
11/29/2010

1

Statistical Parsing

(Following slides are modified from Prof. Raymond Mooney’s slides.)

Statistical Parsing
 Statistical parsing uses a probabilistic model of

syntax in order to assign probabilities to each
parse tree.

 Provides principled approach to resolving syntactic
ambiguity.

 Allows supervised learning of parsers from tree-
banks of parse trees provided by human linguists.

 Also allows unsupervised learning of parsers from
unannotated text, but the accuracy of such
parsers has been limited.

2

3

Probabilistic Context Free Grammar
(PCFG)

 A PCFG is a probabilistic version of a CFG where each
production has a probability.

 Probabilities of all productions rewriting a given non-
terminal must add to 1, defining a distribution for
each non-terminal.

 String generation is now probabilistic where
production probabilities are used to non-
deterministically select a production for rewriting a
given non-terminal.

Simple PCFG for ATIS English

S → NP VP

S → Aux NP VP

S → VP

NP → Pronoun

NP → Proper-Noun

NP → Det Nominal

Nominal → Noun

Nominal → Nominal Noun

Nominal → Nominal PP

VP → Verb

VP → Verb NP

VP → VP PP

PP → Prep NP

Grammar

0.8

0.1

0.1

0.2

0.2

0.6

0.3

0.2

0.5

0.2

0.5

0.3

1.0

Prob

+

+

+

+

1.0

1.0

1.0

1.0

Det → the | a | that | this

 0.6 0.2 0.1 0.1

Noun → book | flight | meal | money

 0.1 0.5 0.2 0.2

Verb → book | include | prefer

 0.5 0.2 0.3

Pronoun → I | he | she | me

 0.5 0.1 0.1 0.3

Proper-Noun → Houston | NWA

 0.8 0.2

Aux → does

 1.0

Prep → from | to | on | near | through

 0.25 0.25 0.1 0.2 0.2

Lexicon

5

Sentence Probability
 Assume productions for each node are chosen

independently.

 Probability of derivation is the product of the
probabilities of its productions.

P(D1) = 0.1 x 0.5 x 0.5 x 0.6 x 0.6 x

 0.5 x 0.3 x 1.0 x 0.2 x 0.2 x

 0.5 x 0.8
 = 0.0000216

D1
S

VP

Verb NP

 Det Nominal

Nominal PP

book

Prep NP

through

Houston

Proper-Noun

the

flight

Noun

0.5

0.5
0.6

0.6 0.5

1.0

0.2

0.3

0.5 0.2

0.8

0.1

Syntactic Disambiguation
 Resolve ambiguity by picking most probable parse

tree.

6
6

D2

VP

Verb NP

 Det Nominal book

Prep NP

through

Houston

Proper-Noun

the

flight

Noun

0.5

0.5
0.6

0.6
1.0

0.2
0.3

0.5 0.2

0.8

S

VP

0.1

PP

0.3

P(D2) = 0.1 x 0.3 x 0.5 x 0.6 x 0.5 x

 0.6 x 0.3 x 1.0 x 0.5 x 0.2 x

 0.2 x 0.8
 = 0.00001296

11/29/2010

2

Sentence Probability
 Probability of a sentence is the sum of the

probabilities of all of its derivations.

7

P(“book the flight through Houston”) =

P(D1) + P(D2) = 0.0000216 + 0.00001296

 = 0.00003456

8

Three Useful PCFG Tasks
 Observation likelihood: To classify and order sentences.

 Most likely derivation: To determine the most likely
parse tree for a sentence.

 Maximum likelihood training: To train a PCFG to fit
empirical training data.

PCFG: Most Likely Derivation
 There is an analog to the Viterbi algorithm to

efficiently determine the most probable derivation
(parse tree) for a sentence.

S → NP VP

S → VP

NP → Det A N

NP → NP PP

NP → PropN

A → ε

A → Adj A

PP → Prep NP

VP → V NP

VP → VP PP

0.9

0.1

0.5

0.3

0.2

0.6

0.4

1.0

0.7

0.3

English

PCFG

Parser

John liked the dog in the pen.
S

NP VP

John V NP PP

liked the dog in the pen X
10

PCFG: Most Likely Derivation
 There is an analog to the Viterbi algorithm to

efficiently determine the most probable derivation
(parse tree) for a sentence.

S → NP VP

S → VP

NP → Det A N

NP → NP PP

NP → PropN

A → ε

A → Adj A

PP → Prep NP

VP → V NP

VP → VP PP

0.9

0.1

0.5

0.3

0.2

0.6

0.4

1.0

0.7

0.3

English

PCFG

Parser

John liked the dog in the pen.

S

NP VP

John V NP

liked the dog in the pen

Probabilistic CKY
 CKY can be modified for PCFG parsing by including in

each cell a probability for each non-terminal.

 Cell[i,j] must retain the most probable derivation of
each constituent (non-terminal) covering words i +1
through j together with its associated probability.

 When transforming the grammar to CNF, must set
production probabilities to preserve the probability of
derivations.

 Probabilistic Grammar Conversion

S → NP VP
S → Aux NP VP

S → VP

NP → Pronoun

NP → Proper-Noun

NP → Det Nominal
Nominal → Noun

Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb

VP → Verb NP
VP → VP PP
PP → Prep NP

Original Grammar Chomsky Normal Form

S → NP VP
S → X1 VP
X1 → Aux NP
S → book | include | prefer
 0.01 0.004 0.006
S → Verb NP
S → VP PP
NP → I | he | she | me
 0.1 0.02 0.02 0.06
NP → Houston | NWA
 0.16 .04
NP → Det Nominal
Nominal → book | flight | meal | money
 0.03 0.15 0.06 0.06
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer
 0.1 0.04 0.06
VP → Verb NP
VP → VP PP
PP → Prep NP

0.8
0.1

0.1

0.2

0.2

0.6
0.3

0.2
0.5
0.2

0.5
0.3
1.0

0.8
0.1
1.0

0.05
0.03

0.6

0.2
0.5

0.5
0.3
1.0

11/29/2010

3

Probabilistic CKY Parser

13

 Book the flight through Houston

S :.01, VP:.1,

Verb:.5

Nominal:.03

Noun:.1

Det:.6

Nominal:.15

Noun:.5

None

NP:.6*.6*.15

 =.054

Probabilistic CKY Parser

14

 Book the flight through Houston

S :.01, VP:.1,

Verb:.5

Nominal:.03

Noun:.1

Det:.6

Nominal:.15

Noun:.5

None

NP:.6*.6*.15

 =.054

VP:.5*.5*.054

 =.0135

Probabilistic CKY Parser

15

 Book the flight through Houston

S :.01, VP:.1,

Verb:.5

Nominal:.03

Noun:.1

Det:.6

Nominal:.15

Noun:.5

None

NP:.6*.6*.15

 =.054

VP:.5*.5*.054

 =.0135

S:.05*.5*.054

 =.00135

Probabilistic CKY Parser

16

 Book the flight through Houston

S :.01, VP:.1,

Verb:.5

Nominal:.03

Noun:.1

Det:.6

Nominal:.15

Noun:.5

None

NP:.6*.6*.15

 =.054

VP:.5*.5*.054

 =.0135

S:.05*.5*.054

 =.00135

None

None

None

Prep:.2

Probabilistic CKY Parser

17

 Book the flight through Houston

S :.01, VP:.1,

Verb:.5

Nominal:.03

Noun:.1

Det:.6

Nominal:.15

Noun:.5

None

NP:.6*.6*.15

 =.054

VP:.5*.5*.054

 =.0135

S:.05*.5*.054

 =.00135

None

None

None

Prep:.2

NP:.16
PropNoun:.8

PP:1.0*.2*.16
 =.032

Probabilistic CKY Parser

18

 Book the flight through Houston

S :.01, VP:.1,

Verb:.5

Nominal:.03

Noun:.1

Det:.6

Nominal:.15

Noun:.5

None

NP:.6*.6*.15

 =.054

VP:.5*.5*.054

 =.0135

S:.05*.5*.054

 =.00135

None

None

None

Prep:.2

NP:.16
PropNoun:.8

PP:1.0*.2*.16
 =.032

Nominal:
.5*.15*.032
=.0024

11/29/2010

4

Probabilistic CKY Parser

19

 Book the flight through Houston

S :.01, VP:.1,

Verb:.5

Nominal:.03

Noun:.1

Det:.6

Nominal:.15

Noun:.5

None

NP:.6*.6*.15

 =.054

VP:.5*.5*.054

 =.0135

S:.05*.5*.054

 =.00135

None

None

None

Prep:.2

NP:.16
PropNoun:.8

PP:1.0*.2*.16
 =.032

Nominal:
.5*.15*.032
=.0024

NP:.6*.6*

 .0024

 =.000864

Probabilistic CKY Parser

20

 Book the flight through Houston

S :.01, VP:.1,

Verb:.5

Nominal:.03

Noun:.1

Det:.6

Nominal:.15

Noun:.5

None

NP:.6*.6*.15

 =.054

VP:.5*.5*.054

 =.0135

S:.05*.5*.054

 =.00135

None

None

None

Prep:.2

NP:.16
PropNoun:.8

PP:1.0*.2*.16
 =.032

Nominal:
.5*.15*.032
=.0024

NP:.6*.6*

 .0024

 =.000864

S:.05*.5*

 .000864

 =.0000216

Probabilistic CKY Parser

21

 Book the flight through Houston

S :.01, VP:.1,

Verb:.5

Nominal:.03

Noun:.1

Det:.6

Nominal:.15

Noun:.5

None

NP:.6*.6*.15

 =.054

VP:.5*.5*.054

 =.0135

S:.05*.5*.054

 =.00135

None

None

None

Prep:.2

NP:.16
PropNoun:.8

PP:1.0*.2*.16
 =.032

Nominal:
.5*.15*.032
=.0024

NP:.6*.6*

 .0024

 =.000864

S:.0000216

S:.03*.0135*

 .032

 =.00001296

Probabilistic CKY Parser

22

 Book the flight through Houston

S :.01, VP:.1,

Verb:.5

Nominal:.03

Noun:.1

Det:.6

Nominal:.15

Noun:.5

None

NP:.6*.6*.15

 =.054

VP:.5*.5*.054

 =.0135

S:.05*.5*.054

 =.00135

None

None

None

Prep:.2

NP:.16
PropNoun:.8

PP:1.0*.2*.16
 =.032

Nominal:
.5*.15*.032
=.0024

NP:.6*.6*

 .0024

 =.000864

S:.0000216
Pick most probable
parse, i.e. take max to
combine probabilities
of multiple derivations
of each constituent in
each cell.

23

PCFG: Observation Likelihood
 There is an analog to Forward algorithm for HMMs

called the Inside algorithm for efficiently
determining how likely a string is to be produced
by a PCFG.

 Can use a PCFG as a language model to choose
between alternative sentences for speech
recognition or machine translation.

S → NP VP

S → VP

NP → Det A N

NP → NP PP

NP → PropN

A → ε

A → Adj A

PP → Prep NP

VP → V NP

VP → VP PP

0.9

0.1

0.5

0.3

0.2

0.6

0.4

1.0

0.7

0.3

English

The dog big barked.

The big dog barked

O1

O2

?

?

P(O2 | English) > P(O1 | English) ?

Inside Algorithm
 Use CKY probabilistic parsing algorithm but combine

probabilities of multiple derivations of any constituent
using addition instead of max.

24

11/29/2010

5

25

 Book the flight through Houston

S :.01, VP:.1,

Verb:.5

Nominal:.03

Noun:.1

Det:.6

Nominal:.15

Noun:.5

None

NP:.6*.6*.15

 =.054

VP:.5*.5*.054

 =.0135

S:.05*.5*.054

 =.00135

None

None

None

Prep:.2

NP:.16
PropNoun:.8

PP:1.0*.2*.16
 =.032

Nominal:
.5*.15*.032
=.0024

NP:.6*.6*

 .0024

 =.000864

S:.0000216

S:..00001296

Probabilistic CKY Parser
for Inside Computation

26

 Book the flight through Houston

S :.01, VP:.1,

Verb:.5

Nominal:.03

Noun:.1

Det:.6

Nominal:.15

Noun:.5

None

NP:.6*.6*.15

 =.054

VP:.5*.5*.054

 =.0135

S:.05*.5*.054

 =.00135

None

None

None

Prep:.2

NP:.16
PropNoun:.8

PP:1.0*.2*.16
 =.032

Nominal:
.5*.15*.032
=.0024

NP:.6*.6*

 .0024

 =.000864

 +.0000216

 =.00003456

S: .00001296 Sum probabilities
of multiple derivations
of each constituent in
each cell.

Probabilistic CKY Parser
for Inside Computation

27

PCFG: Supervised Training
 If parse trees are provided for training sentences, a

grammar and its parameters can be can all be
estimated directly from counts accumulated from the
tree-bank (with appropriate smoothing).

.

.

.

Tree Bank

Supervised

PCFG

Training

S → NP VP

S → VP

NP → Det A N

NP → NP PP

NP → PropN

A → ε

A → Adj A

PP → Prep NP

VP → V NP

VP → VP PP

0.9

0.1

0.5

0.3

0.2

0.6

0.4

1.0

0.7

0.3

English

S

NP VP

John V NP PP

put the dog in the pen

S

NP VP

John V NP PP

put the dog in the pen

Estimating Production Probabilities
 Set of production rules can be taken directly from the

set of rewrites in the treebank.

 Parameters can be directly estimated from frequency
counts in the treebank.

28

)count(

)count(

)count(

)count(
)|(

P

29

PCFG: Maximum Likelihood Training
 Given a set of sentences, induce a grammar that

maximizes the probability that this data was
generated from this grammar.

 Assume the number of non-terminals in the
grammar is specified.

 Only need to have an unannotated set of
sequences generated from the model. Does not
need correct parse trees for these sentences. In
this sense, it is unsupervised.

30

PCFG: Maximum Likelihood Training

John ate the apple

A dog bit Mary

Mary hit the dog

John gave Mary the cat.

.
.
.

Training Sentences

PCFG

Training

S → NP VP

S → VP

NP → Det A N

NP → NP PP

NP → PropN

A → ε

A → Adj A

PP → Prep NP

VP → V NP

VP → VP PP

0.9

0.1

0.5

0.3

0.2

0.6

0.4

1.0

0.7

0.3

English

11/29/2010

6

Inside-Outside
 The Inside-Outside algorithm is a version of EM for

unsupervised learning of a PCFG.
 Analogous to Baum-Welch (forward-backward) for HMMs

 Given the number of non-terminals, construct all possible
CNF productions with these non-terminals and observed
terminal symbols.

 Use EM to iteratively train the probabilities of these
productions to locally maximize the likelihood of the data.
 See Manning and Schütze text for details

 Experimental results are not impressive, but recent work
imposes additional constraints to improve unsupervised
grammar learning.

32

Vanilla PCFG Limitations
 Since probabilities of productions do not rely on

specific words or concepts, only general structural
disambiguation is possible (e.g. prefer to attach
PPs to Nominals).

 Consequently, vanilla PCFGs cannot resolve
syntactic ambiguities that require semantics to
resolve, e.g. ate with fork vs. meatballs.

 In order to work well, PCFGs must be lexicalized,
i.e. productions must be specialized to specific
words by including their head-word in their LHS
non-terminals (e.g. VP-ate).

Example of Importance of Lexicalization
 A general preference for attaching PPs to NPs

rather than VPs can be learned by a vanilla PCFG.

 But the desired preference can depend on specific
words.

33

S → NP VP

S → VP

NP → Det A N

NP → NP PP

NP → PropN

A → ε

A → Adj A

PP → Prep NP

VP → V NP

VP → VP PP

0.9

0.1

0.5

0.3

0.2

0.6

0.4

1.0

0.7

0.3

English

PCFG

Parser

S

NP VP

John V NP PP

put the dog in the pen

John put the dog in the pen.

34

Example of Importance of Lexicalization
 A general preference for attaching PPs to NPs

rather than VPs can be learned by a vanilla PCFG.

 But the desired preference can depend on specific
words.

S → NP VP

S → VP

NP → Det A N

NP → NP PP

NP → PropN

A → ε

A → Adj A

PP → Prep NP

VP → V NP

VP → VP PP

0.9

0.1

0.5

0.3

0.2

0.6

0.4

1.0

0.7

0.3

English

PCFG

Parser

S

NP VP

John V NP

put the dog in the pen X
John put the dog in the pen.

Head Words
 Syntactic phrases usually have a word in them that

is most “central” to the phrase.

 Linguists have defined the concept of a lexical
head of a phrase.

 Simple rules can identify the head of any phrase
by percolating head words up the parse tree.
 Head of a VP is the main verb

 Head of an NP is the main noun

 Head of a PP is the preposition

 Head of a sentence is the head of its VP

Lexicalized Productions
 Specialized productions can be generated by

including the head word and its POS of each non-
terminal as part of that non-terminal’s symbol.

S

VP

VBD NP

 DT Nominal

Nominal PP

liked

IN NP

in

the

dog

NN

 DT Nominal

NN the

pen

NNP

NP

John

pen-NN

pen-NN

in-IN
dog-NN

dog-NN

dog-NN

liked-VBD

liked-VBD

John-NNP

Nominaldog-NN → Nominaldog-NN PPin-IN

11/29/2010

7

Lexicalized Productions

S

VP

VP PP

 DT Nominal put

IN NP

in

the

dog

NN

 DT Nominal

NN the

pen

NNP

NP

John

pen-NN

pen-NN

in-IN

dog-NN

dog-NN

put-VBD

put-VBD

John-NNP

NP VBD

put-VBD

VPput-VBD → VPput-VBD PPin-IN

Parameterizing Lexicalized Productions

 Accurately estimating parameters on such a large
number of very specialized productions could
require enormous amounts of treebank data.

 Need some way of estimating parameters for
lexicalized productions that makes reasonable
independence assumptions so that accurate
probabilities for very specific rules can be learned.

Collins’ Parser
 Collins’ (1999) parser assumes a simple generative

model of lexicalized productions.

 Models productions based on context to the left and
the right of the head daughter.
 LHS → LnLn1…L1H R1…Rm1Rm

 First generate the head (H) and then repeatedly
generate left (Li) and right (Ri) context symbols until
the symbol STOP is generated.

Sample Production Generation

VPput-VBD → VBDput-VBD NPdog-NN PPin-IN

Note: Penn treebank tends to

have fairly flat parse trees that

produce long productions.

VPput-VBD → VBDput-VBD NPdog-NN

H L1

STOP PPin-IN STOP

R1 R2 R3

PL(STOP | VPput-VBD) * PH(VBD | Vpput-VBD)*

 PR(NPdog-NN | VPput-VBD)*

 PR(PPin-IN | VPput-VBD) * PR(STOP | VPput-VBD)

Count(PPin-IN right of head in a VPput-VBD production)

Estimating Production Generation Parameters

 Estimate PH, PL, and PR parameters from treebank data.

PR(PPin-IN | VPput-VBD) =
Count(symbol right of head in a VPput-VBD)

Count(NPdog-NN right of head in a VPput-VBD production)
PR(NPdog-NN | VPput-VBD) =

• Smooth estimates by linearly interpolating with
simpler models conditioned on just POS tag or no
lexical info.

smPR(PPin-IN | VPput-VBD) = 1 PR(PPin-IN | VPput-VBD)

 + (1 1) (2 PR(PPin-IN | VPVBD) +

 (1 2) PR(PPin-IN | VP))

Count(symbol right of head in a VPput-VBD)

Missed Context Dependence
 Another problem with CFGs is that which production

is used to expand a non-terminal is independent of its
context.

 However, this independence is frequently violated for
normal grammars.

 NPs that are subjects are more likely to be pronouns
than NPs that are objects.

42

11/29/2010

8

Splitting Non-Terminals
 To provide more contextual information, non-

terminals can be split into multiple new non-terminals
based on their parent in the parse tree using parent
annotation.

 A subject NP becomes NP^S since its parent node is an S.

 An object NP becomes NP^VP since its parent node is a
VP

43

Parent Annotation Example

44

S

VP

VBD NP

 DT Nominal

Nominal PP

liked

IN NP

in

the

dog

NN

 DT Nominal

NN the

pen

NNP

NP

John

^NP

^PP

^Nominal
^Nominal

^NP

^VP

^S ^S

^Nominal

^NP

^PP
^Nominal

^NP

^VP ^NP

VP^S → VBD^VP NP^VP

Split and Merge
 Non-terminal splitting greatly increases the size of

the grammar and the number of parameters that
need to be learned from limited training data.

 Best approach is to only split non-terminals when it
improves the accuracy of the grammar.

 May also help to merge some non-terminals to
remove some un-helpful distinctions and learn more
accurate parameters for the merged productions.

 Method: Heuristically search for a combination of
splits and merges that produces a grammar that
maximizes the likelihood of the training treebank.

45 46

Treebanks
 English Penn Treebank: Standard corpus for

testing syntactic parsing consists of 1.2 M words of
text from the Wall Street Journal (WSJ).

 Typical to train on about 40,000 parsed sentences
and test on an additional standard disjoint test set
of 2,416 sentences.

 Chinese Penn Treebank: 100K words from the
Xinhua news service.

 Other corpora existing in many languages, see the
Wikipedia article “Treebank”

First WSJ Sentence

47

((S

 (NP-SBJ

 (NP (NNP Pierre) (NNP Vinken))

 (, ,)

 (ADJP

 (NP (CD 61) (NNS years))

 (JJ old))

 (, ,))

 (VP (MD will)

 (VP (VB join)

 (NP (DT the) (NN board))

 (PP-CLR (IN as)

 (NP (DT a) (JJ nonexecutive) (NN director)))

 (NP-TMP (NNP Nov.) (CD 29))))

 (. .)))

WSJ Sentence with Trace (NONE)

48

((S

 (NP-SBJ (DT The) (NNP Illinois) (NNP Supreme) (NNP Court))

 (VP (VBD ordered)

 (NP-1 (DT the) (NN commission))

 (S

 (NP-SBJ (-NONE- *-1))

 (VP (TO to)

 (VP

 (VP (VB audit)

 (NP

 (NP (NNP Commonwealth) (NNP Edison) (POS 's))

 (NN construction) (NNS expenses)))

 (CC and)

 (VP (VB refund)

 (NP (DT any) (JJ unreasonable) (NNS expenses)))))))

 (. .)))

11/29/2010

9

49

Parsing Evaluation Metrics
 PARSEVAL metrics measure the fraction of the

constituents that match between the computed and
human parse trees. If P is the system’s parse tree and T
is the human parse tree (the “gold standard”):
 Recall = (# correct constituents in P) / (# constituents in T)

 Precision = (# correct constituents in P) / (# constituents in P)

 Labeled Precision and labeled recall require getting the
non-terminal label on the constituent node correct to
count as correct.

 F1 is the harmonic mean of precision and recall.

Computing Evaluation Metrics

Correct Tree T
S

VP

Verb NP

 Det Nominal

Nominal PP

book

Prep NP

through

Houston

Proper-Noun

the

flight

Noun

Computed Tree P

VP

Verb NP

 Det Nominal book

Prep NP

through

Houston

Proper-Noun

the

flight

Noun

S

VP

PP

Constituents: 12 # Constituents: 12

Correct Constituents: 10

Recall = 10/12= 83.3% Precision = 10/12=83.3% F1 = 83.3%

51

Treebank Results
 Results of current state-of-the-art systems on the

English Penn WSJ treebank are slightly greater than 90%
labeled precision and recall.

Discriminative Parse Reranking
 Motivation: Even when the top-ranked parse not

correct, frequently the correct parse is one of those
ranked highly by a statistical parser.

 Use a discriminative classifier that is trained to select
the best parse from the N-best parses produced by
the original parser.

 Reranker can exploit global features of the entire
parse whereas a PCFG is restricted to making
decisions based on local info.

52

2-Stage Reranking Approach
 Adapt the PCFG parser to produce an N-best list of the

most probable parses in addition to the most-likely
one.

 Extract from each of these parses, a set of global
features that help determine if it is a good parse tree.

 Train a discriminative classifier (e.g. logistic
regression) using the best parse in each N-best list as
positive and others as negative.

53

Parse Reranking

54

sentence
 N-Best

Parse Trees

 PCFG Parser

 Parse Tree

 Feature

 Extractor

 Parse Tree

Descriptions

 Discriminative

 Parse Tree

 Classifier

 Best

Parse Tree

11/29/2010

10

Sample Parse Tree Features
 Probability of the parse from the PCFG.

 The number of parallel conjuncts.

 “the bird in the tree and the squirrel on the ground”

 “the bird and the squirrel in the tree”

 The degree to which the parse tree is right branching.

 English parses tend to be right branching (cf. parse of “Book
the flight through Houston”)

 Frequency of various tree fragments, i.e. specific
combinations of 2 or 3 rules.

55

Evaluation of Reranking
 Reranking is limited by oracle accuracy, i.e. the

accuracy that results when an omniscient oracle picks
the best parse from the N-best list.

 Typical current oracle accuracy is around F1=97%

 Reranking can generally improve test accuracy of
current PCFG models a percentage point or two.

56

Other Discriminative Parsing
 There are also parsing models that move from

generative PCFGs to a fully discriminative model, e.g.
max margin parsing (Taskar et al., 2004).

 There is also a recent model that efficiently reranks all
of the parses in the complete (compactly-encoded)
parse forest, avoiding the need to generate an N-best
list (forest reranking, Huang, 2008).

57

Human Parsing
 Computational parsers can be used to predict human

reading time as measured by tracking the time taken
to read each word in a sentence.

 Psycholinguistic studies show that words that are
more probable given the preceding lexical and
syntactic context are read faster.
 John put the dog in the pen with a lock.

 John put the dog in the pen with a bone in the car.

 John liked the dog in the pen with a bone.

 Modeling these effects requires an incremental
statistical parser that incorporates one word at a time
into a continuously growing parse tree.

58

Garden Path Sentences
 People are confused by sentences that seem to have a

particular syntactic structure but then suddenly violate
this structure, so the listener is “lead down the garden
path”.
 The horse raced past the barn fell.

 vs. The horse raced past the barn broke his leg.

 The complex houses married students.

 The old man the sea.
 While Anna dressed the baby spit up on the bed.

 Incremental computational parsers can try to predict
and explain the problems encountered parsing such
sentences.

59

Center Embedding
 Nested expressions are hard for humans to process

beyond 1 or 2 levels of nesting.
 The rat the cat chased died.

 The rat the cat the dog bit chased died.

 The rat the cat the dog the boy owned bit chased died.

 Requires remembering and popping incomplete
constituents from a stack and strains human short-term
memory.

 Equivalent “tail embedded” (tail recursive) versions are
easier to understand since no stack is required.
 The boy owned a dog that bit a cat that chased a rat that died.

60

11/29/2010

11

Dependency Grammars
 An alternative to phrase-structure grammar is to

define a parse as a directed graph between the words
of a sentence representing dependencies between the
words.

61

liked

John dog

pen

in the

the

liked

John dog

pen

in

the

the

nsubj dobj

det

det

Typed
dependency
parse

Dependency Graph from Parse Tree
 Can convert a phrase structure parse to a

dependency tree by making the head of each non-
head child of a node depend on the head of the head
child.

62

S

VP

VBD NP

 DT Nominal

Nominal PP

liked

IN NP

in

the

dog

NN

 DT Nominal

NN the

pen

NNP

NP

John

pen-NN

pen-NN

in-IN
dog-NN

dog-NN

dog-NN

liked-VBD

liked-VBD

John-NNP

liked

John dog

pen

in the

the

Unification Grammars
 In order to handle agreement issues more effectively,

each constituent has a list of features such as number,
person, gender, etc. which may or not be specified for
a given constituent.

 In order for two constituents to combine to form a
larger constituent, their features must unify, i.e.
consistently combine into a merged set of features.

 Expressive grammars and parsers (e.g. HPSG) have
been developed using this approach and have been
partially integrated with modern statistical models of
disambiguation.

63

Mildly Context-Sensitive Grammars
 Some grammatical formalisms provide a degree of

context-sensitivity that helps capture aspects of NL
syntax that are not easily handled by CFGs.

 Tree Adjoining Grammar (TAG) is based on combining
tree fragments rather than individual phrases.

 Combinatory Categorial Grammar (CCG) consists of:
 Categorial Lexicon that associates a syntactic and semantic

category with each word.

 Combinatory Rules that define how categories combine to
form other categories.

64

Statistical Parsing Conclusions
 Statistical models such as PCFGs allow for probabilistic

resolution of ambiguities.

 PCFGs can be easily learned from treebanks.

 Lexicalization and non-terminal splitting are required
to effectively resolve many ambiguities.

 Current statistical parsers are quite accurate but not
yet at the level of human-expert agreement.

65

