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Abstract—In quantum networks, multipartite entangled states
distributed over the network are useful in implementing and
supporting many quantum network applications for communi-
cations, sensing, and computing. The focus of our work is to de-
velop techniques to efficiently generate distributed Greenberger-
Horne-Zeilinger (GHZ) states, a special class of multipartite
entanglement states. Prior works on generating GHZ states have
focused on the objective of minimizing the number of maximally
entangled (bipartite) pairs (EPs), while ignoring the stochastic
nature of quantum processes and assuming uniform network
links for generating EPs. In contrast, in our work, we take into
consideration the stochastic nature of quantum networks, and
focus on maximizing the expected generated rate of the GHZ
states under given fidelity constraints. In this context, we develop
two efficient generation schemes, viz., Fusion-Retain-Only
and General Fusion, comprised of optimal or near-optimal
sub-steps. Both schemes, at a high-level, first determine a way to
“connect” the nodes over which the GHZ state is to distributed,
and then, determine a sequence of fusion operations on the EPs
created over the connections. Using extensive simulations over
a quantum network simulator (NetSquid), we demonstrate the
effectiveness of our developed techniques and show that our
schemes outperform prior work as well as a simple centralized
approach by up to orders of magnitude while generating GHZ
states of tolerable fidelity.

I. Introduction
Fundamental advances in physical sciences and engineering

have led to the realization of working quantum computers
(QCs) [1]. However, there are significant limitations to the
capacity of individual QCs [2]. Quantum networks (QNs)
enable the construction of large-scale and robust quantum
computing platforms by connecting smaller QCs [3]. QNs
also enable various important applications [4]–[14], but to
implement and support these applications, we need to create
and distribute entangled states efficiently. Recent works [15],
[16] have considered on generating and distributing Bell pairs,
i.e., pairwise maximally entangled states (EPs). However, there
are several applications (see below) that also make use of
multipartite entangled states. Thus, in this work, we focus
on the generation and distribution of Greenberger-Horne-
Zeilinger (GHZ) states, an important class of multipartite
states.
Motivation for Distributing GHZ States. There are many
classes of multipartite entanglements with different character-
istics and applications, e.g., W and GHZ states. In particular,
GHZ states, a generalization of Bell pairs, form a useful class
of multipartite maximally entangled states [17]. They are used
in many multiparty applications of quantum information such
as error correction [18], quantum secret sharing [19], anony-
mous transmission [20], quantum metrology [21], conference
key agreement [22], clock synchronization [23], and extending

the baseline of telescopes [24]. Thus, the design of efficient
network protocols to generate and distribute GHZ states is
important for the implementation of many useful protocols
and applications of quantum networks. GHZ states can also
be used to generate arbitrary graph states which is another
useful class of multipartite states [25], [26]. In particular,
distributed graph states, as well as GHZ states, can also
be used to extract distributed bipartite entanglements which
have many applications such as teleportation, long-distance
entanglements, and quantum communications [27].

Prior Work and Our Approach. Recently, there have been
some works [25], [28]–[32] that have addressed the problem
of efficient generation and distribution of GHZ states in a
quantum network. These works [25], [28] have focused on
minimizing the number of EPs consumed. They implicitly
ignore the stochastic nature of the underlying processes, and
assume distributed EPs to be available a priori. A true count
of EPs consumed in the generation of GHZ states should
take into consideration the stochastic nature of operations
(e.g., fusion) involved, particularly, since they can have a
relatively low probability of success. Moreover, some EPs
may take significantly longer to generate than others, due to
the heterogeneity of the network links (e.g. different lengths).
Consequently, the count of EPs alone is too simplistic a
measure of overall performance.

Following prior works on the generation and distribution
of EPs [15], [33]–[35], we consider the more appropriate
optimization objective, viz., maximizing the expected gen-
eration rate under given fidelity constraints; this objective
explicitly takes into consideration the stochastic nature of all
processes, heterogeneity of the network links/elements, and
limited network resources. Overall, our proposed schemes use
fusion operations to progressively generate larger GHZ states
from smaller GHZ states or EPs. The fusion operations can
be seen as generalizations of Bell-State Measurement (BSM)
operations used in quantum repeaters for the generation and
distribution of EPs. Our proposed schemes have two high-
level steps: (i) Determine the best way to “connect” the
nodes over which the desired GHZ state is to be distributed,
(ii) Determine the sequence of fusion operations on the EPs
generated over the connections, to create the final desired GHZ
state. In determining the expected rate, our techniques take
into consideration “waiting” time incurred by an intermediate
(GHZ) state in waiting for its sibling-operand to become
available (possibly, after many failed attempts) before a binary
quantum operation (entanglement swapping or fusion) can be
performed; this is similar to the prior works on EP genera-



Fig. 1. A swapping tree over a path. The leaves of the tree are the link EPs,
which are being generated continuously.

Fig. 2. Fusion Operations: Fusion-Retain and Fusion-Discard. (a) Two GHZ
states with n1 and n2 number of qubits can be fused to create a bigger
GHZ state, via a fusion operation over i and j qubits. To perform the fusion
operation, the qubits i and j must be in the same network node. (b) GHZ
State after Fusion-Retain; the generated GHZ state has n1 + n2 − 1 qubit
with i retained and j discarded in the final state. (c) GHZ State after Fusion-
Discard; the generated GHZ state has n1 + n2 − 2 qubits with both i and j
discarded in the final state.

tion done with the same optimization objective of expected
generation rate.

Our Contributions. In the above context, we make the
following contributions in this paper:

1) We formulate the problem (GHZSG) of generating and
distributing GHZ states with the optimization objective
of maximizing generation rate under given fidelity con-
straints, taking into consideration the stochastic nature of
quantum operations and limited network resources.

2) We design a Fusion-Retain-Only (FRO) scheme, which
leverages prior work on efficient generation of remote
EPs, but uses only a single type of fusion operation (§IV).

3) We also design a more general General-Fusion (GF)
scheme, which uses two types of fusion operations and
is based on constructing a near-optimal Steiner tree over
the terminal nodes (§V).

4) Via extensive evaluations using NetSquid simulator, we
show that our techniques outperform prior work and sim-
ple centralized solutions by multiple orders of magnitude
while incurring a tolerable fidelity degradation (§VII).

II. Background

Generation1 of EPs using Swapping Trees. An efficient way
to generate an EP over a pair of remote network nodes (s, d)
using EPs over network links is to: (i) create a path P from
s to d with EPs over each of the links (i.e., adjacent nodes)
on the path, and (ii) perform a series of entanglement swaps
(ES) over these EPs. The series of ES operations over a given
path P can be performed in any arbitrary order, but this order
of ES operations affects the latency incurred in generating the
EP over (s, d). One way to represent the “order” in which
the ES operations are executed—is a complete binary tree
over the link EPs as leaves, called a swapping tree [15]. See
Fig. 1; here, the notation (xi,xj) represents an EP over a
pair of qubits residing in the network nodes xi and xj . In
some sense, xi represents a network node as well as a qubit
residing in the node, except that multiple instances of the
same xi in “different parts” of the swapping-tree represent
different qubits in the same network node xi (e.g., x1’s in the
pairs (x0, x1) and (x1, x2) in Fig. 1 represents two different
qubits in the node x1. The stochastic nature of ES operations
entails that generation of an EP over a remote pair of nodes
using a swapping-tree may incur significant latency, called
the generation latency (inverse of generation rate). Generation
latency is largely due to the latency incurred in (i) generating
the link EPs, and (ii) a generated EP (xi, xj) waiting for its
”sibling” EP (xj , xk) to be generated before an ES operation
can be performed over them to generate an EP over (xi, xj).
Fusion Operations to Generate GHZ States. As mentioned
before, GHZ state is a type of multipartite entanglement
over n qubits represented as |GHZn⟩ = 1√

2
(|0⟩⊗n + |1⟩⊗n).

GHZ states are a natural generalization of Bell states. Just
like how ES operations can be used to generate an EP over
remote nodes using link EPs as described above, we can use
“fusion” operations to fuse two smaller GHZ states into a
bigger one. These fusion operations can be used iteratively
to generate bigger and bigger GHZ states, and thus, generate
a desired GHZ state from link EPs. In particular, two GHZ
states over m and n qubits can be fused together to generate
a bigger GHZ state with m + n − 1 or m + n − 2 qubits.
We use two fusion operations here: Fusion-Retain and
Fusion-Discard. See Fig. 2 for a high-level description,
and Figs. 3 and 4 for the detailed description of the two
fusion operations. In essence, the fusion operations involve
a qubit each (i and j in the figures) from the two GHZ
states, and yield a GHZ state over all the qubits except
for i (in case of Fusion-Retain) or both i and j (in
case of Fusion-Discard). If qubits i and j reside in a
single network node, the fusion operations will require only
local (quantum) operations and classical communication and
thus are LOCC methods. Our main motivation for using the
above fusion operations is that they facilitate efficient GHZ
generation algorithms. We note that the Fusion-Retain
operation has also been used in [36] to generate GHZ states

1Throughout the paper, by generation of states, we implicitly mean gener-
ation and distribution of created states.



Fig. 3. Fusion Retain Operation. The depicted sequence of operations fuses an n1-qubit with an n2-qubits GHZ state to create a GHZ state with n1+n2−1
qubits. Initial GHZ States are shown in (a). First, a 2-qubit CNOT gate is applied on qubits i and j, to create an n1 + n2-qubit entangled state shown
in (b): 0.5(|0...0000...0⟩ + |0...0011..1⟩ + |1...1101...1⟩) + |1...1110...0⟩. We assume qubit i is the control qubit and qubit j is the target qubit, for
the CNOT gate; they are underlined in the state’s ket formulation. Second, we measure the qubit j in the Z-basis. Depending on the measurement result,
the state is reduced to a different n1 + n2 − 1-qubit entangled state without the j qubit (see (c)). If the j-measurement result is 0, the reduced state is
1/

√
2(|0...000...0⟩+ |1...111...1⟩), else the reduced state is 1/

√
2(|0...001...1⟩+ |1...110...0⟩). Finally, if the j-measurement result is 1, the qubits of the

GHZn2 apply a 1-qubit Pauli-X (NOT) gate. See (c). The final created GHZ state is a GHZn1+n2−1 state shown in (d).

Fig. 4. Fusion Discard Operation. The depicted sequence of operations fuses an n1-qubit with an n2-qubit GHZ states to create a GHZ state with n1+n2−2
qubits. Initial GHZ states are shown in (a). First, a Fusion-Retain operation is performed over qubits i and j to create a GHZn1+n2−1 state with qubit
i retained and j discarded. The created state (shown in (b)) can be decomposed using i qubit and be stated as: GHZn1+n2−1 = 1

2
(|0⟩⊗(n1+n2−2) +

|1⟩⊗(n1+n2−2))⊗|+⟩+ 1
2
(|0⟩⊗(n1+n2−2)−|1⟩⊗(n1+n2−2))⊗|−⟩. Second, we measure i in the X-basis to create a n1 + n2 − 2-qubit state, shown in

(c). This state is either 1√
2
(|0⟩⊗(n1+n2−2) + |1⟩⊗(n1+n2−2)) or 1√

2
(|0⟩⊗(n1+n2−2) − |1⟩⊗(n1+n2−2)), depending on the result of measurement over

i. The first is the desired GHZn1+n2−2 state, while the second state requires a correction (1-qubit Pauli-Z or phase-flip) over a random qubit k to create a
GHZn1+n2−2 state. See (d).

Fig. 5. Fusion Tree Example. Fusion tree over the available EPs (at the leaves
of the tree) to create 5-qubit GHZ5 state (x1, x2, x3, x4, x5). Here x0 :
(x1, x2, x3) at a node means that the fusion operation occurred at x0 to
create a GHZ state over (x1, x2, x3).

from EPs. In a related work, Clément et al. [25] propose
a Star Expansion operation to generate GHZ states—which
necessarily requires non-local gate operations unlike the above
fusion operations.

Fusion Trees. Given a set of EPs, we can fuse them together
using fusion operations to generate a GHZ state. In general,
given a set of link EPs, one can create a GHZ state over any
subset of EPs qubits using a appropriate sequence and choice
of fusion operations. Similar to the concept of swapping-trees,
we use a fusion tree to represent the order of fusion operations
over given EPs as leaves. See Fig. 5. As in swapping trees, the
notation (x1, x2, x3, . . . , xm) in a fusion tree represents a GHZ
state over m qubits residing in m network nodes {xi} (one
qubit per network node); in particular, the leaves of a fusion
tree are pairs representing EPs over network links. Also, each

interior vertex v in a fusion-tree is represented as (xi : X),
where xi is referred to as the fusion node while X is called
the distribution set of network nodes; the notation (xi : X)
denotes a GHZ state distributed over X set of nodes created
by fusing GHZ states represented by v’s children (with the
fusion operation taking place in the common node xi over
the two qubits in xi one each from the two GHZ states at
v’s children). Each internal vertex v in the fusion tree is also
colored red or green, wherein the red (green) color signifies
that Fusion-Discard (Fusion-Retain) operation was
used in creating the GHZ sate at v. Thus, the distribution
set at a green node is a union of the distribution sets at its
children, while the distribution set at a red node excludes the
fusion/common node xi.

As in the swapping trees, the stochastic nature of the under-
lying physical mechanisms (including, the fusion operations)
means that an intermediate GHZ state may be successfully
generated only after many failed attempts, and even after
being successfully generated, it may need to wait for its sib-
ling/counterpart to become available before a fusion operation
can be carried out. Thus, generation of an GHZ over a remote
pair of nodes may incur significant generation latency. We
discuss estimation of GHZ generation latency of a fusion tree
in the next section, after presenting the network model.

III. Model, Problem, and Related Works

In this section, we discuss our network model, formulate
the problem addressed, and discuss related work.



Network Model. We denote a quantum network (QN) with
a graph G = (V,E), with V = {v1, v2, . . . , vn} and E =
{(vi, vj)} denoting the set of nodes and links respectively.
Pairs of nodes connected by a link are defined as adjacent
nodes. Our network model is very similar to the one adopted
in our recent work [15] on efficient generation of EPs. In
particular, each node has an atom-photon EP generator with
generation latency (tg) and probability of success (pg); the
atom-photo generation latency implicitly includes other laten-
cies incurred in link EP generation viz. photon transmission,
optical-BSM, and classical acknowledgement. A node’s atom-
photon generation capacity/rate is its aggregate capacity, and
may be split across its incident links (i.e., in generation of
EPs over its incident links/nodes). Each node is also equipped
with a certain number of atomic memories to store the qubits
of the atom-atom EPs. A network link is a quantum channel
(e.g., using an optical fiber or a free-space link), and, in our
context, is used only for establishment of link EP. In particular,
a link e = (A,B) is used to transmit telecom-photons from
A and B to the photon-photon/optical BSM device in the
middle of e; the optical-BSM has a certain probability of
success (pob). Thus, each link is composed of two half-links
with a probability of transmission success (pe) that decreases
exponentially with the link distance. To facilitate atom-atom
ES and fusion operations, each network node is also equipped
with an atomic-BSM device with BSM (fusion) operation
latency of tb (tf ) with a probability of success pb (pf ). There is
an independent classical network with a transmission latency
of tc; we assume classical transmission always succeeds.
GHZ State Generation Latency Using a Fusion Tree.
Fundamentally, the structure of fusion trees is similar to that
of swapping trees, and hence, the technique to estimating
generation latency (inverse of generation rate) of a swapping
tree from [15] can be directly applied here. Thus, for a non-
leaf vertex t in a fusion tree with children/subtrees tl and tr,
the generation latency of the GHZ state corresponding to the
vertex t can be estimated as:

Lt = (
3

2
max(Ll, Lr) + tf + tc)/pf , (1)

where Ll and Lr are the generation latencies of the GHZ
states corresponding to the children tl and tr, and tf , tc, and
pf are the network parameters as defined above. The above
assumes that the generation latencies of the subtrees tl and
tr are exponentially distributed. Generation latency of a leaf
in a fusion tree is given by the generation latency of the EP
at the leaf–which may in turn be the generation latency of
the swapping tree used to generate the EP. To estimate the
overall generation latency of a fusion tree, we apply the above
recursive equation iteratively, while assuming that the resulting
latencies also have an exponential distribution.

A. Problem Formulation
In this section, we formulate the problem of efficiently

generating GHZ state across an arbitrary set of nodes.
GHZ State Generation (GHZSG) Problem. Given a quantum
network and a set of terminals T = (t1, t2, ..., tm), the GHZSG

problem is to determine a fusion tree F that generates a
GHZ state over the given terminals with minimum expected
generation latency under the following constraints.

1) Node Constraints. For each node, the aggregate resources
used by F is less than the available resources; we
formulate this formally below.

2) Fidelity Constraints. The fusion tree should satisfy the
following: (a) Number of leaves2 is less than a given
threshold τl; this is to limit fidelity degradation due to
gate operations. (b) Total memory storage time of any
qubit is less than a given decoherence threshold τd.

Formulating Node Constraints. Consider a fusion tree F , and
let E be the set of all links involved in the generation of EP
at the leaves of F . Note that a leaf of F may represent EPs
generated by a swapping tree over a path P , in which case
all the links in P should be included in E . Now, for each link
e ∈ E , let R(e, E) be the “total” EP rate being used by F
over the link e. Let us define E(i) be the set of links from
E incident on node i. Then, the node capacity constraint is
formulated as follows.

1/tg ≥
∑

e∈E(i)

R(e, E)/(pg2pe2pob) ∀i ∈ V. (2)

The above comes from the fact that to generate a single link
EP over e, each end-node of e needs to generate 1/(pg2pe2pob)
photons successfully, and that 1/tg is a node’s total generation
capacity. Also, the memory constraint is that for any node i,
the memory available in i should be more than |E(i)|.

B. Related Works
There has been recent interest in schemes for efficient

generation of GHZ states in a quantum network. These works
have largely focused on the objective of minimizing the num-
ber of link EPs consumed in generating and distributing the
desired GHZ states. Such approaches can be categorized into
centralized and distributed generation schemes, as discussed
below. To the best of our knowledge, there have been no
prior work on efficient generation and distribution of GHZ
states in terms of optimizing generation latency/rate while
taking into considering the stochastic nature of underlying
processes/operations—this is the focus of our work.
Centralized Generation Schemes. In a centralized generation
scheme, an appropriately chosen central node first creates the
desired GHZ locally, and then teleports qubits to the desired
terminal nodes using EPs between the central and the terminal
nodes. Bugalho et al. [29] propose an optimal way of selecting
the best central node for 3-qubit GHZ states. For larger GHZ
states, the proposed approach is generalized but without any
optimality guarantees. Aves et al. [30] focus on latency and
fidelity analytical formulation for different generation schemes
in a star network graph where terminals are connected to a
central node via homogeneous quantum channels. Finally, [28]
proposes a max-flow based approach to minimize the number

2Here, the number of leaves includes the leaves of any swapping trees used
to create the EPs at the leaves of the fusion tree.



of EPs consumed in generating and distributing a GHZ state
using a centralized generation scheme. They represent the
teleportation routes as multi-path flows in the network, and use
a network flow approach to maximize the total teleportation
rate and thus the GHZ generation rate. The network-flow ap-
proach allows representation of network resource constraints—
e.g., how a single network link can be used across multiple
teleportation routes. However, the flow representation ignores
the stochastic aspect of the teleportation (or entanglement-
swapping) process which fundamentally requires taking into
consideration the length of the teleportation paths (ignored in
the network-flow representation).

Distributed Generation Schemes. In a distributed generation
scheme, the target GHZ state is generated in a distributed
manner (perhaps, by iteratively merging smaller GHZ states)—
as in the schemes discussed in this paper. In [25], the authors
propose a star expansion operation/sub-protocol to fuse to-
gether EPs, and use the operation iteratively to generate the
desired GHZ state. They design an algorithm that minimizes
the number of EPs consumed to create the desired GHZ state;
we compare our schemes to their approach in §VII. In [31],
the authors introduce a 2D repeater chain wherein GHZ states
over smaller distances are fused to form GHZ states at larger
distances, analogous to how EPs over remote pairs of nodes
are created using entanglement-swapping operations over a
path. However, the proposed approach is only applicable to
special network topologies. Finally, [32] proposes an approach
to determine the best sequence of fusion operations and
measurements over given EPs to create a GHZ state of highest
fidelity.

Our Approach: Minimizing Generation Latency. The goal of
our work is to develop schemes that optimize the expected
generation latency (and hence, generation rate) of desired GHZ
states distributed over a given set of network nodes, under
fidelity constraints. Accurate estimation of generation latency
requires incorporating the stochastic nature of the underlying
processes and operations, which has been largely ignored in
the prior works described above. However, for the simpler
and special case of generation of EPs over remote pairs, there
has been considerable work done on developing schemes that
minimize generation latency. E.g., Shi and Qian [33] and
Chakraborty et al. [34] design algorithms to select the best
entanglement routing paths, and [15] develops an optimal
swapping tree for a pair of remote nodes in the network.

IV. Fusion-Retain-Only (FRO) Algorithm

In this section, we design a GHZ generation algorithm that
uses only the Fusion-Retain fusion operations.

Basic Idea. To create a GHZ state over given terminal nodes,
one approach can be to first create EPs (smallest GHZ states)
over some of the terminal pairs, and then iteratively create
bigger and bigger GHZ states till the final desired GHZ state
is created. Here, beyond the generation of EPs, the only
nodes involved in the fusion operations are the given terminal
nodes, and thus, we only need to use the Fusion-Retain

fusion operations. Thus, we refer to this approach as the
Fusion-Retain-Only (FRO) algorithm. The main moti-
vation for the above approach is to be able to leverage known
efficient algorithms [15] for generation of EPs. At a high-level,
the FRO algorithm consists of the following three steps (see
Fig. 6).

1) Selection of a set of terminal-pairs T for EPs generation.
2) Efficient and simultaneous generation of EPs over each

of the terminal-pairs in the selected set T .
3) Computing an efficient fusion tree to generate the desired

GHZ state from the EPs over the terminal-pairs in T .
We develop optimal or near-optimal algorithms for each of the
above steps, as described below.

1. Selection of Terminal-Pairs T . In this first step, we want
to select a set T of terminal-pairs over which to generate EPs
that can be fused to compute the desired GHZ state. The set
of terminal-pairs T should be such that they are “connected”,
i.e., they form a connected tree in a complete graph over the
set of given terminals T , since we need to fuse the generated
EPs to generate a GHZ state over T . In addition, we want the
aggregate generation latency of the EPs over the chosen T to
be small—so as to minimize the overall generation latency of
the final GHZ state.

Based on the above conditions, the problem of selection of
a set of terminal-pairs T can be defined as that of selecting
a minimum-weighted spanning tree (MST) in a weighted
complete graph over terminals. More formally, consider the
complete graph GT = (V = T,E = (T × T )) over the set
of terminals T . We associate each edge e = (ti, tj) with a
weight we equal to the EP generation latency (see below) over
the terminal-pair (ti, tj). Our problem’s objective is to select
a set T of terminal-pairs that form a connected tree in GT

and have the minimum sum of weights, i.e., minimum sum of
latencies of the EPs over the chosen T .

This objective is equivalent to determining a minimum
spanning tree in GT , which can be optimally computed using
well-known techniques [37]. We determine the weight we,
i.e., the (independent) EP generation latency over a pair of
terminals e = (ti, tj), based on the optimal EP generation
scheme in [15] which computes the optimal swapping tree
(for generation of EP) over each pair of network nodes. Note
that in practice the EPs will be generated simultaneously, and
hence, the objective of sum of generation latencies of pairs in
T is not the perfect objective—but we have chosen the above
sum-of-latencies objective for the sake of simplicity and to
facilitate design of an efficient algorithm. We discuss efficient
generation of simultaneous EPs in the next paragraph.

2. Efficient Generation of EPs over Pairs in T . As men-
tioned above, the weights associated with the edges in GT are
the independent generation latencies, i.e., when the terminal-
pair is generating EPs by itself in the quantum network.
However, in our context, we can generate the EPs over
T simultaneously; this simultaneous generation of EPs over
multiple pairs entails sharing of network resources (e.g., node
generation capacities). For efficient simultaneous generation



Fig. 6. Fusion-Retain Only (FRO) Algorithm. (a) Network graph with terminals over which a GHZ state needs to be created. (b) Complete graph over the
terminals, with each terminal-pair x’s weight equal to the EP generation latency of EPs over the terminal-pair x. The red-dashed edges forms the minimum
spanning tree (MST) in this weighted graph. (c) Fusion tree computed over the MST edges, to create a GHZ state over the terminal nodes. Note that the
leaves of the fusion tree are pairs of, possibly remote, nodes storing the EPs; if a node-pair is remote then the EPs are generated using swapping trees.

of EPs, we use an optimal linear-program (LP) developed
in [15] which incorporates node capacity constraints. Given
a quantum network and a set of node-pairs (T in our case)
over which to generate EPs, the LP developed in [15] yields
a “flow” of entanglement paths that generate EPs over the
given set of pairs T such that the aggregate generation rate
is maximized. We note that the LP approach, even though
optimal for a given set of terminal-pairs, can’t be used easily
for selection of terminal-pairs that maximize the LP objective.

3. Optimal Fusion Tree over Generated EPs. We now need
to determine an efficient fusion tree to generate the desired
GHZ state over the EPs being generated over pairs in T . Recall
that a fusion tree essentially determines the order in which
the initial EPs and the intermediate GHZ states are fused,
and thus, determines the overall GHZ generation latency (see
§III). A simple approach to construct a reasonably efficient
fusion tree could be to create a “balanced” binary tree over
the given pairs in T , with each interior node representing a
Fusion-Retain operation over its two children. However,
since the EPs generation latencies over the terminal-pairs in
T may not be equal, a balanced fusion tree may not yield
an optimal GHZ generation latency. In our context, we can
actually construct an optimal fusion tree as follows.

Optimal Dynamic Programming (DP) Algorithm. The recur-
sive expression for GHZ generation latency (§II) suggests a DP
approach to compute an optimal fusion tree. Recall that GT

is a complete graph over terminals, and T is a selected set of
terminal-pairs (edges in GT ) which form a connected spanning
tree in GT . For a general subset of terminal-pairs T ′ (⊆ T )
that form a connected tree (but not necessarily spanning) in
GT , let L[T ′] be the optimal latency for generating a GHZ
state over the terminals T ′ using a fusion tree that uses only
Fusion-Retain operations over T ′. Based on Eqn. (1), we
can easily derive L[T ′] recursively as follows.

L[T ′] = (
3

2
B + tc + tf )/pf (3)

where B = min
T ′
l ⊆T ′

max
(
L[T ′

l ], L[T ′
r = T ′ − T ′

l ]
)

Above, T ′
l must be connected in GT , which also implies that

T ′
l and T ′

r will have exactly one node in common. The above
equation can be used to compute L[T ′] (and associated optimal
fusion tree) for all T ′ ⊆ T , and thus, to compute L[T ] and the
associated optimal fusion tree over T , using a DP algorithm.
The above DP algorithm is actually exponential in number of

terminals, which is acceptable since the number of terminals
is expected to be small (e.g., at most 10). Note that the size
of T is equal to the number of terminals (and not square of
the number of terminals) as the pairs in T form a tree.

Overall Performance Guarantee and Fidelity Constraints.
We note that the overall FRO algorithm doesn’t have a
provable performance guarantee, but each of the three steps
as defined are provably optimal. For clarity of presentation,
we have ignored the fidelity constraints in the above descrip-
tion, but incorporate them later in §VI. Note that the node
constraints are incorporated in the LP of the second step.

V. General Fusion (GF) Algorithm
We now design the General Fusion (GF) algorithm,

which uses both fusion operations, and thus, is more general
than the FRO algorithm. For clarity, we ignore the node and
fidelity constraints for now, and incorporate them later in §VI.

Basic Idea. The General Fusion (GF) algorithm, like
the previous FRO algorithm, also builds bigger and bigger
GHZ states from smaller GHZ states until the desired GHZ
state is created—but, unlike the FRO algorithm, it may also
involve the non-terminal nodes beyond the EPs generation
and hence may use Fusion-Discard operations too. Thus,
GF is fundamentally a more general (i.e., less restrictive)
algorithm than the FRO algorithm, and hence, has the potential
to outperform the FRO algorithm if designed effectively. At a
high level, the GF algorithm first selects a set E of network
links (node pairs) over which to generate the link EPs, and
then, constructs an efficient fusion tree over E . Since the EPs
over E must yield (via fusion operations) a GHZ state over the
given terminals, the set of links E must form a connected graph
and include the terminals. Thus, the GF algorithm consists of
the following two high-level steps (see Fig 7).

1) Select the “best” Steiner tree S in the original network
graph over the given set of terminals T . Here, the Steiner
tree is essentially a subgraph (not necessarily induced)
that is connected and includes the terminals.

2) Construct an efficient fusion tree over the links/edges in
S. The fusion tree essentially generates GHZ states from
the EPs over the links in S.

Below, we develop a near-optimal algorithm for the first step
and an efficient heuristic for the second, as described below.

1. Selecting the “Best” Steiner Tree. Here, we develop an
optimal algorithm to find the best Steiner tree S in the given



Fig. 7. General Fusion (GF) Algorithm. (a) Network graph with terminals over which a GHZ state is to be created. (b) Best Steiner tree computed over the
terminals. (c) Fusion tree over the Steiner tree edges, to create the GHZ state over the terminals. (Fig. 8 shows how to go from (b) to (c), i.e., how to create
a fusion tree from a Steiner tree).
network graph, based on an appropriately define objective
function. In graph theory, a Steiner tree in a given graph
G = (V,E) for a set of terminals V ′ ⊆ V is a subgraph
(not necessarily induced) in G that is a tree and contains all
the terminals in V ′. In our context, we want to construct a
Steiner tree S in the network graph that includes the set of
terminals T . Ideally, the optimization objective should be to
construct a Steiner tree that yields a fusion tree of minimum
GHZ generation latency over its links. Such an optimization
objective is however intractable to optimize, since it is even
intractable to compute an optimal fusion tree over a given
Steiner tree. Thus, we first derive a simpler optimization
objective for a Steiner tree, which is simple as well as reflective
of the GHZ generation latency of an efficient fusion tree over
the Steiner tree.
Optimization Objective. To define an optimization objective
for a given Steiner tree S, we need to first estimate the GHZ
generation latency of an efficient fusion tree, that we can
design an algorithm to construct, over the links in S. As
motivated and described in the second step later, we use a
a balanced binary3 tree over the links in S as the fusion
tree to generate the desired GHZ state. Thus, we define the
optimization objective for a Steiner tree S by estimating the
GHZ generation latency of an appropriate balanced fusion tree
over S. Consider a given Steiner tree S and a “balanced”
fusion tree F over it. We define the objective function B(S)
as the GHZ generation latency due to F which can be derived
as follows.

B(S) = pdN + [(pd − 1)/(p− 1)](tf + tc)/pf (4)

where p = 3/(2pf ) and d and N are defined as follows. Let
x be the link with highest generation-latency in S; then, N
is x’s generation latency and d is its depth in the balanced
fusion tree F . For a balanced fusion tree, it is easy to see that
d is either ⌈(log2 |S|)⌉ or ⌊(log2 |S|)⌋, but for simplicity we
assume d to be just ⌈(log2 |S|)⌉ to avoid defining B(S) in
terms of the exact structure of S.
Selecting a Near-Optimal Steiner Tree. Note that the above
objective function for a Steiner tree S depends on only two
parameters of S: (i) Number of links in S, and (ii) The
maximum EP generation latency of a link in S. In addition,

3Note that our fusion operations are binary, and hence, the fusion trees in
our context are binary trees.

it is easy to see that, for a given/fixed maximum edge-latency,
a Steiner tree’s objective value decreases with the decrease
in the number of links in it. Thus, for each potential value
of maximum edge-latency l, we construct a subgraph Gl, of
original network graph, consisting of links with EP generation
latencies lower than l, and then construct a minimum-size
Steiner tree Sl in Gl. Since there are only a polynomial number
of links and thus only a polynomial number of potential l
values, we can do the above for each potential l value and pick
the best Steiner tree Sl. To compute the minimum-size Steiner
tree in a given Gl, we can use a well-known 2-approximate
algorithm [38]. The above overall algorithm thus constructs
a Steiner tree whose objective value is at most 2 times the
optimal objective value.

2. Balanced Fusion Tree Over the Steiner-Tree Links.
Having constructed a Steiner tree S over the given terminals,
we now need to create an efficient fusion tree over the links
in S—to create the desired GHZ states from the generated
EPs over the links, using fusion operations. The exponential-
time DP algorithm used to construct a fusion tree in the FRO
algorithm is not feasible here, since the number of links in our
Steiner tree can be much larger than the number of terminals–
and in general, can be as large as the quantum network size.
Thus, here we design an efficient polynomial-time heuristic
based on a divide-and-conquer strategy. Our proposed heuristic
consists of the following three high-level steps.

1) Divide the given Steiner tree S with terminals T into
two near-disjoint (with only one node c in common)
and approximately “equal” subtrees Sr and Sl. We con-
sider two measures of equality—equal in size or in
estimated generation latency—and discuss these measures
and schemes in detail below.

2) Recursively compute a fusion tree Fr (Fl) for the subtree
Sr (Sl). The fusion tree Fr (Fl) should be such that the
generated GHZ state is over the set of terminals from S
in Sr (Sl) and the common node c.4

3) Create a fusion tree with a root R and its two children as
Fr and Fl. The root R represents a fusion operation at
the node c common to the subtrees Sr and Sl. If c ∈ T ,
then a Fusion-Retain operation is used at c, else a
Fusion-Discard operation is used.

4Note that subtree is associated with a set of subtree-terminals of its own,
which may include nodes not in the original set of terminal T .



Fig. 8. Two schemes to recursively divide a Steiner tree to create a fusion tree.
(a) Equi-Size Division. The Steiner tree is recursively divided into two almost
equal-size subtrees. (b) Equal-Latency Division. The Steiner tree is recursively
divided into two subtrees with similar estimated generation latencies; this
partitioning yields the fusion tree shown in Fig. 7(c).
Division into Equi-Size Subtrees. Dividing a tree into two
equal-sized subtrees may not be straightforward—e.g., con-
sider a star tree. Note that in our context we need to have one
node in common between the subtrees, to facilitate a fusion
operation over the GHZ states generated from the subtrees.
Our heuristic considers each possible common node c, and
considers dividing the tree into almost-equi-sized subtrees with
c as the common node. Consider a node c in the given tree,
and let c’s degree be m. Let s1, s2, . . . , sm be the sizes of
the subtrees of c when we visualize the given tree as rooted
at c. To create almost-equal division of the given tree into
two subtrees with c as the common node, we need to just
partition the set {si} into two subsets of almost equal sum;
this is the well-known NP-hard Partition problem which
has a well-known pseudo-polynomial optimal algorithm based
on dynamic programming. We repeat the above for each node
c in the tree, and pick the best division into sub-trees; here,
the best division is the one with minimum difference in the
sub-tree sizes. See Fig 8(a).

Equal-Latency Division. To divide a tree into two sub-
trees that would yield fusion trees of almost-equal generation
latencies, we use a similar approach as above—except for
the calculation of the si values. For equi-latency division,
si should be an estimate of the generation latency of the
envisioned/optimal fusion tree over the ith subtree. Thus, to
determine si, we assume the fusion tree to be a balanced binary
tree, and then, use Eqn. 4 to estimate the GHZ generation
latency. See Fig 8(b).

VI. Incorporating Node and Fidelity Constraints
We now discuss changes to the algorithms to incorporate

the node and fidelity constraints of the GHZSG problem
formulation in §III-A.

Node Constraints. Recall that the node constraints are incor-
porated in the LP of the second step of the FRO algorithm. In
addition, the node-constraints are also somewhat incorporated
in the first step of the FRO algorithm, by assigning weights to
terminal-pairs based on generation latency using an optimal
swapping tree which incorporates node-constraints for each
pair of nodes [15] . We incorporate node constraints in the
GF algorithm as follows. In the first step of the GF algorithm,

where we compute the best Steiner tree, we incorporate the
node constraints as in the FRO’s first step—i.e., by assignment
weights to links based on generation latency using an optimal
swapping tree [15]. In addition, in the second step of the GF
algorithm, wherein we compute a balanced fusion tree based
on equi-latency division, we can further incorporate node
constraints in determining the maximum generation latency
of a link in a subtree.

Fidelity Constraints. We now discuss how to incorporate
the fidelity constraints as defined in the GHZSG problem
formulation in §III-A. Recall that the fidelity constraint is
represented as a combination of (i) memory storage time (age)
threshold of τd, and (ii) number of leaves (operations-related
fidelity) threshold of τl. We discuss these thresholds below.

Enforcing Age Threshold τd. We start with discussing how we
can incorporate the constraint of the expected age of any qubit
to be at most τd during generation of a GHZ state, while
constructing the fusion tree.

In the FRO scheme, the age of a qubit comes from
two processes: (i) EP generation for a terminal-pair using a
swapping tree, and (ii) GHZ generation from EPs using a
fusion tree. We divide the total age threshold τd into two
thresholds, viz., τsd and τfd , for swapping tree and fusion
tree respectively, based on the relative heights of an average
swapping tree and the fusion tree. The swapping-tree age
threshold τsd can be enforced in determining the swapping
trees as per [15], while the fusion-tree age threshold τfd can
be enforced while constructing a fusion tree as follows. Recall
that the FRO algorithm uses a DP algorithm to construct a
fusion tree. Enforcing age threshold in the DP algorithm is rel-
atively straightforward, by including an additional threshold-
parameter in the L[ ] function (see Eqn. 3) and filtering out
fusion trees that violate the threshold parameter; determination
of the threshold-parameter of subtrees from that of a parent’s
node can be done as in [15].

In the GF scheme, a qubit ages purely due to GHZ gen-
eration using a fusion tree from link EPs. Since we consider
only balanced fusion trees in the second step of GF, we can
transform the age threshold approximately into a threshold on
the height of the fusion tree—which is, in turn, a function of
the size of the Steiner tree computed in the first step. The size
of the Steiner tree can be easily constrained in the Step 1’s
algorithm, at the cost of a possibly higher generation latency
of the bottleneck link.

Enforcing Operation Threshold τl. For the FRO scheme, the
τl threshold can be enforced similar to the above age threshold,
by dividing the threshold into swapping and fusion trees,
handling swapping-tree threshold over number of leaves as
per [15], and finally, enforcing the number of leaves constraint
in the fusion tree by restricting its height in the DP approach.
For the GF scheme, enforcing the τl threshold essentially
amounts to restricting the number of leaves of the fusion tree,
which can be easily done by restricting the size of the Steiner
tree as we only consider balanced fusion trees.



Fig. 9. GHZ state generation latency for varying parameters. (a) Varying number of terminals. (b) Varying fusion success rate. (c) Varying number of network
nodes. (d) Varying network edge density. Here, for some data points (e.g., 0.2 and 0.3 fusion/BSM rates in (b)), the generation latency of Central and SE
was more than our simulation duration of 100 seconds, and thus, we have conservatively used latency values from analytical results for these schemes, for
the sake of completeness.

Fig. 10. GHZ State fidelity for varying parameters. (a) Varying number of terminals. (b) Varying fusion success rate. (c) Varying number of network nodes.
(d) Varying network edge density. Here, for some data points (e.g., 0.2 and 0.3 fusion/BSM rates in (b)), the generation latency of Central and SE schemes
was more than our simulation duration of 100 seconds, and thus, these data points are missing for these schemes.

Fig. 11. Comparing analytical results vs. simulation results in terms of GHZ state generation latency for varying parameters. (a) Varying number of terminals.
(b) Varying fusion success rate. (c) Varying number of network nodes. (d) Varying network edge density.

VII. Evaluations

Here, we evaluate the generation latency and fidelity of
generated GHZ states by our developed schemes and compare
them with a prior work and a simple/naive approach. We also
validate the accuracy of our analytical models by comparing
the analytical results with those generated using a quantum
network simulator. We implement our schemes over the dis-
crete event simulator for QNs called NetSquid [39].

GHZ Generation Protocol. Our algorithms compute a fusion
tree over link-level or network-level EPs, and we need a
way to implement it on a quantum network. We build our
protocols on top of the link-layer protocol of [40], which is
delegated with the task of continuously generating EPs on a
link at a desired rate (as per the fusion tree specifications).
For the FRO algorithm, we use the swapping tree protocol
of our prior work [15] to generate EPs over the selected
terminal-pairs. As the links (in GF) or terminal-pairs (in FRO)
generate EPs, we need a protocol to fuse either the EPs or
smaller GHZ states using the selected fusion tree. Omitting
the tedious bookkeeping details, the key aspect of our GHZ-

generation protocol is that fusing operation corresponding to
node x in the fusion tree is done only when both the sub-GHZ
states (corresponding to the subtrees of x in the fusion tree)
have been generated. We implement all the gate operations
(including, atomic and optical BSMs, fusion operations) within
NetSquid to keep track of the fidelity of the generated GHZ
states. On success of a fusion operation, the fusion node
transmits classical information to the terminal nodes of both
sub-states, to manipulate their qubits or to start the next-level
fusion operations. More specifically, the fusion node sends one
classical bit of result to all the terminals in the right subtree,
and a classical Success-ACK bit to the terminals located in the
left subtree. The success-ACKs serve as notifications to the
nodes to start next-level fusion operations, if any. On failure
of a fusion operation, a classical Failure-ACK is sent to all
descendant leaf-nodes, so that they can now start generating
new link EPs.

Simulation Setting. We generate random quantum networks
in a similar way as in the recent works [15], [33]. By default,
we use a network spread over an area of 100km×100km. We



use the Waxman model [41], used to create Internet topologies,
to randomly distribute the nodes and create links; we use the
maximum link distance to be 10km. We vary the number of
nodes from 50 to 300, with 100 as the default value. We
choose the two parameters in the Waxman model to maintain
the number of links to 8% of the complete graph (to ensure an
average degree of 3 to 15 nodes). We select the desired number
of terminal nodes randomly within the network graph. Each
data point in the plots is an average of 10 random simulations,
each of a duration of 100 seconds.

Parameter Values. We use parameter values mostly similar
to the ones used in [15], [35], and vary some of them. In
particular, we use fusion probability of success (pf ) to be 0.4
and latency (tf ) to be 10 µ secs; in some plots, we vary pf
from 0.2 to 0.6. The values of atomic-BSM probability of
success (pb) and latecny (tb) are always equal to their fusion
counterparts pf and tf , respectively. This is done so FRO
and GF schemes be comparable. The optical-BSM probability
of success (pob) is half of pb. We, for generating link-level
EPs, use atom-photon generation times (tg) and probability
of success (pg) as 50 µsec and 0.33 respectively. We use the
size of the GHZ state, number of terminals, to be 5; we vary it
from 3 to 7, in some plots. Finally, we use photon transmission
success probability as e−d/(2L) [35] where L is the channel
attenuation length (chosen as 20km for an optical fiber) and
d is the distance between the nodes.

Fidelity is modeled in NetSquid using two parameter val-
ues, viz., depolarization (for decoherence) and dephasing (for
operations-driven) rates. As in [15], we choose a decoherence
time of two secs based on achievable values with single-
atom memory platforms [42]; note that decoherence times of
even several minutes [43], [44] to hours [45], [46] has been
demonstrated for other memory platforms. Accordingly, we
choose a depolarization rate of 0.01 such that the fidelity after
a second is 90%. Similarly, we choose a dephasing rate of
1000 which corresponds to a link EP fidelity of 99.5% [34].

Algorithms and Performance Metrics. We evaluate our
following algorithms: FRO, Edge-Balanced GF (GF-Edge),
and Latency-Balanced GF (GF-Latency). For comparison,
we also evaluate the Star Expansion (SE) algorithm
from [25], and a simple approach called Central. We
describe these below. The Star Expansion (SE) [25]
algorithm essentially computes a Steiner tree S over the
network graph, and iteratively and sequentially, performs a
star-expansion operation over: (i) a node l that is a terminal
as well as a leaf in S; this node l remains fixed through
all iterations; and (ii) a randomly-chosen “neighbor” (in this
iteration) of l. In [25], the author assume the fusion star-
expansion operation to be deterministic in optimizing their
objective of the number of EPs consumed. In our evaluation
of SE, we conservatively use the probability of failure of the
star-expansion operation involving d qubits to be qd/2, where
q is the probability of failure for our binary-fusion operations.
The Central approach works by first generating the final
GHZ state locally and then teleporting the qubits of the GHZ

state to the desired terminals. More formally, the Central
node picks a “central” node (as described later) C, generates
the desired GHZ state at C, generates EPs between C and
each of the terminals, and then teleport the GHZ qubits to the
terminals using the generated EPs. To continuously generate
the GHZ states at an optimal generation rate, the generation
of EPs between C and the terminals is done continuously
in parallel with other steps. To generate the EPs over C
and each of the terminals simultaneously, we use the optimal
linear programming approach from [15]. We determine the
best central node using an exhaustive search over all the nodes
in the network, and picking the one that yields the minimum
estimated GHZ generation latency.

GHZSG Results. Fig.9 plots the GHZ state generation la-
tency for various schemes for varying number of ter-
minals, number of network nodes, success probability of
BSM/fusion operations, and network link density. We observe
that GF-Latency and GF-Edge schemes perform simi-
larly and they both outperform FRO by a good margin, and
Central and SE schemes by an order of magnitude. Best
performance of GF schemes validate use of non-terminal nodes
for fusion operations and our approaches for balanced fusion
trees. The Central scheme performs very bad since in this
scheme all the teleportation operations from the central node
to the terminals need to succeed, else the whole process must
starts from scratch as the GHZ state is destroyed. Similarly,
the SE schemes performs very bad due to the fact that the
star-expansion fusion operations are performed in a sequence,
which essentially results in a skewed fusion tree of a large
height resulting in very high latency as fusion operations
are probabilistic. The Central as well as SE approaches
sometimes even have a generation latency of more than 100
seconds, our simulation duration; for these cases, we plot the
generation latency computed analytically.

Fidelity Results. We now investigate the fidelity of the GHZ
state generated. See Fig. 10. We observe that GF-Latency
and GF-Edge schemes perform the best as there is expectedly
a high correlation between the generation latency and the time
a qubit stays in a quantum memory. FRO scheme also produces
GHZ states with reasonable fidelity but underperforms the
other two schemes as the spanning tree over terminal-pairs
is conceptually built over swapping trees for the terminal-pair
which increases the total number of link involved compared
to the GF schemes which is based on Steiner tree connecting
the terminals directly. As mentioned above, the Central and
SE schemes sometimes have generation latencies of more than
the simulation duration, which results in no GHZ states being
produced—thus, Fig.10 plots have some missing data points
for these scheme.

Validating the Analysis. Finally, we compare the generation
latency computed from the simulations to those estimated
analytically (as per Eqn. (1)). See Fig. 11. We observe that
the latencies from the two approaches match closely, which
validates our analytical methodology and assumptions therein.



VIII. Conclusions

We have designed techniques for efficient generating and
distribution of GHZ states, taking into consideration the
stochastic nature of quantum operations. Our future work is
focused on exploring more sophisticated approaches by incor-
porating purification techniques to further improve fidelity and
effective generation rate of such high-fidelity GHZ states.
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