → Adj A 

PP → Prep NP 

VP → V NP 

VP → VP PP 
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1.0 
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English 

The dog big barked. 

The big dog barked 

O1 

O2 

? 

? 

P(O2 | English) > P(O1 | English) ? 

Inside Algorithm 
 Use CKY probabilistic parsing algorithm but combine 

probabilities of multiple derivations of any constituent 
using addition instead of max. 

24 
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  Book       the        flight    through  Houston 

S :.01, VP:.1,  

Verb:.5  

Nominal:.03 

Noun:.1 

Det:.6 

 

Nominal:.15 

Noun:.5 

None 

 

NP:.6*.6*.15 

     =.054 

VP:.5*.5*.054 

     =.0135 

S:.05*.5*.054 

     =.00135 

None 

None 

None 

Prep:.2 

NP:.16 
PropNoun:.8 

PP:1.0*.2*.16 
       =.032 

Nominal: 
.5*.15*.032 
=.0024 

 

NP:.6*.6* 

       .0024 

     =.000864 

S:.0000216 

S:..00001296 

Probabilistic CKY Parser  
for Inside Computation 
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  Book       the        flight    through  Houston 

S :.01, VP:.1,  

Verb:.5  

Nominal:.03 

Noun:.1 

Det:.6 

 

Nominal:.15 

Noun:.5 

None 

 

NP:.6*.6*.15 

     =.054 

VP:.5*.5*.054 

     =.0135 

S:.05*.5*.054 

     =.00135 

None 

None 

None 

Prep:.2 

NP:.16 
PropNoun:.8 

PP:1.0*.2*.16 
       =.032 

Nominal: 
.5*.15*.032 
=.0024 

 

NP:.6*.6* 

       .0024 

     =.000864 

   +.0000216 

   =.00003456 

S: .00001296 Sum probabilities 
of multiple derivations 
of each constituent in 
each cell. 

Probabilistic CKY Parser  
for Inside Computation 
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PCFG: Supervised Training 
 If parse trees are provided for training sentences, a 

grammar and its parameters can be can all be 
estimated directly from counts accumulated from the 
tree-bank (with appropriate smoothing). 

 

. 

. 

. 

Tree Bank 

Supervised 

PCFG 

Training 

S → NP VP 

S → VP 

NP → Det A N 

NP → NP PP 

NP → PropN 

A → ε 

A → Adj A 

PP → Prep NP 

VP → V NP 

VP → VP PP 

0.9 

0.1 
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0.3 

0.2 

0.6 

0.4 

1.0 

0.7 

0.3 

English 

S 

NP           VP 

John       V     NP          PP 

put    the dog  in the pen 

S 

NP           VP 

John       V     NP          PP 

put    the dog  in the pen 

Estimating Production Probabilities 
 Set of production rules can be taken directly from the 

set of rewrites in the treebank. 

 Parameters can be directly estimated from frequency 
counts in the treebank. 
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PCFG: Maximum Likelihood Training 
 Given a set of sentences, induce a grammar that 

maximizes the probability that this data was 
generated from this grammar. 

 Assume the number of non-terminals in the 
grammar is specified. 

 Only need to have an unannotated set of 
sequences generated from the model. Does not 
need correct parse trees for these sentences. In 
this sense, it is unsupervised. 
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PCFG: Maximum Likelihood Training 

John ate the apple 

A dog bit Mary 

Mary hit the dog 

John gave Mary the cat. 

 

 
. 
. 
. 

Training Sentences 

PCFG 

Training 

S → NP VP 

S → VP 

NP → Det A N 

NP → NP PP 

NP → PropN 

A → ε 

A → Adj A 

PP → Prep NP 

VP → V NP 

VP → VP PP 

0.9 

0.1 

0.5 

0.3 

0.2 

0.6 

0.4 

1.0 

0.7 

0.3 

English 
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Inside-Outside 
 The Inside-Outside algorithm is a version of EM for 

unsupervised learning of a PCFG. 
 Analogous to Baum-Welch (forward-backward) for HMMs 

 Given the number of non-terminals, construct all possible 
CNF productions with these non-terminals and observed 
terminal symbols. 

 Use EM to iteratively train the probabilities of these 
productions to locally maximize the likelihood of the data. 
 See Manning and Schütze text for details 

 Experimental results are not impressive, but recent work 
imposes additional constraints to improve unsupervised 
grammar learning. 
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Vanilla PCFG Limitations 
 Since probabilities of productions do not rely on 

specific words or concepts, only general structural 
disambiguation is possible (e.g. prefer to attach 
PPs to Nominals). 

 Consequently, vanilla PCFGs cannot resolve 
syntactic ambiguities that require semantics to 
resolve, e.g. ate with fork vs. meatballs. 

 In order to work well, PCFGs must be lexicalized, 
i.e. productions must be specialized to specific 
words by including their head-word in their LHS 
non-terminals (e.g. VP-ate). 

Example of Importance of Lexicalization 
 A general preference for attaching PPs to NPs 

rather than VPs can be learned by a vanilla PCFG. 

 But the desired preference can depend on specific 
words. 

33 

S → NP VP 

S → VP 

NP → Det A N 

NP → NP PP 

NP → PropN 

A → ε 

A → Adj A 

PP → Prep NP 

VP → V NP 

VP → VP PP 
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0.4 

1.0 

0.7 
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English 

PCFG  

Parser 

S 

NP           VP 

John       V     NP          PP 

put    the dog  in the pen 

John put the dog in the pen. 
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Example of Importance of Lexicalization 
 A general preference for attaching PPs to NPs 

rather than VPs can be learned by a vanilla PCFG. 

 But the desired preference can depend on specific 
words. 

S → NP VP 

S → VP 

NP → Det A N 

NP → NP PP 

NP → PropN 

A → ε 

A → Adj A 

PP → Prep NP 

VP → V NP 

VP → VP PP 

0.9 

0.1 

0.5 

0.3 

0.2 

0.6 

0.4 

1.0 

0.7 

0.3 

English 

PCFG  

Parser 

S 

NP           VP 

John       V     NP  

put    the dog  in the pen X 
John put the dog in the pen. 

Head Words 
 Syntactic phrases usually have a word in them that 

is most “central” to the phrase. 

 Linguists have defined the concept of a lexical 
head of a phrase. 

 Simple rules can identify the head of any phrase 
by percolating head words up the parse tree. 
 Head of a VP is the main verb 

 Head of an NP is the main noun 

 Head of a PP is the preposition 

 Head of a sentence is the head of its VP 

 

Lexicalized Productions 
 Specialized productions can be generated by 

including the head word and its POS of each non-
terminal as part of that non-terminal’s symbol. 

S 

VP 

VBD          NP 

     DT    Nominal 

Nominal   PP 

liked 

IN            NP 

in 

the 

dog 

NN 

     DT    Nominal 

NN the 

pen 

NNP 

NP 

John 

pen-NN 

pen-NN 

in-IN 
dog-NN 

dog-NN 

dog-NN 

liked-VBD 

liked-VBD 

John-NNP 

Nominaldog-NN → Nominaldog-NN PPin-IN  
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Lexicalized Productions 

S 

VP 

VP                             PP 

     DT    Nominal put 

IN            NP 

in 

the 

dog 

NN 

     DT    Nominal 

NN the 

pen 

NNP 

NP 

John 

pen-NN 

pen-NN 

in-IN 

dog-NN 

dog-NN 

put-VBD 

put-VBD 

John-NNP 

NP VBD 

put-VBD 

VPput-VBD → VPput-VBD PPin-IN  

Parameterizing Lexicalized Productions 

 Accurately estimating parameters on such a large 
number of very specialized productions could 
require enormous amounts of treebank data. 

 Need some way of estimating parameters for 
lexicalized productions that makes reasonable 
independence assumptions so that accurate 
probabilities for very specific rules can be learned. 

 

Collins’ Parser 
 Collins’ (1999) parser assumes a simple generative 

model of lexicalized productions. 

 Models productions based on context to the left and 
the right of the head daughter. 
 LHS → LnLn1…L1H R1…Rm1Rm  

 First generate the head (H) and then repeatedly 
generate left (Li) and right (Ri) context symbols until 
the symbol STOP is generated. 

Sample Production Generation 

VPput-VBD → VBDput-VBD NPdog-NN PPin-IN 

Note: Penn treebank tends to  

have fairly flat parse trees that  

produce long productions.  

VPput-VBD → VBDput-VBD NPdog-NN 

H L1 

STOP PPin-IN STOP 

R1 R2 R3 

PL(STOP | VPput-VBD) * PH(VBD | Vpput-VBD)*    

                                              PR(NPdog-NN | VPput-VBD)* 

                                                  PR(PPin-IN | VPput-VBD) * PR(STOP | VPput-VBD) 

 

Count(PPin-IN right of head in a VPput-VBD production) 

Estimating Production Generation Parameters 

 Estimate PH, PL, and PR parameters from treebank data. 

PR(PPin-IN | VPput-VBD) = 
Count(symbol right of head in a VPput-VBD) 

Count(NPdog-NN right of head in a VPput-VBD production) 
PR(NPdog-NN | VPput-VBD) = 

• Smooth estimates by linearly interpolating with 
simpler models conditioned on just POS tag or no 
lexical info. 

smPR(PPin-IN | VPput-VBD) = 1 PR(PPin-IN | VPput-VBD)  

                                               + (1 1) (2 PR(PPin-IN | VPVBD) + 

                                                                (1 2) PR(PPin-IN | VP))  

Count(symbol right of head in a VPput-VBD) 

Missed Context Dependence 
 Another problem with CFGs is that which production 

is used to expand a non-terminal is independent of its 
context. 

 However, this independence is frequently violated for 
normal grammars. 

 NPs that are subjects are more likely to be pronouns 
than NPs that are objects. 

42 
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Splitting Non-Terminals 
 To provide more contextual information, non-

terminals can be split into multiple new non-terminals 
based on their parent in the parse tree using parent 
annotation. 

 A subject NP becomes NP^S since its parent node is an S. 

 An object NP becomes NP^VP since its parent node is a 
VP 

43 

Parent Annotation Example 

44 

S 

VP 

VBD          NP 

     DT    Nominal 

Nominal   PP 

liked 

IN            NP 

in 

the 

dog 

NN 

     DT    Nominal 

NN the 

pen 

NNP 

NP 

John 

^NP 

^PP 

^Nominal 
^Nominal 

^NP 

^VP 

^S ^S 

^Nominal 

^NP 

^PP 
^Nominal 

^NP 

^VP ^NP 

VP^S → VBD^VP  NP^VP 

Split and Merge  
 Non-terminal splitting greatly increases the size of 

the grammar and the number of parameters that 
need to be learned from limited training data. 

 Best approach is to only split non-terminals when it 
improves the accuracy of the grammar. 

 May also help to merge some non-terminals to 
remove some un-helpful distinctions and learn more 
accurate parameters for the merged productions.  

 Method: Heuristically search for a combination of 
splits and merges that produces a grammar that 
maximizes the likelihood of the training treebank. 
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Treebanks 
 English Penn Treebank: Standard corpus for 

testing syntactic parsing consists of 1.2 M words of 
text from the Wall Street Journal (WSJ). 

 Typical to train on about 40,000 parsed sentences 
and test on an additional standard disjoint test set 
of 2,416 sentences. 

 Chinese Penn Treebank: 100K words from the 
Xinhua news service. 

 Other corpora existing in many languages, see the 
Wikipedia article “Treebank” 

First WSJ Sentence 

47 

( (S  

    (NP-SBJ  

      (NP (NNP Pierre) (NNP Vinken) ) 

      (, ,)  

      (ADJP  

        (NP (CD 61) (NNS years) ) 

        (JJ old) ) 

      (, ,) ) 

    (VP (MD will)  

      (VP (VB join)  

        (NP (DT the) (NN board) ) 

        (PP-CLR (IN as)  

          (NP (DT a) (JJ nonexecutive) (NN director) )) 

        (NP-TMP (NNP Nov.) (CD 29) ))) 

    (. .) )) 

 

WSJ Sentence with Trace (NONE) 

48 

( (S  

    (NP-SBJ (DT The) (NNP Illinois) (NNP Supreme) (NNP Court) ) 

    (VP (VBD ordered)  

      (NP-1 (DT the) (NN commission) ) 

      (S  

        (NP-SBJ (-NONE- *-1) ) 

        (VP (TO to)  

          (VP  

            (VP (VB audit)  

              (NP  

                (NP (NNP Commonwealth) (NNP Edison) (POS 's) ) 

                (NN construction) (NNS expenses) )) 

            (CC and)  

            (VP (VB refund)  

              (NP (DT any) (JJ unreasonable) (NNS expenses) )))))) 

    (. .) )) 
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Parsing Evaluation Metrics 
 PARSEVAL metrics measure the fraction of the 

constituents that match between the computed and 
human parse trees.  If P is the system’s parse tree and T 
is the human parse tree (the “gold standard”): 
 Recall = (# correct constituents in P) / (# constituents in T) 

 Precision = (# correct constituents in P) / (# constituents in P) 

 Labeled Precision and labeled recall require getting the 
non-terminal label on the constituent node correct to 
count as correct. 

  F1 is the harmonic mean of precision and recall. 

Computing Evaluation Metrics 

Correct Tree T 
S 

VP 

Verb          NP 

     Det    Nominal 

Nominal     PP 

book 

Prep        NP 

through 

Houston 

Proper-Noun 

the 

flight 

Noun 

Computed Tree P 

VP 

Verb          NP 

     Det    Nominal book 

Prep        NP 

through 

Houston 

Proper-Noun 

the 

flight 

Noun 

S 

VP 

PP 

# Constituents: 12 # Constituents: 12 

# Correct Constituents: 10 

Recall = 10/12= 83.3% Precision = 10/12=83.3% F1 = 83.3% 
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Treebank Results 
 Results of current state-of-the-art systems on the 

English Penn WSJ treebank are slightly greater than 90% 
labeled precision and recall. 

Discriminative Parse Reranking 
 Motivation: Even when the top-ranked parse not 

correct, frequently the correct parse is one of those 
ranked highly by a statistical parser. 

 Use a discriminative classifier that is trained to select 
the best parse from the N-best parses produced by 
the original parser. 

 Reranker can exploit global features of the entire 
parse whereas a PCFG is restricted to making 
decisions based on local info. 
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2-Stage Reranking Approach 
 Adapt the PCFG parser to produce an N-best list of the 

most probable parses in addition to the most-likely 
one. 

 Extract from each of these parses, a set of global 
features that help determine if it is a good parse tree. 

 Train a discriminative classifier (e.g. logistic 
regression) using the best parse in each N-best list as 
positive and others as negative.    
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Parse Reranking 

54 

sentence 
     N-Best 

Parse Trees 

 

   PCFG Parser   

      Parse Tree 

        Feature 

     Extractor   

 Parse Tree 

Descriptions 

  Discriminative  

     Parse Tree 

      Classifier 

      Best           

Parse Tree 



11/29/2010 

10 

Sample Parse Tree Features 
 Probability of the parse from the PCFG. 

 The number of parallel conjuncts. 

 “the bird in the tree and the squirrel on the ground” 

 “the bird and the squirrel in the tree” 

 The degree to which the parse tree is right branching. 

 English parses tend to be right branching (cf. parse of “Book 
the flight through Houston”) 

 Frequency of various tree fragments, i.e. specific 
combinations of 2 or 3 rules. 
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Evaluation of Reranking 
 Reranking is limited by oracle accuracy, i.e. the 

accuracy that results when an omniscient oracle picks 
the best parse from the N-best list.  

 Typical current oracle accuracy is around F1=97%  

 Reranking can generally improve test accuracy of 
current PCFG models a percentage point or two. 
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Other Discriminative Parsing 
 There are also parsing models that move from 

generative PCFGs to a fully discriminative model, e.g. 
max margin parsing (Taskar et al., 2004).  

 There is also a recent model that efficiently reranks all 
of the parses in the complete (compactly-encoded) 
parse forest, avoiding the need to generate an N-best 
list (forest reranking, Huang, 2008). 
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Human Parsing 
 Computational parsers can be used to predict human 

reading time as measured by tracking the time taken 
to read each word in a sentence. 

 Psycholinguistic studies show that words that are 
more probable given the preceding lexical and 
syntactic context are read faster. 
 John put the dog in the pen with a lock. 

 John put the dog in the pen with a bone in the car. 

 John liked the dog in the pen with a bone. 

 Modeling these effects requires an incremental 
statistical parser that incorporates one word at a time 
into a continuously growing parse tree. 
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Garden Path Sentences 
 People are confused by sentences that seem to have a 

particular syntactic structure but then suddenly violate 
this structure, so the  listener is “lead down the garden 
path”. 
 The horse raced past the barn fell. 

 vs. The horse raced past the barn broke his leg. 

 The complex houses married students. 

 The old man the sea. 
 While Anna dressed the baby spit up on the bed. 

 Incremental computational parsers can try to predict 
and explain the problems encountered parsing such 
sentences. 
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Center Embedding 
 Nested expressions are hard for humans to process 

beyond 1 or 2 levels of nesting. 
 The rat the cat chased died. 

 The rat the cat the dog bit chased died. 

 The rat the cat the dog the boy owned bit chased died. 

 Requires remembering and popping incomplete 
constituents from a stack and strains human short-term 
memory. 

 Equivalent “tail embedded” (tail recursive) versions are 
easier to understand since no stack is required. 
 The boy owned a dog that bit a cat that chased a rat that died. 
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Dependency Grammars 
 An alternative to phrase-structure grammar is to 

define a parse as a directed graph between the words 
of a sentence representing dependencies between the 
words. 
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Dependency Graph from Parse Tree 
 Can convert a phrase structure parse to a 

dependency tree by making the head of each non-
head child of a node depend on the head of the head 
child. 
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Unification Grammars 
 In order to handle agreement issues more effectively, 

each constituent has a list of features such as number, 
person, gender, etc. which may or not be specified for 
a given constituent. 

 In order for two constituents to combine to form a 
larger constituent, their features must unify, i.e. 
consistently combine into a merged set of features. 

 Expressive grammars and parsers (e.g. HPSG) have 
been developed using this approach and have been 
partially integrated with modern statistical models of 
disambiguation. 
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Mildly Context-Sensitive Grammars 
 Some grammatical formalisms provide a degree of 

context-sensitivity that helps capture aspects of NL 
syntax that are not easily handled by CFGs. 

 Tree Adjoining Grammar (TAG) is based on combining 
tree fragments rather than individual phrases. 

 Combinatory Categorial Grammar (CCG) consists of:  
 Categorial Lexicon that associates a syntactic and semantic 

category with each word. 

 Combinatory Rules that define how categories combine to 
form other categories. 
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Statistical Parsing Conclusions 
 Statistical models such as PCFGs allow for probabilistic 

resolution of ambiguities. 

 PCFGs can be easily learned from treebanks. 

 Lexicalization and non-terminal splitting are required 
to effectively resolve many ambiguities. 

 Current statistical parsers are quite accurate but not 
yet at the level of human-expert agreement. 
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