Machine Translation

(Following slides are modified from Prof. Raymond Mooney's slides.)

Machine Translation

- Automatically translate one natural language into another.

Mary didn't slap the green witch.

Maria no dió una bofetada a la bruja verde. (Spanish)

Ambiguity Resolution
 is Required for Translation

- Syntactic and semantic ambiguities must be properly resolved for correct translation:
- "John plays the guitar." \rightarrow "John toca la guitarra."
- "John plays soccer." \rightarrow "John juega el fútbol."
- An apocryphal story is that an early MT system gave the following results when translating from English to Russian and then back to English:
- "The spirit is willing but the flesh is weak." \Rightarrow
"The liquor is good but the meat is spoiled."
- "Out of sight, out of mind." \Rightarrow "Invisible idiot."

Word Alignment

- Shows mapping between words in one language and the other.

Translation Quality

- Achieving literary quality translation is very difficult.
- Existing MT systems can generate rough translations that convey at least the gist of a document.
- High quality translations possible when specialized to narrow domains, e.g. weather forecasts.
- Some MT systems used in computer-aided translation in which a bilingual human post-edits the output to produce more readable accurate translations.
- Frequently used to aid localization of software interfaces and documentation to adapt them to other languages.

Linguistic Issues Making MT Difficult

- Morphological issues with agglutinative, fusional and polysynthetic languages with complex word structure.
- Syntactic variation between SVO (e.g. English), SOV (e.g. Hindi), and VSO (e.g. Arabic) languages.
- SVO languages use prepositions
- SOV languages use postpositions
- Pro-drop languages regularly omit subjects that must be inferred.

Lexical Gaps

- Some words in one language do not have a corresponding term in the other.
- Rivière (river that flows into ocean) and fleuve (river that does not flow into ocean) in French
- Schedenfraude (feeling good about another's pain) in German.
- Oyakoko (filial piety) in Japanese

"Vauquois Triangle"

Direct Transfer

- Morphological Analysis
- Mary didn't slap the green witch. \rightarrow

Mary DO:PAST not slap the green witch.

- Lexical Transfer
- Mary DO:PAST not slap the green witch.
- Mâria no dar: FAST uña bofetada a la verde bruja.
- Lexical Reordering
- Maria no dar:PAST una bofetada a la brufa verde.
- Morphological generation
- Maria no dió una bofetada a la bruja verde.

Syntactic Transfer

- Simple lexical reordering does not adequately handle more dramatic reordering such as that required to translate from an SVO to an SOV language.
- Need syntactic transfer rules that map parse tree for one language into one for another.
- English to Spanish:
- NP \rightarrow Adj Nom \Rightarrow NP \rightarrow Nom ADJ
- English to Japanese:
- VP \rightarrow VNP $\Rightarrow \mathrm{VP} \rightarrow \mathrm{NP} V$
- $\mathrm{PP} \rightarrow \mathrm{PNP} \Rightarrow \mathrm{PP} \rightarrow \mathrm{NPP}$

Semantic Transfer

- Some transfer requires semantic information.
- Semantic roles can determine how to properly express information in another language.
- In Chinese, PPs that express a goal, destination, or benefactor occur before the verb but those expressing a recipient occur after the verb.
- Transfer Rule
- English to Chinese
- VP \rightarrow V PP[+benefactor] \Rightarrow VP \rightarrow PP[+benefactor] V

Statistical MT

- Manually encoding comprehensive bilingual lexicons and transfer rules is difficult.
- SMT acquires knowledge needed for translation from a parallel corpus or bitext that contains the same set of documents in two languages.
- The Canadian Hansards (parliamentary proceedings in French and English) is a well-known parallel corpus.
- First align the sentences in the corpus based on simple methods that use coarse cues like sentence length to give bilingual sentence pairs.

Picking a Good Translation

- A good translation should be faithful and correctly convey the information and tone of the original source sentence.
- A good translation should also be fluent, grammatically well structured and readable in the target language.
- Final objective:

$$
T_{\text {best }}=\underset{\text { T Target }}{\operatorname{argmax}} \text { faithfulness }(T, S) \text { fluency }(T)
$$

"Noisy Channel Model"

- Based on analogy to information-theoretic model used to decode messages transmitted via a communication channel that adds errors.
- Assume that source sentence was generated by a "noisy" transformation of some target language sentence and then use Bayesian analysis to recover the most likely target sentence that generated it.

Translate foreign language sentence $F=f_{1}, f_{2}, \ldots f_{m}$ to an English sentence $\hat{E}=e_{1}, e_{2}, \ldots e_{I}$ that maximizes $\mathrm{P}(E \mid F)$

Bayesian Analysis of Noisy Channel

$\hat{E}=\operatorname{argmax} P(E \mid F)$
EєEnglish
$=\underset{E \in \text { English }}{\operatorname{argmax}} \frac{P(F \mid E) P(E)}{P(F)}$
$=\operatorname{argmax} P(F \mid E) P(E)$
E English

Translation Model Language Model
A decoder determines the most probable translation \hat{E} given F

Language Model

- Use a standard n-gram language model for $P(E)$.
- Can be trained on a large, unsupervised mono-lingual corpus for the target language E.
- Could use a more sophisticated PCFG language model to capture long-distance dependencies.
- Terabytes of web data have been used to build a large 5gram model of English.

Phrase-Based Translation Model

- Base $\mathrm{P}(F \mid E)$ on translating phrases in E to phrases in F.
- First segment E into a sequence of phrases $\bar{e}_{1}, \bar{e}_{1}, \ldots, \bar{e}_{1}$
- Then translate each phrase \bar{e}_{i}, into f_{i}, based on translation probability $\phi\left(f_{i} \mid \bar{e}_{\mathrm{i}}\right)$
- Then reorder translated phrases based on distortion probability $d(i)$ for the ith phrase.

$$
P(F \mid E)=\prod_{i=1}^{I} \phi\left(\bar{f}_{i}, \bar{e}_{i}\right) d(i)
$$

Translation Probabilities

- Assuming a phrase aligned parallel corpus is available or constructed that shows matching between phrases in E and F.
- Then compute (MLE) estimate of ϕ based on simple frequency counts.

$$
\phi(\bar{f}, \bar{e})=\frac{\operatorname{count}(\bar{f}, \bar{e})}{\sum_{\bar{f}} \operatorname{count}(\bar{f}, \bar{e})}
$$

Distortion Probability

- Measure distortion of phrase i as the distance between the start of the f phrase generated by \bar{e}_{i}, $\left(a_{i}\right)$ and the end of the end of the f phrase generated by the previous phrase $\bar{e}_{\mathrm{i}-1},\left(b_{i-1}\right)$.
- Typically assume the probability of a distortion decreases exponentially with the distance of the movement.

$$
d(i)=c \alpha^{\left|a_{i}-b_{i-1}\right|}
$$

Set $0<\alpha<1$ based on fit to phrase-aligned training data Then set c to normalize $d(i)$ so it sums to 1 .

Sample Translation Model

Position	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	6
English	Mary	did not	slap	the	green	witch
Spanish	Maria	no	dió una bofetada a	la	bruja	verde
					1	2

$p(F \mid E)=\phi($ Maria, Mary $) c \alpha^{1} \phi($ no, did not $) c \alpha^{1} \phi($ slap, dio una bofetada a $) c \alpha^{1}$ $\phi($ la, the $) c \alpha^{1} \phi$ (verde, green $) c \alpha^{2} \phi$ (bruja, witch) $c \alpha^{1}$

Word Alignment

- Directly constructing phrase alignments is difficult, so rely on first constructing word alignments.
- Can learn to align from supervised word alignments, but human-aligned bitexts are rare and expensive to construct.
- Typically use an unsupervised EM-based approach to compute a word alignment from unannotated parallel corpus.

One to Many Alignment

- To simplify the problem, typically assume each word in F aligns to 1 word in E (but assume each word in E may generate more than one word in F).
- Some words in F may be generated by the NULL element of E.
- Therefore, alignment can be specified by a vector A giving, for each word in F, the index of the word in E which generated it.

IBM Model 1

- First model proposed in seminal paper by Brown et al. in 1993 as part of CANDIDE, the first complete SMT system.
- Assumes following simple generative model of producing F from $E=e_{1}, e_{2}, \ldots e_{1}$

1. Choose J as the sentence length for F
2. Choose a 1 to many alignment $A=a_{1}, a_{2}, \ldots a_{J}$
3. For each position in F, generate a word f_{j} from the aligned word in $E: e_{a j}$

Sample IBM Model 1 Generation

- Assumes following simple generative model of producing F from $E=e_{1}, e_{2}, \ldots e_{\text {, }}$

1. Choose J as the sentence length for F
2. Choose a 1 to many alignment $A=a_{1}, a_{2}, \ldots a_{j}$
3. For each position in F, generate a word f_{j} from the aligned word in $E: e_{a j}$

Computing $\mathrm{P}(F \mid E)$ in IBM Model 1

- Assume some length distribution $\mathrm{P}(J \mid E)$
- Assume all alignments are equally likely. Since there are $(I+1)^{J}$ possible alignments:

$$
P(A \mid E)=P(A \mid E, J) P(J \mid E)=\frac{P(J \mid E)}{(I+1)^{J}}
$$

- Assume $t\left(f_{x}, e_{y}\right)$ is the prob of translating e_{y} as f_{x}

$$
P(F \mid E, A)=\prod_{j=1}^{J} t\left(f_{j}, e_{a_{j}}\right)
$$

- Determine $\mathbf{P}(\boldsymbol{F} \mid \boldsymbol{E})$ by summing over all alignments:

$$
P(F \mid E)=\sum_{A} P(F \mid E, A) P(A \mid E)=\sum_{A} \frac{P(J \mid E)}{(I+1)^{J}} \prod_{j=1}^{J} t\left(f_{j}, e_{a_{j}}\right)
$$

Decoding Alignment for IBM Model 1

- Goal is to find the most probable alignment given a parameterized model.

$$
\begin{aligned}
\hat{A} & =\underset{\mathrm{A}}{\operatorname{argmax}} P(F, A \mid E) \\
& =\underset{A}{\operatorname{argmax}} \frac{P(J \mid E)}{(I+1)^{J}} \prod_{j=1}^{J} t\left(f_{j}, e_{a_{j}}\right) \\
& =\underset{A}{\operatorname{argmax}} \prod_{j=1}^{J} t\left(f_{j}, e_{a_{j}}\right)
\end{aligned}
$$

Since translation choice for each position j is independent, the product is maximized by maximizing each term:

$$
a_{j}=\underset{0 \leq i \leq I}{\operatorname{argmax}} t\left(f_{j}, e_{i}\right) \quad 1 \leq j \leq J
$$

HMM-Based Word Alignment

- IBM Model 1 assumes all alignments are equally likely and does not take into account locality:
- If two words appear together in one language, then their translations are likely to appear together in the result in the other language.
- An alternative model of word alignment based on an HMM model does account for locality by making longer jumps in switching from translating one word to another less likely.

HMM Model

- Assumes the hidden state is the specific word occurrence e_{i} in E currently being translated (i.e. there are I states, one for each word in E).
- Assumes the observations from these hidden states are the possible translations f_{j} of e_{i}.
- Generation of F from E then consists of moving to the initial E word to be translated, generating a translation, moving to the next word to be translated, and so on.

Sample HMM Generation

- $1 \quad 2^{2}, \begin{array}{lllll}3 & 4 & 6\end{array}$ Mary didn't slap the green witch.

Maria

Sample HMM Generation

Maria no

Sample HMM Generation

Sample HMM Generation

Sample HMM Generation

Sample HMM Generation

$1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6$

 Mary didn't slap the green witch.Maria no dió una bofetada a

Sample HMM Generation

Mary didn't slap the green witch.

Maria no dió una bofetada a la

Sample HMM Generation

Mary didn't slap the green witch.

Maria no dió una bofetada a la bruja

Sample HMM Generation

$1 \quad \mathrm{~m}^{2} \quad 3 \quad 4 \quad 5 \quad 6$

 Mary didn't slap the green witch.Maria no dió una bofetada a la bruja vêrde.

Sample HMM Generation

Mary didn't slap the green witch.

Maria no dió una bofetada a la bruja verde.

HMM Parameters

- Transition and observation parameters of states for HMMs for all possible source sentences are "tied" to reduce the number of free parameters that have to be estimated.
- Observation probabilities: $b_{j}\left(f_{i}\right)=\mathrm{P}\left(f_{i} \mid e_{j}\right)$ the same for all states representing an occurrence of the same English word.
- State transition probabilities: $a_{i j}=s(j-i)$ the same for all transitions that involve the same jump width (and direction).

Computing $\mathrm{P}(F \mid E)$ in the HMM Model

- Given the observation and state-transition probabilities, $\mathrm{P}(F \mid E)$ (observation likelihood) can be computed using the standard forward algorithm for HMMs.

Decoding for the HMM Model

- Use the standard Viterbi algorithm to efficiently compute the most likely alignment (i.e. most likely state sequence).

Training Word Alignment Models

- Both the IBM model 1 and HMM model can be trained on a parallel corpus to set the required parameters.
- For supervised (hand-aligned) training data, parameters can be estimated directly using frequency counts.
- For unsupervised training data, EM can be used to estimate parameters, e.g. Baum-Welch for the HMM model.

Sketch of EM Algorithm for

 Word AlignmentRandomly set model parameters.
(making sure they represent legal distributions)
Until converge (i.e. parameters no longer change) do:
E Step: Compute the probability of all possible alignments of the training data using the current model.
M Step: Use these alignment probability estimates to re-estimate values for all of the parameters.

Note: Use dynamic programming (as in Baum-Welch) to avoid explicitly enumerating all possible alignments

Sample EM Trace for Alignment

 (IBM Model 1 with no NULL Generation)Training green house Corpus
the house

Assume uniform initial probabilities
la casa

Compute
Alignment
Probabilities
$\mathbf{P}(\mathbf{A}, \mathbf{F} \mid \mathbf{E})$
Normalize
to get
$\mathbf{P}(\mathbf{A} \mid \mathbf{F}, \mathbf{E})$
green house casa verde $1 / 3 \times 1 / 3=1 / 9$
$1 / 3 \times 1 / 3=1 / 9$
$1 / 3 \times 1 / 3=1 / 9$
the house
la casa
the house lacasa
$1 / 3 \times 1 / 3=1 / 9$

	verde	casa	la
green	$1 / 3$	$1 / 3$	$1 / 3$
house	$1 / 3$	$1 / 3$	$1 / 3$
the	$1 / 3$	$1 / 3$	$1 / 3$

Translation
Probabilities

Example cont.

green house	green house	the house	the house
casa verde	casa verde	la casa	la casa
$1 / 2$	$1 / 2$	$1 / 2$	$1 / 2$

Compute weighted translation counts

	verde	casa	la
green	$1 / 2$	$1 / 2$	0
house	$1 / 2$	$1 / 2+1 / 2$	$1 / 2$
the	0	$1 / 2$	$1 / 2$

Normalize
rows to sum
to one to
estimate $\mathbf{P}(\mathbf{f} \mid \mathbf{e})$

	verde	casa	la
green	$1 / 2$	$1 / 2$	0
house	$1 / 4$	$1 / 2$	$1 / 4$
the	0	$1 / 2$	$1 / 2$

Example cont.

		verde	casa	la	
Translation	green	$1 / 2$	$1 / 2$	0	
Probabilities	house	the	$1 / 4$	$1 / 2$	$1 / 4$
	the	0	$1 / 2$	$1 / 2$	

Recompute Alignment Probabilities $\mathbf{P}(\mathbf{A}, \mathbf{F} \mid \mathbf{E})$
green house casa verde $1 / 2 \times 1 / 4=1 / 8$
green house
casa verde la casa
the house
$1 / 2 \times 1 / 2=1 / 4 \quad 1 / 2 \times 1 / 2=1 / 4 \quad 1 / 2 \times 1 / 4=1 / 8$

Normalize

$$
\frac{1 / 8}{3 / 8}=\frac{1}{3} \quad \frac{1 / 4}{3 / 8}=\frac{2}{3} \quad \frac{1 / 4}{3 / 8}=\frac{2}{3} \quad \frac{1 / 8}{3 / 8}=\frac{1}{3}
$$

Continue EM iterations until translation parameters converge

Phrase Alignments from Word Alignments

- Phrase-based approaches to MT have been shown to be better than word-based models.
- However, alignment algorithms (IBM Model 1 or HMM Aligner) produce one to many word translations rather than many to many phrase translations.
- Combine $E \rightarrow F$ and $F \rightarrow E$ word alignments to produce a phrase alignment.
\rightarrow " Symmetrization technique"

Phrase Alignment via "Symmetrization"

Spanish to English (using HMM Alignment Model)

	Maria	no	dio	una	bofetada	a	la	bruja	verde
Mary	XXXX								
did		XX							
not		XX							
slap					XXXXXX				
the							XX		
green									XXXX
witch								XXXXX	

Phrase Alignment via "Symmetrization"

 English to Spanish (using HMM Alignment Model)| | Maria | no | dio | una | bofetada | a | la | bruja | verde |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Mary | XXXX | | | | | | | | |
| did | | | | | | | XX | | |
| not | | XX | | | | | | | |
| slap | | | XXX | XXX | XXXXXX | | | | |
| the | | | | | | | | | |
| green | | | | | | | XX | | |
| witch | | | | | | | | | |

Phrase Alignment via "Symmetrization"

Intersection of previous two alignments (high precision word-to-word alignment)

	Maria	no	dio	una	bofetada	a	19	bruja	verde
Mary	XXXX								
did									
not		XX							
slap					XXXXXX				
the							XX		
green									XXXX
witch								XXXXX	

Phrase Alignment via "Symmetrization"

Phrase alignments are obtained by expanding intersection to union (with certain rules or classifiers)

	Maria	no	dio	una	bofetada	a	la	bruja	verde
Mary	XXXX								
did		XX							
not		XX							
slap			XXX	XXX	XXXXXX				
the									
green									
(
witch									

Decoding

- Goal is to find a translation that maximizes the product of the translation and language models.

$$
\underset{E \in \text { English }}{\operatorname{argmax}} P(F \mid E) P(E)
$$

- Cannot explicitly enumerate and test the combinatorial space of all possible translations.
- Must efficiently (heuristically) search the space of translations that approximates the solution to this difficult optimization problem.
- The optimal decoding problem for all reasonable ${ }_{52}$ model's (e.g. IBM model 1) is NP-complete.

Space of Translations

- The phrase translation table from phrase alignments defines a space of all possible translations.
- Why is this NP-hard?

Maria	no	dio	una	bofetada	a	la	bruja	verde
Mary	not	give	a	slap	to	the	witch	green
	did not		a slap		to the		green witch	
	no		slap		to			
	$\underline{\text { did not give }}$					e		
	slap						witch	

Software

- Giza++ a training tool for IBM Model 1-5 (version for gcc-4)
- Moses, a complete SMT system
- Pharaoh a decoder for phrase-based SMT
- Rewrite a decoder for IBM Model 4
- BLEU scoring tool for machine translation evaluation

Stack Decoding

- Use a version of heuristic A* search to explore the space of phrase translations to find the best scoring subset that covers the source sentence.

Initialize priority queue Q (stack) to empty translation.
Loop:
$s=\operatorname{pop}(Q)$
If \boldsymbol{h} is a complete translation, exit loop and return it.
For each refinement s^{\prime} of s created by adding a phrase translation
Compute score $f\left(s^{\prime}\right)$
Add s^{\prime} to Q
Sort Q by score f

Search Heuristic

- A* is best-first search using the function f to sort the search queue:
- $f(s)=g(s)+h(s)$
- $g(s)$: Cost of existing partial solution
- $h(s)$: Estimated cost of completion of solution
- If $h(s)$ is an underestimate of the true remaining cost (admissible heuristic) then A^{*} is guaranteed to return an optimal solution.

Current Cost: $g(s)$

- Known quality of partial translation, E, composed of a set of chosen phrase translations S based on phrase translation and language models.

$$
g(s)=\log \frac{1}{\left(\prod_{i \in S} \phi\left(\bar{f}_{i}, \bar{e}_{i}\right) d(i)\right) P(E)}
$$

Estimated Future Cost: $h(s)$

- True future cost requires knowing the way of translating the remainder of the sentence in a way that maximizes the probability of the final translation.
- However, this is not computationally tractable.
- Therefore under-estimate the cost of remaining translation by ignoring the distortion component and computing the most probable remaining translation ignoring distortion (which is efficiently computable using the Viterbi algorithm)

Beam Search

- However, Q grows too large to be efficient and guarantee an optimal result with full A^{*} search.
- Therefore, always cut Q back to only the best (lowest cost) K items to approximate the best translation

Initialize priority queue Q (stack) to empty translation.
Loop:
If top item on Q is a complete translation, exit loop and return it.
For each element s of Q do
For each refinement s^{\prime} of s created by adding a phrase translation
Compute score $f\left(s^{\prime}\right)$
Add s^{\prime} to Q
Sort Q by score f
Prune Q back to only the first (lowest cost) K items

Multistack Decoding

- It is difficult to compare translations that cover different fractions of the foreign sentence, so maintain multiple priority queues (stacks), one for each number of foreign words currently translated.
- Finally, return best scoring translation in the queue of translations that cover all of the words in F.

Evaluating MT

- Human subjective evaluation is the best but is timeconsuming and expensive.
- Automated evaluation comparing the output to multiple human reference translations is cheaper and correlates with human judgements.

Human Evaluation of MT

- Ask humans to estimate MT output on several dimensions.
- Fluency: Is the result grammatical, understandable, and readable in the target language.
- Fidelity: Does the result correctly convey the information in the original source language.
- Adequacy: Human judgment on a fixed scale.
- Bilingual judges given source and target language.
- Monolingual judges given reference translation and MT result.
- Informativeness: Monolingual judges must answer questions about the source sentence given only the MT translation (taskbased evaluation).

Computer-Aided Translation Evaluation

- Edit cost: Measure the number of changes that a human translator must make to correct the MT output.
- Number of words changed
- Amount of time taken to edit
- Number of keystrokes needed to edit

Automatic Evaluation of MT

- Collect one or more human reference translations of the source.
- Compare MT output to these reference translations.
- Score result based on similarity to the reference translations.
- BLEU
- NIST
- TER
- METEOR

BLEU

- Determine number of n-grams of various sizes that the MT output shares with the reference translations.
- Compute a modified precision measure of the n-grams in MT result.

BLEU Example

Cand 1 Mary no slap the witch green
Cand 2: Mary did not give a smack to a green witch.

Ref $1 \geqslant$ Mary did not slap the green witch.
Ref 2 Mary did not smack the green witch.
Ref 3:Mary did not hit a green sorceress.

Cand 1 Unigram Precision: 5/6

BLEU Example

Cand 1: Mary no slap the witch green.
Cand 2: Mary did not give a smack to a green witch.
Ref 1: Mary did not slap the green witch. Ref 2: Mary did not smack the green witch.
Ref 3: Mary did not hit a green sorceress.

Cand 1 Bigram Precision: 1/5

BLEU Example

How about: Mary Mary Mary Mary Mary Mary.

Ref 1: Mary did not slap the green witch. Ref 2: Mary did not smack the green witch. Ref 3:Mary did not hit a green sorceress.

Unigram Precision: 6/6 ???

BLEU Example

How about: Mary Mary Mary Mary Mary Mary.

Ref 1: Mary did not slap the green witch. Ref 2: Mary did not smack the green witch. Ref 3: Mary did not hit a green sorceress.

Clip match count of each n-gram to maximum count of the n-gram in any single reference translation

Unigram Precision: 1/6

BLEU Example

Cand 1: Mary no slap the witch green. Cand $2 \sqrt{\text { Mary did }}$ not \mid give \mid a smack \mid to \mid a \mid green witch.

Ref 1: Mary did not slap the green witch. Ref 2: Mary did not smack the green witch.
Ref 3: Mary did not hit a green sorceress.

Clip match count of each n-gram to maximum count of the n-gram in any single reference translation

Cand 2 Unigram Precision: 7/10

BLEU Example

Cand 1: Mary no slap the witch green.
Cand 2: Mary did not give a smack to a green witch.
Ref 1: Mary did not slap the green witch. Ref 2: Mary did not smack the green witch.
Ref 3: Mary did not hit a green sorceress.

Cand 2 Bigram Precision: 4/9

Modified N-Gram Precision

- Average n-gram precision over all n-grams up to size N (typically 4) using geometric mean.

$$
p_{n}=\frac{\sum_{C \in \text { corpusn }- \text { gram } \in C} \sum_{C \in \text { corpusun }} \operatorname{cogram}_{\text {clip }}(\mathrm{n}-\text { gram })}{\sum_{C} \operatorname{count}(\mathrm{n}-\text { gram })}
$$

$$
p=\sqrt[N]{\prod_{n=1}^{N} p_{n}}
$$

Cand 1: $\quad p=\sqrt[2]{\frac{5}{6} \frac{1}{5}}=0.408$
Cand 2: $\quad p=\sqrt[2]{\frac{7}{10} \frac{4}{9}}=0.558$

BLEU is roughly Precision

- Why not n-gram Recall?
- What is the problem with computing Recall?
- What is the problem of not computing Recall?

Brevity Penalty

- Not easy to compute recall to complement precision since there are multiple alternative gold-standard references and don't need to match all of them.
- Instead, use a penalty for translations that are shorter than the reference translations.
- Define effective reference length, r, for each sentence as the length of the reference sentence with the largest number of n-gram matches. Let c be the candidate sentence length.

$$
B P= \begin{cases}1 & \text { if } c>r \\ e^{(1-r / c)} & \text { if } c \leq r\end{cases}
$$

BLEU Score

- Final BLEU Score: BLEU $=B P \times$ avg-ngram-prec

Cand 1: Mary no slap the witch green.
Best Ref: Mary did not slap the green witch.

$$
\begin{aligned}
& c=6, \quad r=7, \quad B P=e^{(1-7 / 6)}=0.846 \\
& B L E U=0.846 \times 0.408=0.345
\end{aligned}
$$

Cand 2: Mary did not give a smack to a green witch.
Best Ref: Mary did not smack the green witch.

$$
\begin{aligned}
& c=10, \quad r=7, \quad B P=1 \\
& B L E U=1 \times 0.558=0.558
\end{aligned}
$$

BLEU Score Issues

- BLEU has been shown to correlate with human evaluation when comparing outputs from different SMT systems.
- However, it is does not correlate with human judgments when comparing SMT systems with manually developed MT (Systran) or MT with human translations.
- Other MT evaluation metrics have been proposed that claim to overcome some of the limitations of BLEU.

Syntax-Based

Statistical Machine Translation

- Recent SMT methods have adopted a syntactic transfer approach.
- Improved results demonstrated for translating between more distant language pairs, e.g. Chinese/English.

Synchronous Grammar

- Multiple parse trees in a single derivation.
- Used by (Chiang, 2005; Galley et al., 2006).
- Describes the hierarchical structures of a sentence and its translation, and also the correspondence between their sub-parts.

Synchronous Productions

－Has two RHSs，one for each language．

Chinese：English：
$\mathrm{X} \rightarrow \mathrm{X}$ 是甚麼／What is X

Syntax－Based MT Example

Input：俄亥俄州的首府是甚麼？

Syntax－Based MT Example

Input：俄亥俄州的首府是甚麼？

Syntax－Based MT Example

Input：俄亥俄州的首府是甚麼？
$X \rightarrow X$ 是甚麼／What is X

Syntax－Based MT Example

Input：俄亥俄州的首府是甚麼？
$X \rightarrow X$ 首府／the capital X

Syntax－Based MT Example

Input：俄亥俄州的首府是甚麼？

$$
X \rightarrow X \text { 的 / of } X
$$

Syntax－Based MT Example

俄亥俄州

Input：俄亥俄州的首府是甚麼？

Ohio
$\mathrm{X} \rightarrow$ 俄亥俄州／Ohio

Syntax－Based MT Example

俄亥俄州

Input：俄亥俄州的首府是甚麼？

Ohio

Output：What is the capital of Ohio？

Synchronous Derivations and Translation Model

- Need to make a probabilistic version of synchronous grammars to create a translation model for $\mathrm{P}(F \mid E)$.
- Each synchronous production rule is given a weight λ_{i} that is used in a maximum-entropy (log linear) model.
- Parameters are learned to maximize the conditional loglikelihood of the training data.

$$
\lambda^{\star}=\underset{\lambda}{\arg \max } \sum_{j} \log \operatorname{Pr}_{\lambda}\left(\mathbf{f}_{j} \mid \mathbf{e}_{j}\right)
$$

Log-Linear Models for MT

- Noisy channel model takes into account just two factors:
- translation model P(F|E)
- language model P(E)
- A max-ent (log-linear) model can incorporate arbitrary other factors/features:
- Language model: $\mathrm{P}(E)$
- Translation mode: $\mathrm{P}(F \mid E)$
- Reverse translation model: $\mathrm{P}(E \mid F)$
- unknown word penalty, phrase penalty, etc

Minimum Error Rate Training (MERT)

- Noisy channel model is not trained to directly minimize the final MT evaluation metric, e.g. BLEU.
- A max-ent (log-linear) model can be trained by
- standard maximum entropy training, or these days,
- minimum error rate training (MERT)
- "Minimum Error Rate Training in Statistical Machine Translation", Franz Josef Och, ACL, 2003

Conclusions

- MT methods can usefully exploit various amounts of syntactic and semantic processing along the Vauquois triangle.
- Statistical MT methods can automatically learn a translation system from a parallel corpus.
- Typically use a noisy-channel model to exploit both a bilingual translation model and a monolingual language model.
- Automatic word alignment methods can learn a translation lexicon from a parallel corpus.
- Phrase-based and syntax based SMT methods are currently the state-of-the-art.

