
ARCHITECTING PROTOCOLS TO ENABLE MOBILE
APPLICATIONS IN DIVERSE WIRELESS NETWORKS

A Dissertation Presented

by

ARUNA BALASUBRAMANIAN

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

February 2011

Computer Science

c© Copyright by Aruna Balasubramanian 2011

All Rights Reserved

ARCHITECTING PROTOCOLS TO ENABLE MOBILE
APPLICATIONS IN DIVERSE WIRELESS NETWORKS

A Dissertation Presented

by

ARUNA BALASUBRAMANIAN

Approved as to style and content by:

Arun Venkataramani, Co-chair

Brian Neil Levine, Co-chair

Donald Towsley, Member

Lixin Gao, Member

Ratul Mahajan, Member

Andrew G. Barto, Department Chair
Computer Science

ACKNOWLEDGMENTS

I want to express my deepest gratitude to my advisors Brian Levine and Arun

Venkataramani. They are the best advisors one can get, in my (very biased) opinion.

I thank them for encouraging me to always aim high, for spending countless hours

with me discussing research problems and ideas, for their feedback on my writing, for

giving me confidence when I needed it the most, and for being excellent role models.

Their love for research and intellectual curiosity has rubbed off on me, and I hope to

never lose sight of it in my research career.

I thank Ratul Mahajan, whom I had the good fortune of working with on two of

the four problems described in this thesis. It was great fun working with Ratul, and

he has the uncanny ability of teaching research skills without ever appearing to do so.

I thank him for always treating me as a colleague even when I was a new graduate

student.

I thank Don Towsley for his thorough comments on my thesis and for asking tough

questions. His criticisms went a long way in improving this thesis. I thank Lixin Gao

for her feedback and comments that was especially useful in making the motivation

of my work stronger.

I thank DARPA, NSF, and Microsoft Research (MSR) for funding my graduate

studies.

I thank Victor Bahl, one of my mentors and well-wishers whose advise I greatly

value. His vision and breath of knowledge is an inspiration to all. I thank my

collaborators and mentors at MSR including Ranveer Chandra, Jitu Padhye, Stefan

Saroiu, and Alec Wolman. I thank my fellow interns at MSR for the many many

iv

passionate discussions and arguments, both about research and otherwise. I especially

thank Eduardo Cuervo, Murtaza Motiwala, Rohan Murty, and Ramya Raghavendra.

A special shout out to the 112/3001 intern mafia for making memorable what was

possibly one of my most challenging summers.

I thank the members of the PRISMS and the LASS lab for the many research

discussions, feedback on presentations, and general camaraderie. In particular, I

thank Mark Corner, Nilanjan Banerjee, Jacob Sorber, Ming Li, Bruno Ribeiro, Hamed

Saroush, and Xiaozheng Tie. I thank Brian Lynn for helping me a great deal when

deploying experiments on DieselNet; without his help this thesis would have taken

much longer to complete.

I thank everyone in the computer science department at UMass, one of the most

friendly and collaborative departments I have known. I thank the office staff and all

of the secretaries for cheerfully helping me out with administrative tasks. I thank

CSCF for making sure that I did not have to worry about equipment problems in the

last 5 years.

I have made some invaluable friends in the last five years. I thank them for

providing me with the much needed distraction and for making me feel part of a large

family. I thank Gal Niv, Yariv Levy, David Cooper, Erin Cooper, Tim Wood, Megan

Olsen, Shiraj Sen, and many more. It will be impossible to list them all.

I started my graduate studies at Buffalo, and my stint in Buffalo gave me the

confidence and desire to pursue a Ph.D. I thank R. Sridhar and Sumita Mishra for

introducing me to the research process. I thank Hung Ngo, whose algorithms class

made me realize my love for science. I thank my friends in Buffalo, especially the

members of the 215 Furnas lab, for their amazing company and for the all round fun

they provided. I thank Karthik Thyagarjan for helping me out every time I had an

optimization question, but most of all for being a wonderful friend.

v

I am greatly indebted to my family; without them I will not be where I am today.

I give my heartfelt thanks to them—to my father, for instilling in me a love for

science, to my mother, for giving me the courage and independence to pursue what I

wanted to, to my brother, for his support no matter what I decided to do, and to my

grandmother, for having immense (and often unwarranted) belief in my abilities.

Most of all, I thank my husband Niranjan, for this thesis would not be possible

without him. I thank him for encouraging me to pursue a Ph.D, and for never letting

me take the easy way out. I thank him for having more confidence in me than I had

in myself. I thank him for his quiet support when I was going through stressful times.

But above all, I thank him for making my life infinitely more fun than I ever thought

possible.

vi

ABSTRACT

ARCHITECTING PROTOCOLS TO ENABLE MOBILE
APPLICATIONS IN DIVERSE WIRELESS NETWORKS

FEBRUARY 2011

ARUNA BALASUBRAMANIAN

M.S., UNIVERSITY OF BUFFALO, SUNY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Arun Venkataramani and Professor Brian Neil Levine

The goal of this thesis is to architect robust protocols that overcome disruptions

and enable applications in diverse mobile networks. Mobile users operate in diverse

environments, starting from mostly connected cellular networks to mostly discon-

nected delay tolerant networks (DTNs). Each of these networks are prone to frequent

disruptions due to mobility, coverage holes, poor channel conditions, and other fac-

tors. Designing protocols to tolerate such disruptions is challenging because of the

extreme uncertainty in mobile wireless environments. In this thesis, I focus on four

networks that span the diverse connectivity spectrum and answer the following ques-

tions for each network: (1) What are the disruption characteristics in the network

and what are the opportunities that can be exploited in the network?; and (2) What

protocol design best exploits the opportunities to overcome disruptions and enable

specific applications?

vii

In this thesis, the key insight used to tolerate disruptions is opportunistic re-

source usage. Opportunistic mechanisms use resources as they become available and

are therefore naturally resilient to uncertainty. Specifically, I present four protocols

that overcome disruptions and enable applications in diverse networks: 1) RAPID,

which uses opportunistic replication to enable bulk transfer in mostly disconnected

networks; 2) Thedu, which uses opportunistic prefetching to enable web search in

intermittently connected networks; 3) ViFi, which uses opportunistic forwarding to

enable Voice over IP (VoIP) in mostly connected mesh networks; and 4) Wiffler, which

uses opportunistic augmentation to improve application performance in mostly con-

nected cellular networks. The naive use of opportunism can waste resources and

hurt performance. I show how, in most cases, utility-driven protocols can be used to

implement opportunism in resource-constrained wireless environments.

Finally, I present a detailed evaluation of the protocols using implementation and

deployment experiments on two large scale vehicular testbeds. Deployment on a real

testbed shows that the protocols are practical and can be implemented in realistic

usage environments. The evaluations show that the protocols signicantly improve

performance of applications compared to the state-of-the-art, in their respective en-

vironments.

viii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . iv

ABSTRACT . vii

LIST OF TABLES .xiv

LIST OF FIGURES . xv

CHAPTER

1. INTRODUCTION . 1

1.1 Thesis statement . 2
1.2 Thesis overview . 2

1.2.1 Diverse networks considered in this thesis . 3
1.2.2 Research Methodology . 5

1.3 Thesis Outline . 6

2. BACKGROUND . 9

2.1 Diverse Wireless Networks: Applications and Challenges 9

2.1.1 Mostly Disconnected Networks . 9
2.1.2 Intermittently Connected Networks . 12
2.1.3 Mostly Connected Mesh . 13
2.1.4 Mostly Connected Cellular . 14

2.2 Mobile testbeds . 15

2.2.1 Dome . 16
2.2.2 VanLAN . 19
2.2.3 Survey of mobile testbeds . 20

2.3 Opportunistic mechanisms . 22

ix

2.3.1 Packet replication in DTNs . 22
2.3.2 Prefetching in intermittently connected networks 23
2.3.3 Opportunistic forwarding for handoffs in WiFi meshes 24
2.3.4 Opportunistic augmentation to conserve 3G spectrum 24

2.4 Lessons learnt in applying opportunistic techniques 25

3. RAPID: ROUTING IN DISCONNECTED NETWORKS 28

3.1 Related work . 30
3.2 Measurement . 32
3.3 Protocol description . 33

3.3.1 System Model . 34
3.3.2 RAPID overview . 35
3.3.3 Selection algorithm . 35
3.3.4 Inference algorithm . 36

3.3.4.1 Metric 1: Average delay . 37
3.3.4.2 Metric 2: Missed deadlines . 37
3.3.4.3 Metric 3: Worse-case delay . 38

3.4 Estimating utilities . 38

3.4.1 Algorithm Estimate Delay . 39

3.4.1.1 Exponential distributions . 42
3.4.1.2 Unknown mobility distributions . 43

3.4.2 Control channel . 44

3.5 The case for a heuristic approach . 45
3.6 Evaluation . 46

3.6.1 Deployment . 46

3.6.1.1 Performance of deployed RAPID . 47
3.6.1.2 Validating the trace driven simulator 47

3.6.2 Trace-driven simulations . 48

3.6.2.1 Experimental setup . 49
3.6.2.2 Comparison with existing routing protocols 50
3.6.2.3 Quantifying metadata overhead . 52
3.6.2.4 Comparison with Optimal . 53
3.6.2.5 Evaluation of rapid components . 54

x

3.6.3 Results from synthetic mobility models . 54

3.6.3.1 Under varying load . 54
3.6.3.2 Under varying buffer size . 55

3.7 RAPID Conclusions . 57

4. THEDU: ENABLING WEB SEARCH IN INTERMITTENTLY
CONNECTED NETWORKS . 59

4.1 Related Work . 60
4.2 Measurement . 62
4.3 Thedu Design . 63

4.3.1 Prefetching . 64
4.3.2 IR meets networking . 65

4.3.2.1 Query-type classification . 66
4.3.2.2 Utility-driven prioritization based on relevance

probabilities . 68

4.3.3 Exploiting mobile-to-mobile contacts . 70

4.3.3.1 mobile-to-mobile routing at the proxy 71
4.3.3.2 mobile-to-mobile routing at the mobile node 72
4.3.3.3 Exploiting query locality . 73

4.3.4 Scope and limitations . 73

4.4 Evaluation . 74

4.4.1 Deployment set up . 74
4.4.2 Deployment results . 77
4.4.3 Trace-driven simulation set up . 77
4.4.4 Trace-driven simulation results . 79

4.4.4.1 Thedu performance . 79
4.4.4.2 Effect of AP density on Thedu . 80
4.4.4.3 Benefits of leveraging mobile-to-mobile contacts 82

4.5 Thedu Conclusions . 84

5. VIFI: INTERACTIVE APPLICATIONS IN
WELL-CONNECTED NETWORKS . 86

5.1 Related Work . 87
5.2 Measurement . 88

xi

5.2.1 Methodology . 89
5.2.2 Aggregate Performance Results . 92
5.2.3 Uninterrupted Connectivity Results . 93
5.2.4 Why is using multiple APs effective? . 95

5.3 ViFi design . 96

5.3.1 Computing relaying probability . 98
5.3.2 Salvaging . 100
5.3.3 Estimating packet reception probabilities . 100
5.3.4 Retransmission timers . 101

5.4 Evaluation . 102

5.4.1 Methodology . 102

5.4.1.1 Implementation . 102
5.4.1.2 Trace-driven simulation set up . 103
5.4.1.3 Experimental set up . 104

5.4.2 Link layer performance . 105
5.4.3 Application performance . 106

5.4.3.1 Performance of TCP transfers . 107
5.4.3.2 Performance of VoIP traffic . 108

5.4.4 Analyzing ViFi . 111

5.4.4.1 Effectiveness of coordination . 111
5.4.4.2 Efficiency of medium usage . 112

5.4.5 Comparison with other formulations . 113
5.4.6 Findings from parameter-driven simulations 114
5.4.7 Limitations . 116

5.5 ViFi conclusions . 117

6. WIFFLER: AUGMENTING 3G CONNECTIVITY 119

6.1 Related Work . 120
6.2 Measurement . 122

6.2.1 Testbeds and methodology . 122
6.2.2 Availability of 3G and WiFi . 123

6.2.2.1 Availability over longer intervals 124
6.2.2.2 Availability in peak vs. off-peak hours 125

xii

6.2.3 Performance of WiFi and 3G . 126

6.2.3.1 UDP throughput . 127
6.2.3.2 TCP throughput . 128
6.2.3.3 Loss rate . 128
6.2.3.4 Spatial variations in performance 129

6.2.4 Measurement summary . 129

6.3 Wiffler Protocol . 130

6.3.1 Wiffler API . 131
6.3.2 Leveraging delay tolerance . 131
6.3.3 Fast switching to 3G . 132
6.3.4 WiFi throughput prediction . 134

6.4 Deployment results . 136

6.4.1 Prediction-based offloading . 136
6.4.2 Fast switching . 136

6.5 Trace-driven evaluation . 137

6.5.1 Evaluation of prediction-based offloading . 138

6.5.1.1 Alternative strategies . 138
6.5.1.2 Workload . 139
6.5.1.3 Validating trace-driven simulation 140
6.5.1.4 Realistic workload . 140
6.5.1.5 Synthetic workload . 142
6.5.1.6 Impact of AP density . 143
6.5.1.7 Impact of conservative quotient 144

6.5.2 Evaluation of fast switching . 145

6.6 Wiffler Conclusions . 147

7. FUTURE WORK . 149

8. CONCLUSIONS . 152

APPENDIX: RAPID . 154

BIBLIOGRAPHY . 168

xiii

LIST OF TABLES

Table Page

3.1 rapid: A classification of related work into DTN routing
scenarios. 31

3.2 rapid: List of commonly used variables. 36

3.3 Rapid: Average daily statistics of Rapid deployment 47

3.4 Rapid: Experiment parameters . 50

4.1 Thedu: Bus-AP meeting characteristics. 62

4.2 Thedu: Features used to classify the type of web query. 67

4.3 Thedu: Classification results from Indri . 68

4.4 Thedu: IR parameters used for deployment. 76

4.5 Thedu: Average per day network statistics during deployment. 77

4.6 Thedu: The characteristics of m2i and m2m contacts. 79

5.1 ViFi: Unconditional and conditional packet reception probability
from two APs to the vehicle. 95

5.2 ViFi: Detailed statistics on the behavior of ViFi during VanLAN
deployment. 111

5.3 ViFi: Comparison of different downstream coordination mechanisms
for DieselNet Ch. 1. 114

6.1 Wiffler: Deployment results of prediction-based offloading. 136

6.2 Wiffler: Deployment results for VoIP using fast switching. 137

xiv

LIST OF FIGURES

Figure Page

1.1 Introduction: Dimensions of the problem studied in this thesis -
Network connectivity and Application interactivity. 3

1.2 Introduction: The diverse wireless environment considered in this
thesis. 4

2.1 Background: A solar-powered tracking device used in TurtleNet. 10

2.2 Background: Number of AP meetings in a 2 sq.mile area around the
center of Amherst. 13

2.3 Background: Evolution of the Dome testbed. 16

2.4 Background: The hardware on the Dome buses. 17

2.5 Background: The number of APs found per scan over a 13 month
period. 18

2.6 Background: The layout of APs in the VanLAN testbed. The
thumbtacks represent the position of the APs and the black
rectangle shows that region where vans can receive packets from
the APs. 19

2.7 Background: Survey of mobile testbeds with respect to connection
and disconnection durations. 20

3.1 rapid: Each boxplot shows min, max, 25%, 75% quartiles, median,
and mean packet delays. Replication benefits significantly in
Dome-DTN but can hurt performance under high load. 33

3.2 rapid: Protocol overview. 36

3.3 rapid: Position of packet i in a queue of packets destined to Z. 39

3.4 rapid: Delay dependencies between packets destined to node Z
buffered in different nodes. 40

xv

3.5 rapid: Comparing deployment and simulation results over 58
days. 48

3.6 rapid: Average Delay. rapid has up to 20% lower delay than
MaxProp and up to 35% lower delay than Random. 51

3.7 rapid: Delivery Rate. rapid delivers up to 14% more than
MaxProp, 28% than Spray and Wait and 45% than Random. 51

3.8 rapid: Max Delay. Maximum delay of rapid is up to 90 min lower
than MaxProp, Spray and Wait, and Random. 51

3.9 rapid: Delivery within deadline. rapid delivers up to 21% more
than MaxProp, 24% than Spray and Wait, 28% than Random. 51

3.10 rapid: Channel utilization. As load increases, delivery rate decreases
to 65% but channel utilization is only about 35%. 52

3.11 rapid: Comparison with Optimal. Average delay of rapid is within
10% of Optimal for small loads. 52

3.12 rapid: Contribution of the different components to rapid’s
performance . 55

3.13 rapid: Comparing average delay of routing protocols when nodes
meet with power law distribution. 56

3.14 rapid: Comparing worse-case delay of routing protocols when nodes
meet with power law distribution. 56

3.15 rapid: Comparing average delay of routing protocols when nodes
meet with power law distribution and when the buffer size is
varied. 56

3.16 rapid: Comparing worse-case of routing protocols when nodes meet
with power law distribution and when the buffer size is varied. 56

3.17 rapid: Comparing delivery perfromance of routing protocols when
nodes meet with power law distribution and when the buffer size
is varied. 57

4.1 Thedu: CDF of Bus-to-AP meeting durations. Median of 45 seconds
for both sets. 63

4.2 Thedu: Bus-to-AP interactions lasting less than 3 minutes. 63

xvi

4.3 Thedu: CDF of bus-to-AP inter-meeting times.Median of 5 and 8
minutes for earlier and later set, respectively. 64

4.4 Thedu: System architecture. 65

4.5 Thedu: Prioritization at the proxy when leveraging m2m routing. 72

4.6 Thedu: CDF of the average delay in receiving relevant web pages
during deployment. 78

4.7 Thedu: Comparing the number of relevant web pages delivered using
trace-driven simulations. 80

4.8 Thedu: Trends in AP density. 81

4.9 Thedu: Benefits of leveraging m2m contacts with 5 APs using
trace-driven simulations. 83

4.10 Thedu: Delay in receiving relevant responses with 5 APs using
trace-driven simulations. 83

5.1 ViFi: Average number of packets delivered per day in VanLAN by
various methods. 91

5.2 ViFi: (a)-(c): The behavior of three handoff methods for an example
path segment in VanLAN. Black lines represent regions of
adequate connectivity, i.e., more than 50% reception ratio in a
one-second interval. Dark circles represent interruptions in
connectivity. (d): The CDF of the time the client spends in a
session of a given length. 92

5.3 ViFi: The median session length in VanLAN as a function of the time
interval and the minimum reception ratio. 94

5.4 ViFi:The median session length in VanLAN as a function of the time
interval used to define adequate connectivity. 94

5.5 ViFi: Probability of losing packet i+k from an AP to vehicle given
that packet i was lost. 95

5.6 ViFi: The median session length in VanLAN as a function of the
reception ratio threshold and time interval used to define
adequate connectivity. 105

xvii

5.7 ViFi: The behavior of BRR and ViFi along a path segment in
VanLAN. 106

5.8 ViFi: TCP connection duration during VanLAN deployment. 106

5.9 ViFi: Number of successful TCP transfers before disconnection
during VanLAN deployment. 106

5.10 ViFi: TCP performance in Dome-Mesh Channel 1 in trace-driven
simulations. 107

5.11 ViFi: TCP performance in Dome-Mesh, Channel 6 in trace-driven
simulations. 107

5.12 ViFi: Median length of uninterrupted VoIP sessions during VanLAN
deployment. 109

5.13 ViFi: VoIP performance in Dome-Mesh Channel 1 in trace-driven
simulations. 110

5.14 ViFi: VoIP performance in Dome-Mesh, Channel 6 in trace-driven
simulations. 110

5.15 ViFi: Comparing VoIP performance between trace-driven simulation
and VanLAN deployment. 110

5.16 ViFi: Efficiency of medium usage for upstream communication. 113

5.17 ViFi: Efficiency of medium usage for downstream
communication. 113

5.18 ViFi: Comparison of application performance between BRR, ViFi
and three alternate formulations. 115

5.19 ViFi: Comparisons between BRR and ViFi using the QualNet
simulated environment under varying speed and density. 116

6.1 Wiffler: 3G and WiFi availability on the three testbeds. 124

6.2 Wiffler: 3G and WiFi availability in Amherst at longer time intervals.
124

6.3 Wiffler: Comparing 3G and WiFi availability during peak and
off-peak hours in Amherst. 125

xviii

6.4 Wiffler: Upstream UDP throughput in Amherst. 126

6.5 Wiffler: Downstream UDP throughput in Amherst 126

6.6 Wiffler: Upstream UDP throughput in Seattle. 126

6.7 Wiffler: Downstream UDP throughput in Seattle. 126

6.8 Wiffler: Upstream TCP throughput in Amherst. 127

6.9 Wiffler: Downstream TCP throughput in Amherst. 127

6.10 Wiffler: 3G and WiFi loss rate in Amherst. 129

6.11 Wiffler: The spatial distribution of 3G and WiFi performance in
Amherst. The Amherst testbed was divided into grids of size is
0.5 miles × 0.5 miles. 130

6.12 Wiffler: Prediction-based offloading protocol. 133

6.13 Wiffler: The relative average error between the number of APs
predicted and the number of AP meetings observed in the
measurement. Based on measurements collected from Amherst
and Seattle. Vertical bars shows the 95% confidence interval
around the mean. 135

6.14 Wiffler: Comparing the deployment versus simulation results. 140

6.15 Wiffler: Comparing offloading performance in Amherst with realistic
application workload. 141

6.16 Wiffler: Comparing offloading performance in Seattle with realistic
application workload. 141

6.17 Wiffler: Comparing offloading performance in Amherst with synthetic
workload. 142

6.18 Wiffler: Comparing offloading performance in Seattle with synthetic
workload. 143

6.19 Wiffler: Comparing the fraction of data offloaded to WiFi under
different AP availability conditions in Amherst with realistic
workload. 144

xix

6.20 Wiffler: Trade-off between application latency time and 3G usage, in
Amherst with synthetic workload. 145

6.21 Wiffler: The performance of VoIP for varying switching time. 146

A.1 DTN node meetings for Theorem A. Solid arrows represent node
meetings known a priori to the online algorithm while dotted
arrows represent meetings revealed subsequently by an offline
adversary. 154

A.2 DTN construction for Theorem A. Solid arrows represent node
meetings known a priori to ALG while vertical dotted arrows
represent packets created by ADV at the corresponding node. 158

A.3 A topologically sorted dependancy graph. 163

A.4 A pathological example of packet distribution among nodes. 165

xx

CHAPTER 1

INTRODUCTION

The vision for this thesis is: Providing reliable network connectivity to mobile

users in diverse environments. In recent years, there has been a prolific increase in

network-enabled mobile devices. In parallel, there has been an increase in infrastruc-

ture support for mobile access—planned support in the form of cellular and WiFi

mesh deployments [1, 33], and ad hoc support in the form of vehicular networks [96].

However, mobile access is nowhere close to being ubiquitous because the network is

extremely unreliable and prone to frequent disruptions. For example, 3G users in

big cities experience frequent disruptions [115] even though cellular infrastructure is

supposed to provide ubiquitous coverage.

Designing protocols that overcome disruptions in mobile environments is challeng-

ing because of two reasons : (i) Uncertainty in network conditions: The uncertainty

stems from mobility, frequent topology changes, and fluctuating channel conditions.

As a result, mobile protocols need to make design decisions based on partial or in-

correct knowledge about the environment, and, (ii) Network diversity: Mobile users

require network access in diverse environments, starting from mostly connected (for

example, in the city center) to mostly disconnected (for example, in a subway). The

environments are prone to varying disruption characteristics and present unique chal-

lenges. Designers need to first uncover the challenges specific to the network, and

then design protocols that can address the challenges.

1

1.1 Thesis statement

The goal of my work is to architect robust protocols that overcome disruptions in

diverse environments. To this end, this dissertation seeks to establish the following

thesis: Disruptions in diverse mobile environments can be overcome by exploiting

resources opportunistically, often using utility-driven protocols.

1.2 Thesis overview

In support for my thesis, I designed a suite of opportunistic protocols that over-

come disruptions in mobile wireless networks. Opportunistic protocols use resources

as they become available rather than planning for them a priori. As a result, the

protocols easily adapt to changing network conditions, making them resilient to un-

certainty.

There are two aspects to the problems studied in this thesis; first is diversity in net-

work connectivity and second is application interactivity. Figure 1.1 illustrates these

two dimensions. In highly disconnected environments, the goal of this thesis is to

design protocols that can support bulk transfer applications that are non-interactive.

Clearly, in disconnected environments where nodes are only connected for a short

duration, interactive applications such as web search or web browsing cannot be sup-

ported. However, as the connectivity increases, the goal of this thesis is to design

protocols that can overcome disruptions to support increasingly interactive applica-

tions.

Specifically, I focus on four networks and corresponding applications that span the

two dimensions of network connectivity and application interactivity. I then answer

the following questions:

• What are the disruption characteristics in the network and what are the oppor-

tunities that can be exploited in the network?

2

Increasing connectivity

In
cr

ea
si

ng
 a

pp
lic

at
io

n
in

te
ra

ct
iv

ity

(good connectivity,
interactive app)

(poor connectivity,
non-interactive app)

(medium connectivity,
moderately interactive app)

Figure 1.1. Introduction: Dimensions of the problem studied in this thesis - Network
connectivity and Application interactivity.

• What protocol design best exploits the opportunities to overcome disruptions and

enable the given application?

Below, I present an overview of the four networks and applications and the

methodology I follow to answer the research questions. In Chapter 2, I present a

more detailed description of the network environments and the research methodol-

ogy, and I place both in context of related research work.

1.2.1 Diverse networks considered in this thesis

Figure 1.2 is a qualitative illustration of the specific network environment consid-

ered in this work: Mostly disconnected, Intermittently connected, Mostly connected

mesh, and Mostly connected cellular network. The networks are presented in terms of

the connection and disconnection duration. The disconnection duration is the period

of time when a mobile user has no contact with the infrastructure. The connection

duration is the contiguous period of time when a mobile node is in contact with in-

frastructure. We define infrastructure to be a cellular tower, a WiFi access point

(AP), or another network node.

Mostly disconnected networks, the outer region, refers to challenged networks

where infrastructure is minimal and connectivity is infrequent. Such networks are

3

~1s [Mostly disconnected]
Email, FTP

Disconnection duration
Co

nn
ec

tio
n

du
ra

tio
n

~1s ~60s ~3600s

~3600s

~60s

[Mostly
connected

Mesh/Cellular]
VoIP

Web browsing,
Web search

[Intermittently connected]

Figure 1.2. Introduction: The diverse wireless environment considered in this thesis.

also known as disruption tolerant networks (DTNs). Disconnection durations are

typically on the order of a few hours, and connection durations are on the order of a

few minutes/seconds. DTNs are most useful in scenarios where infrastructure is ex-

pensive or difficult to deploy, such as wildlife monitoring, disaster relief, and in rural

or developing regions. The goal of this thesis is to support non-interactive applications

such as email in the DTN environment. Supporting non-interactive applications is

challenging in this environment because there may be no contemporaneous end-to-end

path and traditional routing and transport protocols break down.

Intermittently connected, the middle region, refers to networks where disconnec-

tion durations are smaller, on the order of a few minutes. For example, a mobile

node connected to a WiFi AP in a coffee shop only has intermittent access. The node

gets disconnected when it moves out of range of the AP, and is not connected until

it is in range of another AP. The disconnection duration is shorter than DTN envi-

ronments, but the environment is still not well connected. Such intermittent access,

if harnessed, can be used for a variety of applications such as mobile advertisement,

local recommendations, and road monitoring. The goal of this thesis is to support a

4

moderately interactive web search application in this environment. Web search can-

not tolerate even a few minutes of disruption, and therefore cannot be supported as

is in an intermittently connected environment.

Mostly connected, the inner region, refers to networks that have very short dis-

connection durations. Mostly connected networks can be classified into cellular net-

work or mesh networks, depending on whether they are supported by a cell tower

or a WiFi mesh infrastructure, respectively. The infrastructure is planned so that

it provides overlapping coverage to mobile users. Even in such well provisioned en-

vironments, supporting highly interactive applications such as Voice over IP (VoIP)

is difficult because of short disruptions in connectivity, either due to poor channel

conditions [22, 76] or network overload [21].

The key objective of this thesis is to design protocols that enable the applica-

tions corresponding to the different regions, as shown in Figure 1.2. Today, these

applications can not be supported, and even if supported, suffer from poor perfor-

mance [17, 22, 19, 21].

1.2.2 Research Methodology

The research methodology used in this thesis is comprised of the following three

components: (i) Uncovering challenges and opportunities in the environment using

testbed-based measurements; (ii) Addressing the challenges by designing protocols

that leverage opportunism; and (iii) Evaluating the protocols using implementation

and testbed deployment.

I use two large-scale vehicular testbeds, Dome [7, 101] and VanLan [110], to con-

duct measurement studies in the four networks. The measurement studies help un-

cover problems and opportunities in the network that may be otherwise unnoticed.

I leverage these measurements to design protocols that improve application perfor-

mance. For example, in ViFi (Chapter 5), we use measurements on VanLAN to show

5

that several APs overhear a dropped packet in a mesh. Based on this observation,

we design a protocol that leverages AP overhearing to reduce disruptions and enable

interactive applications in the mesh environment.

The key insight underlying the approaches proposed in this thesis is opportunis-

tic resource usage. I leverage four opportunistic mechanisms: Replication, Aggressive

prefetching, Opportunistic forwarding, and Opportunistic augmentation, to reduce dis-

ruptions in the four networks environments. Opportunistic mechanisms use resources

as they become available and are naturally resilient to uncertainty. However, naive use

of opportunism can increase resource overhead and hurt performance. My contribu-

tion is a set of utility-driven protocols that implement the opportunistic mechanisms

in a resource constrained environment.

Finally, evaluating protocols designed for the mobile wireless environment is diffi-

cult because analytical models and simulation tools do not accurately capture aspects

of the wireless channel [69]. I evaluate the protocols developed in this thesis using

implementation and deployment, primarily on the Dome [7, 101] testbed. I evaluate

mesh protocols in the VanLAN [110] mesh testbed. The deployment-based evaluation

takes into account aspects of the wireless channel that are difficult to capture using

analysis or simulation tools and shows that the protocols can be deployed in real-

istic usage environments. For a broader evaluation across a range of environmental

factors, I supplement the deployment-based evaluation with trace-driven simulations

using real-world traces.

1.3 Thesis Outline

The rest of this thesis is organized as follows: In Chapter 2, I present a detailed

overview of the network environments considered in this thesis, the opportunistic

mechanisms leveraged, and the mobile testbeds used for evaluation.

6

In Chapter 3, I describe rapid, a DTN protocol that reliably routes packets under

extreme uncertainty. A rapid node opportunistically replicates packets through mul-

tiple paths to increase the probability that the packet will be delivered. I first present

a measurement study on the Dome testbed that shows that while replication can im-

prove performance in DTNs, naive replication hurts performance when resources are

limited. To address the resource management challenge, rapid uses a utility-driven

protocol that tunes replication according to the resource availability; during a short

connection opportunity, rapid replicates packets such that the marginal increase in

the system’s utility justifies the resources consumed. I present a detailed evaluation

of rapid using deployment-experiments on Dome and using trace-driven simulations.

A paper describing rapid was published at SIGCOMM 2007 [17], and a full version

appeared in the IEEE/ACM Transactions on Networking 2010 [20].

In Chapter 4, I describe Thedu, a protocol that overcomes disruptions to en-

able web search in intermittently connected networks. I first present a measurement

study conducted on the Dome testbed to understand the challenges in supporting web

search in intermittently connected networks. I then describe Thedu, a protocol that

leverages aggressive prefetching to transform the interactive web search process to a

transactional process. Thedu uses a combination of Information Retrieval (IR) tech-

niques and utility-driven prioritization to ensure that the most useful web pages are

prefetched during the short bandwidth opportunity. Finally, I present an evaluation of

Thedu using deployment experiments on Dome and using trace-driven simulations. A

paper describing Thedu was published at CHANTS workshop [24], and a full version

was published at MobiCom 2008 [19].

In Chapter 5, I describe ViFi, a protocol that enables interactive applications

in mostly connected WiFi meshes. I present a measurement study on the VanLAN

mesh testbed that shows that several APs overhear a dropped packet because of the

broadcast nature of the wireless medium. Next, I describe ViFi, a protocol that lever-

7

ages opportunistic overhearing by allowing an AP that overhears a dropped packet

to forward the packet. ViFi uses a utility-driven sender prioritization to coordinate

among APs such that the forwarding reduces disruptions, while minimizing wasted

transmissions. Finally, I present an evaluation of ViFi using deployment experiments

on VanLAN and trace-driven simulations using Dome traces. A paper describing ViFi

was published at SIGCOMM 2008 [22].

In Chapter 6, I describe Wiffler, a protocol that augments 3G networks using

WiFi. I present a detailed measurement study of the availability of 3G and WiFi

networks in 3 cities that shows that WiFi is available only a fraction of the time that

3G is available and has poorer performance compared to 3G. I then describe Wiffler,

a protocol that overcomes the availability and performance challenges in WiFi to

augment the overloaded 3G network. Wiffler predicts future WiFi availability to

maximize the data offloaded to the WiFi network, while not affecting application

performance. Finally, I present an evaluation of Wiffler using deployment on Dome

and using trace-driven simulations based on traces collected in two cities. A paper

describing Wiffler was published at MobiSys 2010 [21].

In Chapter 7, I describe potential avenues of future research and Chapter 8 con-

cludes this thesis.

8

CHAPTER 2

BACKGROUND

In this section, I provide context to the problems addressed in this thesis by

elaborating on three topics: diverse wireless networks, testbed deployment, and op-

portunistic mechanisms.

In Section 2.1, I describe the four wireless networks considered in this thesis,

including real-world instantiations of the networks and the challenges faced in the

networks. In Section 2.2, I describe the Dome and VanLAN testbeds used in this

thesis to conduct measurement studies and to evaluate protocols. I will also present

a survey of related testbed deployments. Finally, in Section 2.3, I elaborate on the

opportunistic mechanisms leveraged in this thesis and describe related research that

have also employed these mechanisms to solve different problems.

2.1 Diverse Wireless Networks: Applications and Challenges

Below, I describe in detail the characteristics of four diverse wireless networks (see

Figure 1.2): Mostly disconnected DTNs, Intermittently connected networks, Well

connected meshes, and Well connected cellular networks.

2.1.1 Mostly Disconnected Networks

Mostly Disconnected Networks, also known as DTNs, are networks that are formed

in extremely challenged environments where there is no end-to-end connectivity be-

tween nodes. DTNs were first envisioned for inter-planetary communication [47],

where satellites communicate with each other when they come within range. The

9

Figure 2.1. Background: A solar-powered tracking device used in TurtleNet.

satellite nodes communicate using a store-and-forward technique, where a node stores

packets and forwards it only when it is within range of another node.

The applicability of DTNs have since been extended to several other scenarios

including wildlife monitoring, disaster relief, and rural and developing regions. In

general, the DTN communication paradigm is most useful for environments where

infrastructure is expensive to deploy or difficult to deploy. Below, I present two real

world examples of the application of DTNs.

TurtleNet

TurtlNet [100, 9] is a mobile network deployed in Mississippi by researchers at

UMass, in collaboration with biologists at the University of Southern Mississippi. The

deployment consists of 17 tracking devices attached to Gopher Tortoises (Gopherus

polyphemus), shown in Figure 2.1 and two GPRS-enabled base station deployed at

the two ends of the swamp.

During operation, the devices log connection opportunities and record periodic

sensor reading. The nodes in TurtleNet rarely have an end-to-end connection to one

of the two deployed base stations, and therefore cannot transfer the logs directly.

Instead, nodes use DTN routing: When two TurtleNet nodes come within communi-

cation range of each other, they exchange their logs. The logs are forwarded during

subsequent node meetings until it is eventually delivered to the base station.

10

Traditionally, the logs are collected by trapping the animals or using manual radio

telemetry, both of which are labor intensive and yield few data points. Alternatively,

more base stations can be deployed to collect logs directly, but this is expensive and

in some cases impossible. In contrast, DTNs allow for streaming of collected data

to scientists without expensive infrastructure or manual intervention by routing data

during opportunistic contacts. ZebraNet [117], is another example of a sensor deploy-

ment used for monitoring zebras in Kenya. ZebraNet also uses a DTN communication

paradigm to collect data from the sensor nodes.

Kiosknet

The KioskNet system [96], developed at the University of Waterloo, provides low

cost Internet access to rural areas by leveraging DTN communication. The KioskNet

system is currently deployed in Southern India and in Ghana. Rural kiosks that are

already deployed for connectivity are often unreliable due to failures in the telephone

system.

Instead, the KioskNet project augments the telephone-based network using DTNs.

The DTN is formed among vehicles equipped with an on-board computer and an ex-

ternal antenna that carry Internet traffic between the kiosks and the Internet gateway

in the cities. Without DTN routing, such a connectivity would be possible only with

extensive deployment of cellular or other infrastructure, which can be expensive.

Despite several real world applications for DTNs, many challenges need to be

addressed for DTN communication to be robust and efficient. First, there is no

end-to-end path between source and destination; existing wired and wireless routing

protocols assume the presence of an end-to-end path, and as a result, break down in

the DTN environment [17]. Second, making it difficult to determine the best next

hop for routing because of the disconnected nature of the network and since nodes

need to make decisions only with partial information. In this thesis, I present rapid,

11

a routing protocol that overcomes the uncertainty in topology and the lack of end-

to-end path in DTNs to reliably deliver packets.

2.1.2 Intermittently Connected Networks

There is increasing number of WiFi APs deployed in college campuses, airports,

corporate campuses, and coffee shops [40]. A mobile user can get intermittent Internet

access when she is within range of one of the APs. Such intermittent access, if

harnessed, can be used for a variety of applications such as mobile advertisement,

traffic management, and road monitoring. For example, Pothole Patrol [48] is a

project that enables road monitoring in the real world, where vehicles gather data

about road conditions and relay the data to a central repository during intermittent

Internet access.

Several earlier studies in this topic characterize the throughput available to moving

vehicles as they pass a WiFi AP. The Drive-Thru-Internet [87] project shows that

communication between a vehicle and an AP is feasible even at speeds of 180Km/h.

Hadaller et al. [58] perform a detailed study of TCP performance between a moving

vehicle and an AP. The authors introduce several optimizations to TCP to improve

throughput from moving vehicles.

There has been recent studies that focus on vehicle-AP interactions through a

typical day, as the vehicle comes in contact with several organically deployed APs.

The CarTel study [61, 49] shows that a vehicle can get an average throughput of

86Kb/s per day using open APs deployed in the Boston area. The MobTorrent [40]

study shows that vehicles have a mean capacity of 4.5MB per AP meeting in a campus

setting in Singapore. Our own work [19] in the Dome testbed shows that vehicles can

transfer data to an AP every 8 minutes on average. Figure 2.2 shows the number of

vehicle-AP meetings per day in Dome. For example, in the center grid in the Dome

12

93

75

7

101

140

24

0

33

33

Number of
AP encounters

per day

Figure 2.2. Background: Number of AP meetings in a 2 sq.mile area around the
center of Amherst.

deployment region, corresponding to the town center in Amherst, a vehicle encounters

APs 140 times a day.

The above studies focus on the available throughput for vehicular users. The

throughput measure is appropriate for bulk-transfer applications, but not for interac-

tive applications such as web search, where response time is of critical importance. It

is unclear if interactive applications can be supported when connectivity is intermit-

tent and unpredictable. In this thesis, I present a system called Thedu that adapts

the interactive web search process to intermittently connected networks.

2.1.3 Mostly Connected Mesh

Recently, there has also been an increasing number of planned mesh deployments,

and over 1,000 cities worldwide have deployed mesh networks [53]. A mesh network

typically consists of a large number of wireless APs and a few gateway routers con-

nected to the Internet. A few of the APs are directly connected to the gateway

13

routers, and the remaining APs route data to the gateway wirelessly through other

mesh APs. The mesh network is deployed to provide continous coverage to users.

There are several real-world examples of mesh networks that serve entire com-

munities or cities. GoogleWiFi [1] is a mesh network of over 500 WiFi nodes and 3

gateways that covers 95% of the city of Mountain View. In 2009, over 500 GB of

data was sent through the GoogleWiFi mesh per day. Similarly, the TFA network in

Houston [33] is a mesh network consisting of 18 backhaul nodes deployed in a sin-

gle family residential neighborhood. The mesh testbed serves over 4,000 community

residents. In Amherst, we have deployed a mesh network consisting of 26 Cisco APs

that are mounted on light poles and buildings. On average, there were 86,838 HTTP

connections (68% of the connections) to the mesh nodes from users per day.

WiFi meshes have the potential to provide low-cost and ubiquitous access to users,

and it is a one time investment. For example, the small municipality in Amherst

cannot afford 3G subscriptions for every worker; however, a one-time purchase of

WiFi equipment is feasible.

For vehicular and mobile users, the primary challenge in supporting applications

using a mesh network is in designing effective handoff policies. Because of uncertainty

in channel conditions, it is challenging to make optimal handoff decisions as vehicles

move from one mesh node to another. In this thesis, I present an effective handoff

protocol called ViFi that enables highly interactive applications in vehicular-mesh

networks.

2.1.4 Mostly Connected Cellular

Unlike WiFi, 3G cellular networks are designed for mobility, and can support

a wide range of applications at vehicular speeds. They are deployed by commercial

vendors and are fundamentally different from the organic WiFi networks in two ways:

(i) They require massive cell tower infrastructure investment that is recovered through

14

per-month user subscriptions; and (ii) access by a client is strictly scheduled and

requires tight integration with the physical layer. This ability requires expensive

hardware at the client, but also provides better performance guarantees compared to

WiFi networks that only support random access. In other words, while 3G networks

are more expensive than WiFi networks, they provide consistent performance, can

support ubiquitous access, and as a result, have been adopted by millions of users in

urban areas [12].

Earlier generations of cellular packet-switched networks such as GPRS and EDGE

networks (also called 2.5G) only supported a bandwidth of about 100Kbps, which is

significantly low compared to what is possible from WiFi networks. However, 3G

networks, for example UMTS-HSPA and WCDMA, support bandwidths comparable

to WiFi. Currently, the cellular industry is working on the newest 4G standard called

LTE (Long Term Evolution), that is projected to support extremely high throughputs

in the order of 100 Mbps. These developments make cellular networks extremely

attractive to urban users.

The challenge is that the popularity of 3G networks is creating immense pressure

on the limited spectrum. Currently, commercial 3G networks are allocated 409.5

MHz of spectrum [13], and only about 50MHz of spectrum is available for future

use. The FCC ruling on the use of unused TV spectrum (called whitespaces) can

potentially increase the spectrum availability by at most 100-200 MHz [10]. However,

the projected demand for spectrum by 2016 is 800-1000 MHz [13]. It is unclear how

cellular providers can satisfy this demand. In this thesis, I present Wiffler, a system

that augments 3G spectrum using cheaper WiFi connectivity.

2.2 Mobile testbeds

In this thesis, I use two vehicular testbeds to conduct measurement studies and

to evaluate protocols in a realistic usage environment: Dome [8] and VanLAN [110].

15

January 2005
Log Bus-Bus

meetings
May 2006

Upgraded to
2.6 Kernel

August 2007
Enabled access
to UMass and

Town WiFi June 2008
Upgraded to

3G

May 2008
Upgraded to

Atheros
MiniPCI WiFi

May 2004
First vehicles
operational January 2006

Log Bus-AP
meetings

Dome-DTN Dome-Infrastructure Dome-Mesh Dome-3G

Figure 2.3. Background: Evolution of the Dome testbed.

I will describe the two testbeds in detail, and present a survey of related mobile

testbeds.

2.2.1 Dome

Dome is a diverse testbed that allows us to experiment on different network envi-

ronments, starting from DTNs to cellular networks. The testbed has been operational

since 2005 and has evolved to include several different wireless networks. Figure 2.3

shows the evolution of Dome.

The testbed is composed of 40 buses operated by the Pioneer Valley Transport

Authority (PVTA) at UMass. Each bus is fitted with off-the-shelf hardware as shown

in Figure 2.4 consisting of a Hacom OpenBrick 1GHz Intel systems (referred to as

bricks), a GPS receiver, 802.11abg mini PCI cards, 802.11g wireless access point,

amd Wireless 3G USB modems. The buses service an areas of 150 sq.mile around

the UMass campus. The bricks run a software module called LiveIP that scans for

SSIDs, establishes and maintains WiFi connections, and informs applications of the

state of the WiFi link.

16

Figure 2.4. Background: The hardware on the Dome buses.

The computers on the buses collect logs of experiments and upload the logs to

a central repository periodically. We use the experiment logs to evaluate protocols.

Below, I describe the different wireless networks that Dome is comprised of.

Dome-DTN

Dome was originally deployed as a DTN testbed, where buses communicated with

each other when they were in range, forming a sparse network. An 802.11b AP

attached to each bus provides DHCP access to the bus, and a second USB-based

802.11b interface scans for other buses. Once another bus is within range, a connection

is created to the remote AP using the LiveIP software. The buses send bulk data to

each over TCP until they are disconnected. The total data transfered between two

communicating buses is a function of several effects that are not perfectly modeled

by simulations, including the effect of the wireless channel, the speeds of the buses,

and other events such as traffic and signal.

In this thesis, I evaluate rapid (Chapter 3) using the Dome-DTN testbed.

Dome-Infrastructure

In 2006, the Dome-DTN testbed was upgraded to the Dome-Infrastructure testbed,

where the buses interacted with APs. To this end, the LiveIP software scanned not

only for other buses, but also for open APs. If multiple APs were found in a scan,

LiveIP attempted to associate to an AP with the best signal strength. After associa-

17

Sep07 Dec07 Mar08 Jun08 Sep08
0

2

4

6

8

10

A
v
e

ra
g

e
 N

u
m

b
e

r
o

f
A

P
s
 F

o
u

n
d

 P
e

r
S

c
a

n

Open APs

Secured APs

*

Figure 2.5. Background: The number of APs found per scan over a 13 month period.

tion and obtaining an IP address, the bus pinged a known server through the AP, to

make sure the associated AP is open. Once verified, the bus uploaded/downloaded

data to a lab server through the AP. We use several optimizations such as DHCP-

caching to reduce the time to associate to an AP. Figure 2.5 shows the average number

of APs found by a bus during a single scan over a 13 month period. On average, over

100 unique APs were encountered by the buses per day.

The bus-AP encounters form an intermittently connected network, where the bus

is connected to the Internet for a few 10’s of seconds through an AP before being

disconnected for a few minutes [24]. In this thesis, I evaluate Thedu (Chapter 4)

using the Dome-Infrastructure testbed.

Dome-Mesh

In 2007, the Dome testbed was diversified to include a mesh network. In cooper-

ation with the Town of Amherst, a 26 node WiFi mesh testbed was installed in the

Amherst town center. The testbed consists of lightweight access points managed by a

central controller. All the mesh nodes advertise the same SSID to facilitate seamless

hand-off. The APs use two radios: an 802.11g radio for the public and mobile nodes

to connect to, and an 802.11a radio for AP interactions. The mesh network provides

Internet connectivity to both passengers in the bus and stationary users in the town

center.

18

Figure 2.6. Background: The layout of APs in the VanLAN testbed. The thumb-
tacks represent the position of the APs and the black rectangle shows that region
where vans can receive packets from the APs.

In this thesis, I evaluate ViFi (Chapter 5) using trace-driven simulations on the

Dome-Mesh testbed.

Dome-3G

Finally, the GPRS modems on the buses were upgraded with Sierra Wireless 881

3G USB Modems in 2008. The 3G modem has HSDPA-based service via AT&T.

The vehicles visit many locations multiple times each day. This set up allows us to

analyze the stationarity of 3G availability with respect to location and time of day. I

use the Dome-3G testbed to conduct measurement studies on 3G availability and to

evaluate the Wiffler protocol (Chapter 6).

2.2.2 VanLAN

The second testbed used in this thesis is the VanLAN testbed, deployed in the

Microsoft campus in Redmond. The VanLAN testbed is a vehicular-mesh testbed

consisting of a 11-node mesh and two vehicles.

19

Disconnection Duration
Co

nn
ec

tio
n

Du
ra

tio
n

~1m

Almost no disruption

Almost no
network

~1s

~1s

~1m

CarTel

Dome-
Infrastructure

TFA-Houston

KioskNet

~1h

~1h

~1days

VanLAN, Dome-Mesh

MobTorrent

Diesel-3G

Dome-DTN

Haggle

TurtleNet, ZebraNet

~1day

Figure 2.7. Background: Survey of mobile testbeds with respect to connection and
disconnection durations.

The APs in VanLAN are deployed across five buildings in the Microsoft campus,

as illustrated in Figure 2.6, covering a 828×559 sq meter area. The vehicles provide

a shuttle service around the town, moving within a speed limit of about 40 Km/h.

The APs and vehicles have small desktops with Atheros 5213 chipset radios. The

antennae are omnidirectional and are mounted on the roofs of the respective buildings

and vehicles. All nodes are set to the same 802.11 channel for the experiments.

I use the VanLAN testbed to study different handoff policies in a vehicular-mesh

environment, and to evaluate the ViFi (Chapter 5) protocol.

2.2.3 Survey of mobile testbeds

Several wireless testbeds have been deployed to study mobile connectivity. Fig-

ure 2.7 quantitatively presents the different testbeds by the reported observed median

frequency of disconnection and connection. The figure also places the testbeds in the

context of the Dome and VanLAN testbeds.

DTN testbeds: KioskNet [96] is a testbed deployed in developing regions

to provide Internet access to rural areas. The Internet gateway is available in cities,

20

and the rural areas are equipped with several kiosks. Vehicles that move between

the city and the villages transfer data between the kiosks and the Internet gateways.

TurtleNet [100] and ZebraNet [117] testbeds are sparse networks deployed to monitor

animals in their natural habitats. Haggle [71] is a DTN testbed deployed in Cam-

bridge, England, consisting of bluetooth-enabled devices carried by humans. The

devices communicate when within range of each other. In all of the DTN testbeds,

connectivity between nodes were unpredictable because the nodes do not always move

in a predefined pattern.

Testbeds with intermittent connectivity: The CarTel [61, 49] testbed

comprises of 27 cabs operating in the Boston area. The cabs get intermittent Internet

access when they are within range of open WiFi APs. The mean bus-AP contact

observed in the CarTel testbed is 10 seconds. The MobTorrent [40] testbed deployed

in Singapore is also an intermittently connected testbed, where 16 public transit buses

get Internet connectivity using open WiFi APs. The mean bus-AP contact observed

in the MobTorrent testbed is 15 seconds. In the intermittently connected testbeds,

the interactions between the vehicle and the infrastructure were short-lived and often

unpredictable.

Mesh testbeds: The TFA-Houston [53] testbed deployed in Rice university

is a 4000-user urban mesh testbed. Vehicles in the testbed move in a 2.5 km loop and

connect to the Internet via the mesh nodes. The authors studied the performance of

different handoff policies in the vehicular mesh environment, similar to the VanLAN

study that we conducted.

The above testbeds were deployed to conduct experiments in specific wireless

environments such as DTNs or meshes. The Dome (including Dome-DTN, Dome-

Infrastructure, Dome-Mesh and Dome-3G) and the VanLAN testbed together provide

a diverse platform that enables measurements and evaluation in a wide range of mobile

environments.

21

2.3 Opportunistic mechanisms

The underlying technique used to design protocols in this thesis is opportunistic

resource usage. Below, I describe the four opportunistic mechanisms used in this

work, and elaborate on the resource management challenge that they pose. I also

discuss the rationale behind choosing the specific opportunistic mechanism for the

network environment.

2.3.1 Packet replication in DTNs

Replication is an opportunistic mechanism involving routing multiple copies of

the packet towards the destination. In traditional forwarding-based routing [90, 66],

there is at most one copy of a packet in the system that is forwarded, at each step,

to the optimal next-hop node. However, in DTNs it is difficult to determine the

optimal next-hop because of the uncertainty in topology and limited knowledge about

the environment. Therefore, a forwarding-only protocol is not suitable for the DTN

environment where the single copy may be lost if the packet is forwarded to a dead-end

node.

In contrast, replication-based protocols do not compute the optimal next-hop; in-

stead, they opportunistically route the same copy of the packet to multiple nodes

during contacts. Replication considerably improves packet delivery under uncertain

topology conditions. However, naive replication wastes bandwidth and can severely

degrade performance. There has been several related works that use replication for

DTN routing and these works limit replication in various ways: (i) using historic

meeting information [32, 31, 74]; (ii) removing useless packets using acknowledg-

ments of delivered data [31]; (iii) using probabilistic mobility information to infer

delivery [99]; (iv) using network coding [112] and coding with redundancy [62]; and

(v) bounding the number of replicas of a packet [102, 99, 78].

22

However, the effect of the various replication decisions on the bandwidth resource

and on the routing metric is unclear. In contrast, rapid (Chapter 3) uses a utility-

based replication protocol that tunes replication according to the specified metric and

the available resources.

2.3.2 Prefetching in intermittently connected networks

The second opportunistic mechanism is aggressive prefetching. Prefetching in-

volves opportunistically fetching application data when bandwidth becomes available,

in anticipation that a user will request for the data. Clearly, prefetching can improve

performance of interactive applications in networks with frequent disconnections, if

the user request is already prefetched before the disruption occurs. However, ag-

gressive prefetching poses a resource management problem: Given limited bandwidth

opportunity, what application data to prefetch?

Prefetching has been used to mask disruptions in several scenarios: Chandra et al.

[38] used prefetching to improve availability or response time for disconnected Web

operation. Padmanabhan and Mogul [88] proposed a markov model for predicting

and prefetching the most popular web requests. The TEK [94] system is an email-

based web browser that compresses prefetched search results into an email. Jiang and

Kleinrock [65] proposed a technique where a connected client prefetches files during

idle time based on the probability that the user will request the file.

In this thesis, I present Thedu (Chapter 4), a protocol that uses prefetching to

opportunistically fetch web pages in response to a web search request. To address

the resource management challenge, Thedu uses a combination of IR techniques and

utility-driven prioritization to ensure that the most useful web pages are prefetched

during the short bandwidth opportunity.

23

2.3.3 Opportunistic forwarding for handoffs in WiFi meshes

The third opportunistic mechanism is opportunistic forwarding. This mechanism

leverages opportunistic overhearing. When a packet is sent in the wireless medium,

several nearby APs can overhear the packet. Leveraging packet overhearing can help

retrieve dropped packets. The challenge is in coordinating among the APs to retrieve

a packet, without knowing which subset of APs overheard the packet.

Leveraging overheard packets is inspired by cellular networks [111], where multiple

APs act in concert to improve client performance. The cellular methods, however,

require tight integration with the physical layer and strict timing across APs. These

abilities are not available in WiFi networks.

Opportunistic routing protocols such as ExOR [27] and MORE [36] leverage over-

hearing to improve throughput in static mesh networks. Their approach requires

packet batching to leverage overhearing; the authors recommend using a batch size of

at least around ten. Although the batching approach improves throughput, it cannot

be used to support interactive applications, because of the delays associated with

batching packets.

In this thesis, I present ViFi (Chapter 5), a protocol that exploits opportunistic

overhearing to enable interactive applications in vehicular-mesh environments. ViFi

uses utility-driven sender prioritization protocol to assign relaying probabilities to

each node. Every node opportunistically forwards overheard packets according to

its relaying probability, such that collectively the relaying decision is effective. The

protocol is decentralized, operates on individual packets (as opposed to batching),

and is well-suited for interactive applications.

2.3.4 Opportunistic augmentation to conserve 3G spectrum

The fourth opportunistic mechanism is opportunistic augmentation. Specifically,

my focus is on augmenting 3G networks using opportunistic WiFi access for vehicular

24

users. Cellular users, especially in big cities, are facing poor performance because the

3G spectrum is severely overloaded [115]. The key idea is to reduce the load on

3G by using WiFi connectivity when possible. Augmenting 3G using WiFi access is

challenging for vehicular users. WiFi APs have a short range; even when APs are in

range, the quality of connectivity may be poor [61, 58]. Thus, it is unclear if WiFi can

usefully augment 3G, while providing the ubiquity and reliability that 3G subscribers

expect.

Many previous works propose mobile systems that augment one network with

another. One method is to select the interface with low idle power consumption to

wake up another interface, to save energy [98, 26]. Zhong et al. [91] estimate the

power consumption of different interfaces for various network activities. They use

these estimates to switch between the different interfaces to save energy. Vertical

handoff techniques select the interface that currently offers the best performance [30].

Striping techniques multiplex data across different interfaces to balance load and

improve performance [93].

In this thesis, I present Wiffler (Chapter 6), a protocol that augments 3G with

opportunistic WiFi connectivity. In contrast to related works, the primary goal is

not to optimize power consumption or performance. Instead, Wiffler uses a cheaper

but unreliable WiFi network to augment a more expensive but reliable 3G network.

Wiffler uses WiFi availability prediction to maximize data offload while satisfying

application requirements.

2.4 Lessons learnt in applying opportunistic techniques

Based on my experience in applying opportunistic techniques to network problems,

I present some intuitions for the question – what network conditions are necessary

for a given opportunistic mechanism to be useful?

25

Replication: Opportunistic replication of packets is most useful in multi-hop

networks that exhibit high uncertainty. In a separate work (not part of this thesis), we

show that the replication gain is high when there is high variance in path delays [109],

where the replication gain is the delay when using replication divided by the delay

when not using replication. In DTNs, path delays have high variance because of node

mobility and unpredictable network topology. As a result, opportunistic replication

improves delay performance in DTNs. We show that opportunistic replication can

improve application performance in multi-hop intermittently connected networks as

well (Chapter 4). However, the delay variance in well-connected networks is typically

low, and we show that replication is unlikely to provide performance benefits [109].

Prefetching: The usefulness of prefetching depends on the characteristics of the

application. For example, for applications such as web search or web browsing, future

user requests can be predicted based on current request [88]. For these applications,

prefetching data can improve application latency, especially in intermittent connected

environments. However, for bulk transfer applications or VoIP applications, prefetch-

ing is unlikely to be useful because in both cases, future data requests cannot be

predicted based on the current data.

Opportunistic forwarding: Opportunistic forwarding can be exploited when the

channel allows overhearing by neighbor nodes and when the probability of packet

reception is non-deterministic and independent across nodes. When packet reception

is independent, there is high probability that even if the intended next hop does not

receive the packet, other nodes in the vicinity will overhear the packet. In ViFi, we

opportunistically forward overheard packets to reduce disruptions caused by packet

losses. Opportunistic forwarding has also been exploited in multi-hop mesh net-

works [27, 36], where the farthest node that overhears a packet opportunistically for-

wards the packet, reducing packet delay and improving throughput. In disconnected

networks, exploiting overhearing is less useful because opportunistic forwarding only

26

reduces transmission delays and not the queuing delay caused by large inter-contact

times. In disconnected networks, the transmission delay is insignificant compared to

the queuing delays.

Opportunistic augmentation: Opportunistic augmentation is possible when users

can exploit diversity in terms of network, channel, or technology.There are various

scenarios when such diversity is available. For example, when multiple providers

provide Internet access to a device, a user can exploit the network diversity across the

different providers to augment connectivity and improve application performance [93].

In Wiffler, we focus on devices that can connect over both 3G and WiFi, and exploit

the technology diversity to augment 3G with WiFi.

27

CHAPTER 3

RAPID: ROUTING IN DISCONNECTED NETWORKS

DTNs have the potential to enable connectivity in a vast number of disconnected

scenarios where it is difficult or expensive to deploy infrastructure. For example,

the potential of DTNs can be harnessed by projects such as TIER [6], Digital Study

Hall [51], and One Laptop Per Child [2] to extend the reach of the Internet to rural

and developing regions. However, applications that work well in wired and wireless

networks simply breakdown in the DTN environment because of the lack of a contem-

poraneous end-to-end path. In fact, the lack of end-to-end path, frequent topology

changes, and extremely limited information about the network, make DTNs one of

the most challenging environments for communication.

In this chapter, I describe rapid, a DTN routing protocol that overcomes these

challenges to reliably route data. rapid is a replication based routing protocol that

replicating multiple copies of the packet during opportunistic contacts with other

nodes. First, I present a measurement study to show that existing routing protocols

designed for wireless networks perform poorly in the DTN environment, and repli-

cation can significantly improve performance. However, the measurement study also

shows that naive replication hurts performance when resources are constrained.

The goal of rapid is to address the resource management challenge by answering

the following question: During a limited bandwidth connection between two nodes,

what subset of packets should be replicated?. Clearly, all packets in the buffer cannot

be replicated because the contact is of limited duration. However, replicating the same

packet over and over again improves the performance of that packet at the cost of other

28

packets in the buffer.The key insight in rapid is to formulate the routing problem as a

resource allocation problem. rapid carefully allocates the limited bandwidth resource

to a subset of packets to reduce resource wastage and improve routing performance;

in other words, rapid prioritizes packets according to the available resources and the

routing metric and replicates the packets in the prioritized order.

To this end, rapid uses a utility-driven protocol that tunes replication according

to the given routing metric. rapid translates the metric to a per-packet utility

function. During an opportunistic contact, rapid determines if the marginal utility

of replicating a packet justifies the resources used. rapid then replicates packets in

the decreasing order of the marginal utility of replication. We instantiate rapid to

optimize three different metrics—average delay, worse-case delay and delivery within

a deadline.

rapid is a heuristic approach, but we prove two hardness results to substanti-

ate the need for a heuristic. We prove that: (1) online DTN routing algorithms

without complete future knowledge can perform arbitrarily far from optimal, and,

(2) designing an offline DTN routing algorithm with complete future knowledge is

computationally hard. Both of the results are with respect to the delay metric.

The rest of this chapter is organized as follows—In Section 3.1, I describe the

state of the art in DTN routing. In Section 3.2, I present a measurement study to

show that packet replication can significantly improve routing performance in DTNs,

but can also waste resources. In Sections 3.3 and 3.4, I describe the rapid protocol

and implementation details, respectively. In Section 3.5, I present the case for the

heuristic approach that rapid takes. In Section 3.6, I describe the evaluation of

rapid and Section 3.7 concludes this chapter.

29

3.1 Related work

Forwarding vs Replication We classify existing DTN routing protocols as

those that replicate packets and those that forward only a single copy.

Forwarding routing protocols maintain at most one copy of a packet in the net-

work [62, 67, 107]. Jain et al. [62] propose a forwarding protocol to minimize the

average delay of packet delivery using oracles with varying degrees of future knowl-

edge. Our deployment experience suggests that, even for a scheduled bus service,

implementing the simplest oracle is difficult; connection opportunities are affected by

many factors in practice including weather, radio interference, and system failure.

Jones et al. [67] propose a link-state protocol based on epidemic propagation to dis-

seminate global knowledge, but use a single path to forward a packet. Shah et al. [97]

and Spyropoulos et al. [107] present an analytical framework for the forwarding-only

case assuming a grid-based mobility model.

The consensus [102] is that replicating packets can improve performance over just

forwarding, but risk degrading performance when resources are limited.

Replication routing protocols replicate multiple copies of the packets at trans-

fer opportunities hoping to find a path to a destination. However, naive replication

wastes resources and can severely degrade performance. Proposed protocols use sev-

eral heuristics to control replication, but the effect of a heuristics on the routing

metric is unclear, as described in Section 2.3.1. In contrast, rapid explicitly calcu-

lates the effect of replication on the given routing metric while accounting for resource

constraints.

Resource Constraints rapid also differs from most previous work in its

assumptions regarding resource constraints, routing policy, and mobility patterns.

Table 3.1 shows a taxonomy of many existing DTN routing protocols based on as-

sumptions about bandwidth available during transfer opportunities and the storage

carried by nodes; both are either finite or unlimited. For each work, we state in

30

Storage Bandwidth Routing Previous work (and mobility)
P1 Unlimited Unlimited Replication Epidemic [78], Spray and Wait [102]: Con-

straint in the form of channel contention
(Grid-based synthetic)

P2 Unlimited Unlimited Forwarding Modified Djikstra’s algorithm Jain et al. [62]
(simple graph), MobySpace [70] (Powerlaw)

P3 Finite Unlimited Replication SWIM [99] (Exponential), MV [32]
(Community-based synthetic), Prophet [74]
(Community-based synthetic)

P4 Finite Finite Forwarding Jones et al. [67] (AP traces), Jain et al. [62]
(Synthetic DTN topology)

P5 Finite Finite Replication rapid (Vehicular DTN traces, testbed deploy-
ment), MaxProp [31] (Vehicular DTN traces)

Table 3.1. rapid: A classification of related work into DTN routing scenarios.

parentheses the mobility model used. rapid is a replication-based protocol that as-

sumes constraints on both storage and bandwidth (P5) — the most challenging and

most practical problem space.

P1 and P2 are important to examine for valuable insights that theoretical tractabil-

ity yields but are impractical for real DTNs with limited resources. Many stud-

ies [74, 32, 99] analyze the case where storage at nodes is limited, but bandwidth is

unlimited (P3). This scenario may happen when the radios used and the duration of

contacts allow transmission of more data than can be stored by the node. However,

we find this scenario to be uncommon — typically storage is inexpensive and energy

efficient. For mobile DTNs, and especially vehicular DTNs, transfer opportunities

are short-lived [61, 31].

Some theoretical works [118, 103, 99] derive closed-form expressions for average

delay and number of replicas in the system as a function of the number of nodes and

mobility patterns. Although these analyses contributed to important insights in the

design of rapid, their assumptions about mobility patterns or unlimited resources

are too restrictive to be applicable in practice.

31

3.2 Measurement

State-of-the-art wireless routing protocols such as AODV [90] and OLSR [3] are

designed for well-connected networks where there is end-to-end connectivity between

nodes. Such routing protocols use a forwarding only strategy and do not replicate

packets through multiple paths. Some DTN routing protocols such as DTLSR [45]

also use a forwarding only strategy to route packets. However, replication is known to

improve performance in sparse DTNs. To understand the performance of replication-

based protocols and forwarding-based protocols, we conduct a simple experiment

comparing the performance of Random, AODV [90], OLSR [3], and DTLSR [45].

Random is a naive replication-based routing protocol that randomly replicates packets

during a transfer opportunity.

The evaluation is based on traces collected from Dome-DTN (described in Sec-

tion 2.2) over a 3 day period. To adapt AODV and OLSR to DTNs, we set a high

timeout value allowing them to buffer packets. Each experiment involves 30 concur-

rent flows corresponding to 30 randomly chosen node pairs. We perform trace-driven

simulations using QualNet [4] with a moderate load of 20pkt/flow/hour and a high

load of 50pkt/flow/hour.

Figure 3.1(a) shows that in Dome-DTN environment, random replication yields

1.5× reduction in delay compared to traditional, forwarding-based, routing protocols.

Instead, even randomly replicating packets, the most naive replication-based protocol

can improve delay performance. Figure 3.1(b) shows that under high load, replication

increases the delay by 15% over forwarding. Replication hurts performance when

resources are limited, as is the case when the offered load is high. This measurement

study is published as part of a technical report [109].

32

 0

 0.3

 0.6

 0.9

 1.2

Random DTLSR AODV OLSR

Replication Forwrading

D
el

ay
 o

f f
lo

w
 (

ho
ur

)

Quartiles
Mean

(a) Dome-DTN: Moderate load

 0

 0.6

 1.2

 1.8

D
el

ay
 o

f f
lo

w
 (

ho
ur

)

Random DTLSR AODV OLSR

Replication Forwrading

Quartiles
Mean

(b) Dome-DTN: High load

Figure 3.1. rapid: Each boxplot shows min, max, 25%, 75% quartiles, median, and
mean packet delays. Replication benefits significantly in Dome-DTN but can hurt
performance under high load.

3.3 Protocol description

rapid models DTN routing as a utility-driven resource allocation problem. The

model is inspired by the seminal work by Kelly et al. [68], who show that network

optimization problems can be formulated as a resource allocation problem. The

authors solve the allocation problem using network utility maximization, where the

utilities are defined as a function of the optimization variables. The utility function is

typically a concave function and in several instances, the allocation problem is solved

in a decentralized manner using feedback from the network [68]. The rapid protocol

is similar in spirit to Kelly’s framework. However, in DTNs, the utility function may

not always be concave, feedback is limited, and the utility function is difficult to

model because of node mobility. Below, we describe how rapid solves the resource

allocation problem for the DTN environment.

In rapid, a packet is routed by replicating it until a copy reaches the destination.

The key question is: given limited bandwidth, how should packets be replicated in

the network so as to optimize a specified routing metric? rapid derives a per-packet

utility function from the routing metric. At a transfer opportunity, it replicates a

packet that locally results in the largest increase in utility.

33

Consider a routing metric such as average delay of packets. The corresponding

utility Ui of packet i is the negative of the expected delay to deliver i, i.e., the

time i has already spent in the system plus the additional expected delay before i is

delivered. Let δUi denote the increase in Ui by replicating i and si denote the size of

i. Then, rapid replicates the packet with the largest value of δUi/si among packets

in its buffer; in other words, the packet with the largest marginal utility.

In general, Ui is defined as the expected contribution of i to the given routing

metric. For example, the metric minimize average delay is measured by summing the

delay of packets. Accordingly, the utility of a packet is its expected delay. Thus,

rapid is a heuristic based on locally optimizing marginal utility, i.e., the expected

increase in utility per unit resource used. rapid replicates packets in decreasing order

of their marginal utility at each transfer opportunity.

The marginal utility heuristic has some desirable properties. The marginal utility

of replicating a packet to a node is low when (i) the packet has many replicas, or (ii)

the node is a poor choice with respect to the routing metric, or (iii) the resources

used do not justify the benefit. For example, if nodes meet each other uniformly,

then a packet i with 6 replicas has lower marginal utility of replication compared to

a packet j with just 2 replicas. On the other hand, if the peer is unlikely to meet j’s

destination for a long time, then i may take priority over j.

3.3.1 System Model

We model a DTN as a set of mobile nodes. Two nodes transfer data packets to

each other when within communication range. During a transfer, the sender replicates

packets while retaining a copy. A node can deliver packets to a destination node

directly or via intermediate nodes, but packets may not be fragmented. There is

limited storage and transfer bandwidth available to nodes. Destination nodes are

34

assumed to have sufficient capacity to store delivered packets, so only storage for

in-transit data is limited. Node meetings are assumed to be short-lived.

Formally, a DTN consists of a node meeting schedule and a workload. The node

meeting schedule is a directed multigraph G = (V, E), where V and E represent

the set of nodes and edges, respectively. Each directed edge e between two nodes

represents a meeting between them, and it is annotated with a tuple (te, se), where t

is the time of the meeting and s is the size of the transfer opportunity. The workload is

a set of packets P = {(u1, v1, s1, t1), (u2, v2, s2, t2), . . .}, where the ith tuple represents

the source, destination, size, and time of creation (at the source), respectively, of

packet i. The goal of a DTN routing algorithm is to deliver all packets using

a feasible schedule of packet transfers, where feasible means that the total size of

packets transfered during each opportunity is less than the size of the opportunity,

always respecting storage constraints.

In comparison to Jain et al.[62] who model link properties as continuous functions

of time, our model assumes discrete short-lived transfers; this makes the problem

analytically more tractable and characterizes many practical DTNs well.

3.3.2 RAPID overview

Figure 3.2 shows an overview of rapid. The rapid protocol is executed when two

nodes X and Y come within communication range, and the protocol is symmetric.

rapid has two components, the Inference algorithm and the Selection algorithm. In

the inference algorithm, X estimates the marginal utility of replicating each packet i

in its buffer to Y , and vice versa. The Selection algorithm then replicates packets in

the decreasing order of marginal utility.

3.3.3 Selection algorithm

The rapid protocol executes when two nodes are within radio range and have

discovered one another. The protocol is symmetric; without loss of generality, and

35

Packets

Inference
Algorithm

X

Metric

Selection
Algorithm

Utility U(i)

Sorted according
to marginal utility

Y

Packet i

Replicate

Figure 3.2. rapid: Protocol overview.

D(i) Packet i’s expected delay = T (i) +
A(i)

T (i) Time since creation of i
a(i) Random variable that determines

the
remaining time to deliver i

A(i) Expected remaining time = E[a(i)]

Table 3.2. rapid: List of commonly used variables.

describes how node X determines which packets to transfer to node Y (refer to the

box marked Protocol rapid).

rapid also adapts to storage restrictions for in-transit data. If a node exhausts all

available storage, packets with the lowest utility are deleted first as they contribute

least to overall performance. However, a source never deletes its own packet unless it

receives an acknowledgment for the packet.

3.3.4 Inference algorithm

Next, we describe how Protocol rapid can support specific metrics using an

algorithm to infer utilities. Table 3.2 defines the relevant variables.

36

Protocol rapid(X, Y):

1. Initialization: Obtain metadata from Y about packets in its buffer and
metadata Y collected over past meetings (detailed in Section 3.4.2).

2. Direct delivery: Deliver packets destined to Y in decreasing order of their
utility.

3. Replication: For each packet i in node X’s buffer

(a) If i is already in Y ’s buffer (as determined from the metadata),
ignore i.

(b) Estimate marginal utility, δUi, of replicating i to Y .

(c) Replicate packets in decreasing order of δUi

si
.

4. Termination: End transfer when out of radio range or all packets repli-
cated.

3.3.4.1 Metric 1: Average delay

To minimize the average delay of packets in the network we define the utility of a

packet as

Ui = −D(i) (3.1)

since the packet’s expected delay is its contribution to the performance metric. Thus,

the protocol attempts to greedily replicate the packet whose replication reduces the

delay by the most among all packets in its buffer.

3.3.4.2 Metric 2: Missed deadlines

To minimize the number of packets that miss their deadlines, the utility is defined

as the probability that the packet will be delivered within its deadline:

Ui =

 P (a(i) < L(i)− T (i)), L(i) > T (i)

0, otherwise
(3.2)

where L(i) is the packet life-time which is an input parameter. A packet that has

missed its deadline can no longer improve performance and is thus assigned a value

37

of 0. The marginal utility is the improvement in the probability that the packet will

be delivered within its deadline, so the protocol replicates the packet that yields the

largest improvement among packets in its buffer.

3.3.4.3 Metric 3: Worse-case delay

To minimize the worse-case delay of packets in the network, we define the utility

Ui as

Ui =

 −D(i), D(i) ≥ D(j) ∀j ∈ S

0, otherwise
(3.3)

where S denotes the set of all packets in X’s buffer. Thus, Ui is the negative expected

delay if i is a packet with the maximum expected delay among all packets held by Y .

So, replication is useful only for the packet whose expected delay is largest. For the

routing algorithm to be work conserving, rapid computes the utility for the packet

whose delay is currently the largest; i.e., once a packet with largest delay is evaluated

for replication, the utility of the remaining packets is recalculated using Eq. 3.3.

3.4 Estimating utilities

How does a rapid node estimate expected delay in Eqs. 3.1 and 3.3, or the

probability of packet delivery within a deadline in Eq. 3.2? The expected delivery

delay is the minimum expected time until any node with the replica of the packet

delivers the packet; so a node needs to know which other nodes possess replicas of

the packet and when they expect to meet the destination.

To estimate expected delay we assume that the packet is delivered directly to the

destination, ignoring the effect of further replication. This estimation is nontrivial

even with an accurate global snapshot of system state. For ease of exposition, we first

38

Algorithm Estimate Delay(X, Q, Z):
Node X with a set of packets Q to destination Z estimates the time, A(i),
until packet i ∈ Q is delivered to Z as follows:

1. Sort packets in Q in decreasing order of T (i). Let b(i) be the sum of
sizes of packets that precede i, and B the expected transfer opportunity
in bytes between X and Z (refer Figure 3.3).

2. X by itself requires db(i)/Be meetings with Z to deliver i. Let MXZ be
the inter contact time between X and Z. Compute the random variable
MX(i), the delay of packet i if only X where delivering the packet, as

MX(i) = MXZ + MXZ + . . . db(i)/Be times (3.4)

3. Let X1, . . . , Xk be the set of nodes possessing a replica of i. Estimate
remaining time a(i) as

a(i) = min(MX1(i), . . . ,MXk
(i)) (3.5)

4. Expected delay D(i) = T (i) + E[a(i)]

present rapid’s estimation algorithm as if we had knowledge of the global system

state, and then we present a practical distributed implementation.

3.4.1 Algorithm Estimate Delay

A rapid node uses the algorithm Estimate Delay to estimate the delay of

a packet in its buffer. Estimate Delay works as follows (refer to box marked

B bytes (Average transfer
size)

b(i) bytes (Sum of packets
 before i)

Sorted
list of packets
destined to Z

i

Figure 3.3. rapid: Position of packet i in a queue of packets destined to Z.

39

a2

b3

c1Node W Node X Node Y

(a) Packet destined to Z buffered
at different nodes

a1b1

b2d1

d2

Node W Node X Node Y

(b) Delay dependancies between
packets destined to node Z

b

d

a
b
d

a
b
c

Figure 3.4. rapid: Delay dependencies between packets destined to node Z buffered
in different nodes.

Algorithm Estimate Delay): In Step 1, each node X maintains a separate queue

of packets, Q, destined for each node Z sorted in decreasing order of creation times;

this is the order in which the packets will be delivered when X meets Z in protocol

rapid. In Step 2 of Estimate Delay, X computes the delivery delay distribution

of packet i if delivered directly by X. In Step 3, X computes the minimum across all

replicas of the corresponding delivery delay distributions; we note that the delivery

time of i is the time until the first node delivers the packet. Estimate Delay

assumes that the meeting time distribution is the same as the inter-meeting time

distribution.

Estimate Delay makes a simplifying independence assumption that does not

hold in general. Consider Figure 3.4(a), an example showing the positions of packet

replicas in the queues of different nodes. All packets have a common destination Z

and each queue is sorted by T (i). Assume that the transfer opportunities and packets

are of unit-size.

In Figure 3.4(a), packet b may be delivered in two ways: (i) if W meets Z; (ii) one

of X and Y meets Z and then one of X and Y meet Z again. These delay dependencies

can be represented using a dependency graph as illustrated in Fig 3.4(b); packets with

the same letter and different indices are replicas. A vertex corresponds to a packet

40

replica. An edge from one node to another indicates a dependency between the delays

of the corresponding packets. Recall that MXY is the random variable that represents

the meeting time between X and Y .

Estimate Delay ignores all the non-vertical dependencies. For example, it es-

timates b’s delivery time distribution as

min(MWZ , MXZ + MXZ , MY Z + MY Z),

whereas the distribution is actually

min(MWZ , min(MXZ , MY Z) + min(MXZ , MY Z)).

Estimating delays without ignoring the non-vertical dependancies is challeng-

ing. Using a simplifying assumption that the transfer opportunities and packets are

unit-sized, we design algorithm dag delay (described in Appendix A.2, that esti-

mates the expected delay by taking into account non-vertical dependancies. Although

dag delay is of theoretical interest, it cannot be implemented in practice because

dag delay assumes that — (i) the transfer opportunity size is exactly equal to the

size of a packet.This assumption is fundamental for the design of dag delay, and

(ii) nodes have a global view of the system.

In general, ignoring non-vertical edges can arbitrarily inflate delay estimates for

some pathological cases (detailed in Appendix A.2). However, we find that using

Estimate Delay makes our implementation (i) simple — computing an accurate

estimate is much more complex especially when transfer opportunities are not unit-

sized as above — and (ii) distributed — in practice, rapid does not have global view,

but Estimate Delay can be implemented using a thin in-band control channel, as

we describe in Section 3.4.2.

41

3.4.1.1 Exponential distributions

We walk through the distributed implementation of Estimate Delay for a sce-

nario where the inter-meeting time between nodes is exponentially distributed. Fur-

ther, suppose all nodes meet according to a uniform exponential distribution with

mean time 1/λ. In the absence of bandwidth restrictions, the expected delivery delay

when there are k replicas is the mean meeting time divided by k, i.e., P(a(i) < t) =

1− e−kλt and A(i) = 1
kλ

. (Note that the minimum of k i.i.d. exponentials is also an

exponential with mean 1/k of the mean of the i.i.d exponentials [35].)

However, when transfer opportunities are limited, the expected delay depends on

the packet’s position in nodes’ buffers. In Step 2 of Estimate Delay, the time for

some node X to meet the destination db(i)/Be times is described by a db(i)/Be order

Erlang distribution with mean 1
λ
· db(i)/Be.

If packet i is replicated at k nodes, Step 3 computes the delay distribution a(i)

as the minimum of k gamma variables. We do not know of a closed form expression

for the minimum of gamma variables. Instead, if we assume that the time taken

for a node to meet the destination b(i)/B times is exponential with the same mean

1
λ
· db(i)/Be, we can again estimate a(i) as the minimum of k exponentials as follows.

Let n1(i), n2(i), . . . , nk(i) be the number of times each of the k nodes respectively

needs to meet the destination to deliver i directly. Then A(i) is computed as:

P(a(i) < t) = 1− e
−(λ

n1(i)
+ λ

n2(i)
+...+ λ

nk(i)
)t

(3.6)

A(i) =
1

λ
n1(i)

+ λ
n2(i)

+ . . . + λ
nk(i)

(3.7)

When the meeting time distributions between nodes are non-uniform, say with

means 1/λ1, 1/λ2 . . . 1/λk respectively, then A(i) = (λ1

n1(i)
+ λ2

n2(i)
+ . . . + λk

nk(i)
)−1.

42

3.4.1.2 Unknown mobility distributions

To estimate mean inter-node meeting times in the Dome-DTN testbed, every node

tabulates the average time to meet every other node based on past meeting times.

Nodes exchange this table as part of metadata exchanges (Step 1 in Protocol

rapid). A node combines the metadata into a meeting-time adjacency matrix and

the information is updated after each transfer opportunity. The matrix contains

the expected time for two nodes to meet directly, calculated as the average of past

meetings.

Node X estimates E(MXZ), the expected time to meet Z, using the meeting-time

matrix. E(MXZ) is estimated as the expected time taken for X to meet Z in at

most h hops. (Unlike uniform exponential mobility models, some nodes in the trace

never meet directly.) For example, if X meets Z via an intermediary Y , the expected

meeting time is the expected time for X to meet Y and then Y to meet Z in 2 hops.

In our implementation we restrict h = 3. When two nodes never meet, even via three

intermediate nodes, we set the expected inter-meeting time to infinity. Several DTN

routing protocols [31, 74, 32] use similar techniques to estimate meeting probability

among peers.

Let replicas of packet i destined to Z reside at nodes X1, . . . , Xk. Since we do

not know the meeting time distributions, we simply assume they are exponentially

distributed. Then from Eq. 3.7, the expected delay to deliver i is

A(i) = [
k∑

j=1

1

E(MXjZ) · nj(i)
]−1 (3.8)

We use an exponential distribution because bus meeting times in the testbed are

very difficult to model. Buses change routes several times in one day, the inter-

bus meeting distribution is noisy, and we found them hard to model even using

mixture models. Approximating meeting times as exponentially distributed makes

delay estimates easy to compute and performs well in practice.

43

3.4.2 Control channel

rapid nodes needs to gather several state information to estimate utilities—

number of replicas, positions of the replicas in each queue, the delivery delay of each

queue etc. Previous studies [62] have shown that as nodes have the benefit of more

information about the global system state, they can make significantly better routing

decisions. We extend this idea to practical DTNs where no oracle is available. To this

end, rapid nodes gather knowledge about the global system state by disseminating

metadata during the transfer opportunity.

rapid uses an in-band control channel to exchange acknowledgments for delivered

packets as well as metadata about every packet learnt from past exchanges. For each

encountered packet i, rapid maintains a list of nodes that carry the replica of i, and

for each replica, an estimated time for delivery. Metadata for delivered packets is

deleted when an ack is received.

A rapid node sends the following information on encountering a peer.

• Average size of past transfer opportunities;

• Expected meeting times with nodes;

• List of packets delivered since last exchange;

• For each of its own packets, the updated delivery delay estimate based on current

buffer state;

• Information about other packets if modified since last exchange with the peer.

For efficiency, a rapid node maintains the time of last metadata exchange with

its peers. The node only sends information about packets whose information changed

since the last exchange, considerably reducing the size of exchange. When using the

control channel, nodes have only an imperfect view of the system. The propagated

information may be stale due to change is number of replicas, changes in delivery

44

delays, or if the packet is delivered but acknowledgments have not propagated. Nev-

ertheless, our experiments confirm that (i) this inaccurate information is sufficient

for rapid to achieve significant performance gains over existing protocols and (ii) the

overhead of metadata itself is small.

3.5 The case for a heuristic approach

rapid is a heuristic protocol and there are two fundamental reasons for a heuristic

approach. First, the inherent uncertainty of DTN environments rules out provably

efficient online routing algorithms. Second, computing optimal solutions is hard even

with complete knowledge about the environment. Both hardness results are formal-

ized below

Theorem 1. Let ALG be a deterministic online DTN routing algorithm with unlim-

ited computational power.

• (a) If ALG has complete knowledge of a workload of n packets, but not of the

schedule of node meetings, then it is Ω(n)-competitive with an offline adversary

with respect to the fraction of packets delivered.

• (b) If ALG has complete knowledge of the meeting schedule, but not of the packet

workload, then it can deliver at most a third of packets compared to an optimal

offline adversary.

Theorem 2. Given complete knowledge of node meetings and the packet workload

a priori, computing a routing schedule that is optimal with respect to the number of

packets delivered is NP-hard with an Ω(
√

(n)) lower bound on approximability.

The proofs are outlined in Appendix A.1 and formal proofs are presented in a

technical report [18]. The hardness results naturally extend to the average delay

metric for both the online as well as computationally limited algorithms.

45

Finally, traditional optimization frameworks for routing [50] and congestion con-

trol [68] based on fluid models appear difficult to extend to DTNs due to the inherently

high feedback delay, uncertainty about network conditions, and the discrete nature

of transfer opportunities that are more suited for transferring large “bundles” rather

than small packets. Similarly, backpressure routing [11] is known to be optimal, in

terms of throughput, for multihop wireless networks even without complete knowl-

edge of the network. However, the backpressure result only holds for asymptotic

cases. For fixed time intervals, designing an optimal routing protocol is not possible

because of the hardness results with respect to delay, presented in Theorems 1 and 2.

3.6 Evaluation

3.6.1 Deployment

We implemented and deployed rapid on our vehicular DTN testbed, Dome-

DTN [7] described in Section 2.2.

Each bus generates packets of size 1 KB according to a Poisson process. The

destinations of the packets included only buses that were scheduled to be on the

road, which avoided creation of many packets that could never be delivered. We did

not provide the buses information about the location or route of other buses on the

road. We set the default packet generation rate to 4 packets per hour generated for

each pair of buses on the road.

Each bus executed rapid to determine what packets to replicate during the trans-

fer opportunity. When two buses are within communication distance, they exchanged

the packets until the radios are out of range. During the experiments, the buses logged

packet generation, packet delivery, delivery delay, meta-data size, and the total size

of the transfer opportunity. Buses transfered random data after all routing was com-

plete in order to measure the capacity and duration of each transfer opportunity. The

46

Avg. buses scheduled per day 19
Avg. total bytes transfered per day 261.4 MB
Avg. number of meetings per day 147.5
Percentage delivered per day 88%
Avg. packet delivery delay 91.7 min
Meta-data size/ bandwidth 0.002
Meta-data size/ data size 0.017

Table 3.3. Rapid: Average daily statistics of Rapid deployment

logs were periodically uploaded to a central server using open Internet APs found on

the road.

3.6.1.1 Performance of deployed RAPID

We measured the routing performance of rapid on the buses from Feb 6, 2007

until May 14, 20071. The measurements are tabulated in Table 3.3. We exclude

holidays and weekends since almost no buses were on the road, leaving 58 days of

experiments. rapid delivered 88% of packets with an average delivery delay of about

91 minutes. We also note that overhead due to meta-data accounts for less than

0.02% of the total available bandwidth and less than 1.7% of the data transmitted.

3.6.1.2 Validating the trace driven simulator

In the next section, we evaluate rapid using a trace-driven simulator to stress

test for varying network parameters. The simulator takes as input a schedule of

node meetings, the bandwidth available at each meeting, and a routing algorithm.

We validated our simulator by comparing simulation results against the 58-days of

measurements from the deployment. In the simulator, we generate packets under the

same assumptions as the deployment, using the same parameters for exponentially

distributed inter-arrival times.

1The traces are available at http://traces.cs.umass.edu.

47

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40 50 60

A
ve

ra
ge

 D
el

ay
 (

m
in

)

Day

Real
Simulation

Figure 3.5. rapid: Comparing deployment and simulation results over 58 days.

Figure 3.5 shows the average delay characteristics of the real system and the

simulator. Delays measured using the simulator were averaged over the 30 runs and

the error-bars show 95% confidence intervals. We find with 95% confidence that

the simulator results are within 1% of the implementation measurement of average

delay. The close correlation between system measurement and simulation increases

our confidence in the accuracy of the simulator.

3.6.2 Trace-driven simulations

The goal of our trace-driven simulations is to show that, unlike existing work,

rapid can improve performance for customizable metrics. We evaluate rapid using

three metrics: worse-case, average delay, and missed deadlines. In all cases, we found

that rapid significantly outperforms existing protocols and also performs close to

optimal for our workloads.

48

3.6.2.1 Experimental setup

Our evaluations are based on a custom trace-driven simulator described in Sec-

tion 3.6.1.2. The meeting times between buses in these experiments are not known a

priori. All values used by rapid, including average meeting times, are learned during

the experiment.

We compare rapid to five other routing protocols: MaxProp [31], Spray and

Wait [102], Prophet [74], Random, and Optimal. In all experiments, we include the

cost of rapid’s in-band control channel for exchanging metadata.

MaxProp operates in a storage- and bandwidth-constrained environment, allows

packet replication, and leverages delivery notifications to purge old replicas; of recent

related work, it is closest to rapid’s objectives. Random replicates randomly chosen

packets for the duration of the transfer opportunity. Spray and Wait restricts the

number of replications of a packets to L, where L is calculated based on the number

of nodes in the network. For our simulations, we implemented the binary Spray and

Wait and set2 L = 12. We implemented Prophet with parameters Pinit = 0.75,

β = 0.25 and γ = 0.98 (parameters based on values used in [74]).

We also compare rapid to Optimal, the optimal routing protocol that provides

an upper bound on performance. We also perform experiments where mobility is

modeled as a power law distribution. Previous studies [37, 70] have suggested that

DTNs among people have a skewed, power law inter-meeting time distribution. The

default parameters used for all the experiments are tabulated in Table 3.4. The

parameters for power law mobility model is different from the trace-driven model

because the performance between the two models are not comparable.

For experiments using Dome traces, each data point is averaged over over 58

traces. Each of the 58 days is a separate experiment. In other words, packets that

2We set this value based on consultation with authors and using LEMMA 4.3 in [102] with a = 4.

49

Power law Trace-driven
Number of nodes 20 max of 40
Buffer size 100 KB 40 GB
Average transfer opp. size 100 KB given by real transfers

among buses
Duration 15 min 19 hours each trace
Size of a packet 1 KB 1 KB
Packet generation rate 50 sec mean 1 hour
Delivery deadline 20 sec 2.7 hours

Table 3.4. Rapid: Experiment parameters

are not delivered by the end of the day are lost. For experiments using synthetic

mobility model, each data point is averaged over 10 runs with random seeds. In

all of the experiments, Prophet performed worse than rapid, Spray and Wait, and

MaxProp, and therefore we omit Prophet results from the graphs.

3.6.2.2 Comparison with existing routing protocols

Our experiments show that rapid consistently outperforms MaxProp, Spray and

Wait and Random. We increased the load in the system up to 40 packets per hour

per destination, when Random delivers less than 50% of the packets.

Figure 3.6 shows the average delay of delivered packets using the four protocols as

we vary load. rapid’s routing metric is set to average delay (Eq. 3.1). When using

rapid, the average delay of delivered packets is significantly lower than MaxProp,

Spray and Wait and Random. Moreover, rapid also consistently delivers a greater

fraction of packets as shown in Figure 3.7.

Figure 3.8 shows rapid’s performance when the routing metric is set to worse-case

delay (Eq. 3.3) and similarly Figure 3.9 shows results when the metric is set to the

number of packets delivered within a deadline (Eq. 3.2).

We note that among MaxProp, Spray and Wait and Random, MaxProp delivers

the most packets, but Spray and Wait has marginally lower average delay than Max-

50

 0
 20
 40
 60
 80

 100
 120
 140
 160

 0 5 10 15 20 25 30 35 40

Av
g

de
la

y
(m

in
)

Packets generated in 1 hour per bus per destination

Rapid
MaxProp

Spray and Wait
Random

Figure 3.6. rapid: Average Delay.
rapid has up to 20% lower delay than
MaxProp and up to 35% lower delay than
Random.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0 5 10 15 20 25 30 35 40

%
 d

el
iv

er
ed

Number of packets generated in 1 hour per destination

Rapid
MaxProp

Spray and Wait
Random

Figure 3.7. rapid: Delivery Rate.
rapid delivers up to 14% more than Max-
Prop, 28% than Spray and Wait and 45%
than Random.

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 5 10 15 20 25 30 35 40

M
ax

 D
el

ay
 (m

in
)

Packets generated in 1 hour per bus per destination

Rapid
MaxProp

Spray and Wait
Random

Figure 3.8. rapid: Max Delay. Maxi-
mum delay of rapid is up to 90 min lower
than MaxProp, Spray and Wait, and Ran-
dom.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 5 10 15 20 25 30 35 40

%
 d

el
iv

er
ed

 w
ith

in
 d

ea
dl

in
e

Number of packets generated in 1 hour per destination

Rapid
MaxProp

Spray and Wait
Random

Figure 3.9. rapid: Delivery within
deadline. rapid delivers up to 21% more
than MaxProp, 24% than Spray and Wait,
28% than Random.

Prop. rapid significantly outperforms the three protocol for all metrics because of

its intentional design.

Standard deviation and similar measures of variance are not appropriate for com-

paring the mean delays as each bus takes a different geographic route. So, we per-

formed a paired t-test [35] to compare the average delay of every source-destination

pair using rapid to the average delay of the same source-destination pair using Max-

Prop (the second best performing protocol). In our tests, we found p-values always

51

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80
 0

 0.2

 0.4

 0.6

 0.8

 1

P
er

ce
nt

ag
e

D
el

iv
er

y
ra

te

Number of packets generated in 1 hour per destination

Meta information/RAPID data
% channel utilization

Delivery rate

Figure 3.10. rapid: Channel utiliza-
tion. As load increases, delivery rate de-
creases to 65% but channel utilization is
only about 35%.

 0

 20

 40

 60

 80

 100

 120

 0 1 2 3 4 5 6

Av
g

de
la

y
w

ith
 u

nd
el

iv
er

ed
 (m

in
)

Number of packets generated in 1 hour per destination

Optimal
Rapid

Maxprop

Figure 3.11. rapid: Comparison with
Optimal. Average delay of rapid is
within 10% of Optimal for small loads.

less than 0.0005, indicating the differences between the means reported in these figures

are statistically significant.

3.6.2.3 Quantifying metadata overhead

We quantify the total metadata as a percentage of data. In particular, we increase

the load from 5 to 75 packets per destination per hour to analyze the trend in terms

of bandwidth utilization, delivery rate and metadata. Figure 3.10 shows this trend

as load increases. The bandwidth utilization is about 35% for the load of 75 packets

per hour per destination, while delivery rate is only about 65%. This suggests that

the performance drops even though the network is under-utilized. This is because

the available bandwidth varies significantly across transfer opportunities in our bus

traces [31] resulting in bottleneck links.

We also observe that metadata increases to about 4% of data for high loads. This is

an order of magnitude higher than the metadata observed as a fraction of bandwidth,

again because of the poor channel utilization. The average metadata exchange per

contact is proportional to the load and the channel utilization. However, metadata

enables efficient routing and helps remove copies of packets that are already delivered,

52

increasing the overall performance of rapid. Moving from 1-KB to 10-KB packets

will reduce rapid’s metadata overhead by another order of magnitude.

3.6.2.4 Comparison with Optimal

We compare rapid to Optimal, which is an upper bound on the performance. To

obtain the optimal delay, we formulate the DTN routing problem as an Integer Linear

Program (ILP) optimization problem when the meeting times between nodes are

precisely know. The optimal solution assumes that the propagation delay of all links

are equal and that node meetings are known in advance. We present a formulation of

this problem in Appendix A.3. Our evaluations use the CPLEX solver [43]. Because

the solver grows in complexity with the number of packets, these simulations are

limited to only 6 packets per hour per destination. Jain et al. [62] solve a more

general DTN routing problem by allowing packets to be fragmented across links and

assigning non-zero propagation delays on the links, however, this limited the size of

the network they could evaluate even more. Our ILP objective is to minimize the

sum delays of all packets, where the delay of undelivered packets is set to time the

packet spent in the system. Accordingly, we add the delay of undelivered packets

when presenting the results for rapid and MaxProp.

Figure 3.11 presents the average delay performance of Optimal, rapid, and Max-

Prop. We observe that for small loads, the performance of rapid using the in-band

control channel is within 10% of the optimum performance, while using MaxProp

the delays are about 22% from the optimal. rapid using a global channel performs

within 6% of optimal. The global control channel is an instant channel for exchanging

metadata as opposed to the default (delayed) in-band control channel.One interpre-

tation of the global channel is where all control traffic goes over a low-bandwidth,

long-range radio such as XTEND [26].

53

3.6.2.5 Evaluation of rapid components

rapid is comprised of several components that all contribute to performance. We

ran experiments to study the value added by each component. Our approach is to

compare subsets of the full rapid, cumulatively adding components from Random.

The components are (i) Random with acks: propagation of delivery acknowledgments;

and (ii) rapid-local: using rapid but nodes exchange metadata about only packets

in their own buffers.

Figure 3.6.3.1 shows the performance of different components of rapid when

the routing metric is set to average delay. From the figure we observe that using

acknowledgments alone improves performance by an average of 8%. In our previous

work, MaxProp [31], we show empirically that propagating acknowledgments clears

buffers, avoids exchange of already delivered packets and improving performance.

In addition, rapid-local provides a further improvement of 10% on average even

though metadata exchange is restricted to packets in the node’s local buffer. Allowing

all metadata to flow further improves the performance by about 11%.

3.6.3 Results from synthetic mobility models

Next, we use a power law mobility model to compare the performance of rapid

to MaxProp, Random, and Spray and Wait. When mobility is modeled using power

law, two nodes meet with an exponential inter-meeting time, but the mean of the

exponential distribution is determined by the popularity of the nodes. For the 20

nodes, we randomly set a popularity value of 1 to 20, with 1 being most popular.

The mean of the power law mobility model is set to 0.3 seconds and is skewed for

each pair of nodes according to their popularity.

3.6.3.1 Under varying load

Figure 3.13 shows the average delay for packets to be delivered (i.e., rapid is

set to use Eq. 3.1 as a metric). The average delay of packets quickly increase to 20

54

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 5 10 15 20 25 30 35 40
A

vg
 d

el
ay

 (
m

in
)

Number of packets generated in 1 hour per destination

Rapid
Rapid: Local

Random: With Acks
Random

Figure 3.12. rapid: Contribution of the different components to rapid’s perfor-
mance

seconds as load increases in the case of MaxProp, Spray and Wait and Random. In

comparison, rapid’s delay does not increase rapidly with increasing load, and is on

an average 20% lower than all the three protocols.

Figure 3.14 shows the worse-case delay of packets when the load is varied (i.e.,

rapid is set to use Eq. 3.3 as a metric). rapid reduces worse-case delay by over

30% compared to the other protocols. For both the traces and the synthetic mobility,

the performance of rapid is significantly higher than MaxProp, Spray and Wait,

and Random for the worse-case delay metric. The reason is MaxProp prioritizes new

packets; older, undelivered packets will not see service as load increases. Similarly,

Spray and Wait does not give preference to older packets. However, rapid specifically

prioritizes older packets to reduce worse-case delay.

3.6.3.2 Under varying buffer size

In this set of experiments, we varied the buffer size from 10 KB to 280 KB and

compared the performance of the four routing protocols. We fixed the load to 20

packets per destination and generated packets with a inter-arrival time of 50 seconds.

Figure 3.15 shows how the average delay of all four protocols vary with increase

storage availability. rapid is able to maintain low delays even when only 10 KB space

55

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60 70 80

A
ve

ra
ge

 D
el

ay
 (

se
c)

Number of packets generated in 50 sec per destination

Rapid
MaxProp

Spray and Wait
Random

Figure 3.13. rapid: Comparing aver-
age delay of routing protocols when nodes
meet with power law distribution.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70 80

M
ax

 D
el

ay
 (

se
c)

Number of packets generated in 50 sec per destination

Rapid
MaxProp

Spray and Wait
Random

Figure 3.14. rapid: Comparing worse-
case delay of routing protocols when
nodes meet with power law distribution.

 0

 5

 10

 15

 20

 25

 0 50 100 150 200 250 300

A
ve

ra
ge

 D
el

ay
 (

s)

Available storage (KB)

Rapid
MaxProp

Spray and Wait
Random

Figure 3.15. rapid: Comparing aver-
age delay of routing protocols when nodes
meet with power law distribution and
when the buffer size is varied.

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200 250 300

M
ax

 D
el

ay
 (

s)

Available storage (KB)

Rapid
MaxProp

Spray and Wait
Random

Figure 3.16. rapid: Comparing worse-
case of routing protocols when nodes meet
with power law distribution and when the
buffer size is varied.

is available at each node. In comparison, MaxProp, Spray and Wait and Random have

an average 23% higher delay.

Figure 3.16 shows a similar performance trend in terms of minimizing worse-case

delay. Similar to other experiments, the difference in performance between rapid

and the other three protocols is more marked for the worse-case delay metric.

Figure 3.17 shows how constrained buffers affect the delivery deadline metric.

When storage is restricted, MaxProp deletes packets that are replicated most number

of times, while Spray and Wait and Random deletes packets randomly. rapid, when

56

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 50 100 150 200 250 300
%

 d
el

iv
er

ed
 w

ith
in

 d
ea

dl
in

e

Available storage (KB)

Rapid
MaxProp

Spray and Wait
Random

Figure 3.17. rapid: Comparing delivery perfromance of routing protocols when
nodes meet with power law distribution and when the buffer size is varied.

the metric is number of packets delivered within a deadline, deletes packets that

are most likely to miss the deadline. rapid is able to best manage limited buffers to

deliver packets within a deadline and improves delivery performance by 12% compared

to the second-best performing protocol. These experiments suggest that rapid’s

utility-driven approach adapts well to storage restrictions as well.

3.7 RAPID Conclusions

In this chapter, I establish the thesis statement (Section 1.1) in the context of

DTNs. Specifically, I show that disruptions in DTNs can be overcome by exploiting

opportunistic replication. Replication involved routing multiple copies of the same

packet, so that at least one of the copies reach the destination. When contact opportu-

nity bandwidth is limited or when the load offered to the system is high, replicating

multiple copies can cause a resource management challenge. rapid addresses the

challenge using a utility-driven protocol. Utility-driven rapid only replicates packets

if the marginal utility of replication outweighs the resources consumed.

I answer the research questions raised in Section 1.2 with respect to the DTN

environment using measurement, protocol design, and testbed evaluation. Using a

57

measurement study on the Dome-DTN testbed, we characterize the performance of

traditional wireless routing protocols in comparison to a naive replication protocol.

We find that replication can significantly improve performance in disconnected envi-

ronments. However, our measurement study shows that naive replication can hurt

performance when resources are constrained, such as when the load offered to the

network is high.

To solve the resource management challenge of replication, we designed a utility-

driven routing protocol called rapid. Rather than replicating indiscriminately, rapid

routes packets in the decreasing order of their marginal utility of replication. The

protocol translates the routing metric to a per-packet utility function, and tunes its

replications according to the specified routing metric and the available resources. The

per-packet utility function is computed as probabilities, which is well-suited for the

uncertain DTN environment.

We built and deployed rapid on the Dome-DTN testbed and evaluate rapid

using both deployment and a trace-driven simulator. We show that the simulator

provides performance results that are are within 1% of the real measurements with

95% confidence. We evaluate rapid for three separate routing metrics: average delay,

worst-case delay, and packets delivered within a deadline. Our experiments using

trace-driven show that rapid significantly outperforms four other routing protocols.

For example, in trace-driven simulation experiments under moderate-to-high loads,

rapid outperforms the second-best protocol by about 20% for all three metrics, while

also delivering 15% more packets for the first two metrics.

58

CHAPTER 4

THEDU: ENABLING WEB SEARCH IN
INTERMITTENTLY CONNECTED NETWORKS

In an intermittently connected network, nodes are connected for a longer time

compared to disconnected networks, but is not long enough to provide continuous

connectivity. In this environment, it is not clear if moderately interactive applica-

tions can be supported when connectivity is intermittent. We look at this problem

with respect to connectivity from WiFi APs. Supporting interactive applications

using cheap WiFi access can pave the way for exploiting low cost WiFi for several

applications including road monitoring [48] and traffic management [108].

In this chapter, I present Thedu 1, to answer the question: Can moderately inter-

active applications such as web search be supported using intermittent WiFi access?

As a first step, I present a vehicular measurement study to characterize connectivity

between moving vehicles and open WiFi APs. Based on the measurement study, we

find that the primary challenge in adapting web search to an intermittently connected

network is in tolerating disruptions. Currently, when Internet access is intermittent,

Web search is cumbersome: a user issues a query, and a search engine returns a ranked

list of URLs. Subsequently, the user clicks on one or more URLs and the search en-

gine fetches the corresponding web page. When connectivity is intermittent, the web

search process can stop during any one of the interactions, and the user needs to

reissue the query.

1Thedu is the Tamil word for search. The first syllable rhymes with “hay” .

59

Instead, Thedu uses a proxy to aggressively prefetch web pages to transform the

interactive web search process to a one-shot request/response process. The mobile

client downloads the prefetched web pages from the proxy over a series of contact

opportunities. Downloading all pre-fetched pages is inefficient and wasteful of the

limited bandwidth available. In Thedu, we combine Information Retrieval (IR) tech-

niques with a utility-driven prioritization algorithm to prioritize the downloaded web

pages, so that the mobile client always downloads the most useful web pages.

The Thedu system is primarily designed to exploit mobile-to-infrastructure (m2i)

contacts between a mobile client and an AP. As mobile nodes also come in contact

with each other, allowing a DTN-like communication. We present an extension to

Thedu to opportunistically exploit mobile-to-mobile (m2m) contacts in addition to

m2i contacts. Exploiting m2m contacts can potentially improve performance in some

scenarios such as kiosk-based rural networks, where the number of APs are limited

and mobile nodes are plentiful in comparison.

The rest of this chapter is organized as follows: Section 4.1 describes the state-of-

the-art in enabling applications in intermittently connected networks and Section 4.2

presents results from our measurement study. In section 4.3, I describe the Thedu

system. In section 4.4, I describe the evaluation of Thedu and Section 4.5 concludes

this chapter.

4.1 Related Work

Thedu draws upon ideas from a large body of prior work as described below.

Intermittently connected networks There appears to be a consensus on

using a proxy-based architecture to tolerate disruptions in vehicular connectivity.

Seth et al. [96] present an architecture and prototype for using vehicular mobility

and stationary kiosks to extend the reach of sparsely deployed Internet gateways to

a much larger rural area. They use an Internet proxy to hide disconnection from

60

legacy servers and pick a nearby proxy to improve TCP throughput. Ott et al. [86]

use a proxy to hide disconnections and bundle a web page and inline objects into a

single file to improve performance similar to HTTP 1.1 with pipelining. Hull et al.

[61] present a mobile sensor computing system where vehicles sense and submit data

to a central database that serves as a Web portal. Eriksson et al. [49] use a proxy to

improve TCP throughput by distinguishing between losses in the wired and wireless

halves of a connection. In comparison to these works, we build a proxy to aggressively

prefetch web pages and enable search for mobile nodes.

Thedu is similar in spirit to the infostation [56] paradigm where base stations

store information for mobile nodes, and a mobile node downloads the information

when connected. Goodman et al. [56] quantify the benefit of this architecture and its

incentive scheme based on an analytic model and synthetic traces for a file distribution

application. Thedu has a complementary focus on interactive Web applications.

Measurement Zhang et al. [119] study inter-vehicular connectivity in the

Dome [8] testbed and conclude that it is not always predictable. Others have con-

ducted detailed studies of TCP performance [59] or link quality characteristics [110]

under smaller controlled vehicular testbeds. The CarTel project [61] study the achiev-

able throughput and meeting frequency of open WiFi APs in Boston from vehicles

using a cab testbed. Our measurement study is similar to the CarTel study and

is also based on open APs that are deployed organically, but focuses on disruption

characteristics of vehicular networks, as opposed to performance characteristics.

Finally, aggressive prefetching has been used in several systems to mask discon-

nections, as discussed in Section 2.3.2. Thedu handles the resource management

challenge of aggressively prefetching data using application domain knowledge.

61

Statistic
Avg unique nodes: 151 (APs)

Number of contacts: 4964
Median contact duration (sec): 45

Total transfer (MB): 15, 071

Table 4.1. Thedu: Bus-AP meeting characteristics.

4.2 Measurement

We conduct a measurement study on the Dome-Infrastructure testbed described

in Section 2.2. When the bus is within communication range of an AP, it associates

to the AP and starts communicating with the AP. We log the connection duration,

the disconnection duration, and the total throughput per bus-AP meeting over two

weeks: from March 26–30, 2007 and from May 7–11, 2007.

Figure 4.1 shows the duration of bus-AP meetings during the two separate mea-

surements; the two weeks show similar results. In both cases, about 80% of all

meetings last for less than 50 seconds. Less than 5% of meetings last more than 400

seconds. These outliers result from buses that have powered-on but idle engines when

in the garage (which has an AP) or buses that wait in traffic or at a bus stop while

next to an AP. For both weeks, each set had hundreds of meetings with APs that

lasted 10–180 seconds, as shown in Fig 4.2.

Figure 4.3 shows the bus-to-AP inter-meeting time. We ignore disconnections if

the bus returns to the garage in the middle of the day. The median inter-meeting

time is 5 minutes in the earlier week and 8 minutes in the latter week.

Table 4.1 tabulates per-day statistics collected from the trace data. The measure-

ment study suggests that the bus-AP meetings can be used to transfer more than 15

GB of data in a day (Table 4.1). However, supporting interactive applications that

require continuous access is difficult because buses get disconnected after a median

contact duration of 30.17 seconds.

62

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600

%
 o

f m
ee

tin
gs

 (
C

D
F

)

Meeting duration (seconds)

CDF: 03/26/07 - 03/30/07
CDF: 04/30/07 - 05/04/07

Figure 4.1. Thedu: CDF of Bus-to-AP
meeting durations. Median of 45 seconds
for both sets.

 0

 50

 100

 150

 200

 250

 0 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0

 8
0

 9
0

 1
00

 1
10

 1
20

 1
30

 1
40

 1
50

 1
60

 1
70

 1
80

N
um

be
r o

f m
ee

tin
gs

Meeting duration (seconds)

 03/26/07 - 03/30/07
04/30/07 - 05/04/07

Figure 4.2. Thedu: Bus-to-AP interac-
tions lasting less than 3 minutes.

4.3 Thedu Design

Web search and browsing are inherently interactive in nature, but do not have

the stringent delay requirements of applications such as VoIP. However, these web

applications cannot be supported today when connectivity is intermittent. Consider

a tech-savy taxi passenger, Alice, who is visiting Springfield and wishes to find a

sushi bar. Alice does not have a cellular data plan and instead takes advantage

of the city’s free WiFi. When within communication range of an AP, she sends the

keywords “springfield sushi sake” to her favorite search engine. Before she can receive

a response, the AP is out of range causing TCP to stall. She refreshes her browser

to send the query again and receives a sorted list of Web links and snippets. She

retrieves the top URL, but unfortunately it’s for a restaurant in a Springfield in the

wrong state, and while she is reading, the taxi has driven away from the AP. She waits

for the next AP to retrieve the second URL or perhaps modify her query. Thedu seeks

to improve user-perceived performance or robustness for interactive applications for

exasperated vehicular Web users like Alice.

Thedu’s architecture is guided by the following design goals.

• Robustness: Vehicular WiFi connectivity is prone to disruptions, so applications

designed for persistent connectivity must be adapted to degrade gracefully.

63

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100%
 o

f a
ll

in
te

r-
m

ee
tin

gs
 (

C
D

F
)

Bus-to-AP inter-meeting time (min)

 03/26/07 - 03/30/07
04/30/07 - 05/04/07

Figure 4.3. Thedu: CDF of bus-to-AP inter-meeting times.Median of 5 and 8
minutes for earlier and later set, respectively.

• Low-cost deployability: The system should be low-cost and need minimal change

to existing infrastructure or software.

• Extending access: Many rural or developing regions have limited access points

to the Internet, so the system should extend the Internet’s reach.

The Thedu design uses three key ideas: (i) aggressive prefetching to transform

Web search and browsing to a one-shot request response format; (ii) prioritizing web

responses so that users download the most useful web pages first; and (iii) leveraging

m2m contacts in rural and developing regions with limited Internet access.

4.3.1 Prefetching

Thedu uses a proxy to aggressively prefetch web pages from a search engine and

transforms the Web search process to a one-shot request/response format. Figure

4.4 illustrates the Thedu system. A server-side proxy awaits a connection from a

mobile. If the mobile has pending web pages, it downloads them immediately upon

connection. In parallel, the proxy interacts with the Web search engine on behalf of

the mobile to retrieve web pages for new queries. A similar proxy-based architecture

64

Search
Engine

Fetch
URLs

Snippets

Process
query

Internet Proxy

Response
bundles

Connection
state

New queries

Update
state

Mobile Node

Application Server

Store
query

Web
interface

Process
response In

te
rm

itt
en

t
Co

nn
ec

tio
n

Prioritize
response

web site
web site

web site

Web pages
Queries

Responses

U
S
E
R

Figure 4.4. Thedu: System architecture.

has been used by several prior systems [61, 49] to make (non-interactive) applications

more robust to disconnections.

The mobile accepts search queries from a user through a Web interface. The

queries are sent to the proxy with a nonce that is used to re-identify the query after

a disconnection. The proxy interfaces with a search engine, such as Google, Yahoo

or MSN, and retrieves URLs and document snippets sorted by their relevance to

the query. The proxy prefetches the web page bodies associated with the URLs in

parallel. Studies have observed that 75% of users do not view more than the top

20 web pages and most users are interested in at most 5 results per query [64], so

our implementation only prefetches the top 20 web pages. When the proxy receives

multiple queries from a mobile, it retrieves web pages for each query in parallel. The

proxy also retrieves all images and other objects and places them in a per-user queue.

The mobile user then downloads the web pages from the queue.

4.3.2 IR meets networking

Our IR contribution is a novel set of techniques to process pre-fetched web pages,

so that a mobile user downloads a significantly greater number of relevant web pages

and avoids wasting bandwidth on web pages that are unlikely to be useful. Thedu

prioritizes list of web pages in the decreasing order of their utility to the end-user. We

65

note that all search engines provide a ranked order of the web pages. We can use the

same ranking for prioritization. Although simple, this strategy is not suitable because

the rank cannot be used to prioritize web pages retrieved for different queries. Some

search engines provide a more specific relevance score for each response to quantify the

relevance of the web page to the query. However these scores are also not comparable

across queries.

Thedu prioritizes web pages using two key ideas. First, it classifies the query type

to determine user intent and how many relevant web pages the user desires. Second,

it uses utility-driven prioritization to prioritize web pages across queries.

4.3.2.1 Query-type classification

Understanding the user’s intent by classifying the query type can help increase

the usefulness of web pages and limit useless prefetching. For example, returning

only one web page suffices for a user’s query of “Mobicom 2008”, even if other web

pages have a high relevance score. Broder [29] provides a nomenclature for classifying

search queries as homepage, content and service queries. Homepage queries try to

find known items where a single relevant response will satisfy the user; e.g., “cnn”.

Content queries seek an answer or a meaning and not a specific website and therefore

require several relevant responses to satisfy the user; e.g., “kosovo conflict”. Service

queries are informational.

Thedu classifies queries as either homepage or non-homepage using a simple

Bayesian classifier. For homepage queries, Thedu only returns one relevant response.

If Thedu classifies the query as a non-hompage query, it returns the top 10 relevant

responses.

We enumerate characteristic features of homepage and non-homepage queries and

use these features to train the classifier. The features are summarized in Table 4.2.

The features only depend on the URL, snippet, and title fields. We trained the

66

Homepage Content
Query terms/acronyms occur in URL Query is a question
All query terms occur in title and anchor text One of the top-3 URLs is a wiki
Query is less than 3 words Query is greater than 3 words
URL is a root

Table 4.2. Thedu: Features used to classify the type of web query.

classifier on a set of queries using the URL, titles, and snippets fields for the top 10

web pages returned for each training query.

For example, for the training query “prime factors”, the URL, title and snippet

for the first response from the Google search engine is

• <url> http://www.gomath.com/algebra/factor.php </url>

• <snippet> To prime factor a number, begin dividing by the smallest possible

prime and continue until the quotient is a prime number. </snippet>

• <title> prime factor </title>

We note that the URL, title, and snippet fields are short and easy to parse.

Our technique is also independent of characteristics of the collection of documents.

Therefore our classifier allow us to classify query-type without assistance from the

search engine and as queries arrive.

Classifier Evaluation We analyzed the performance of the classifier on Google

search engine and Indri [105] search engine. We trained the classifier using the queries

from TREC2. We used a set of TREC queries to train the classifier and tested on a

different set of TREC queries from 2001 TREC web-track.

When using Google, we retrieved the top 10 responses, URLs, and snippets for

the training queries using the GoogleAPI (code.google.com). When using Indri, we

2NIST Text Retrieval Conference (TREC) is a research standard for evaluating Information
Retrieval performance. TREC provides a collection of documents that the search engine operates
on.

67

Homepage Content
Training size 45 queries 25 queries
Testing size 100 queries 25 queries
Accuracy 88% 73%

Table 4.3. Thedu: Classification results from Indri

queried the Indri search engine to retrieve the top 10 responses for the queries; Indri

retrieved documents from the TREC collection.

The TREC database already separates queries into homepage and non-homepage

queries. We evaluate the performance of our classifier by comparing against the

corresponding TREC categorization. Table 4.3 presents the results of our classifier

on Indri. When tested on Google, the accuracy of homepage prediction was 90% and

the accuracy of non-homepage prediction was 71%. We note that using a simple set

of features and training on a small set of queries and responses, our classifier is able

to predict query type accurately.

4.3.2.2 Utility-driven prioritization based on relevance probabilities

Thedu prefetches several web pages for queries, but the client only has limited

bandwidth to download them. Today’s search engines do not prioritize web pages

across different queries as they are typically not as constrained by bandwidth as

intermittently connected networks. For example, is the fifth web response to query

A with a relevance score of 4.3 more or less important than the seventh response to

query B with a relevance score of 8.2? Thedu nodes must answer this question in

order to prioritize web pages across queries, so that the web page with the highest

utility to the user (or with the most relevance to the query) is downloaded first.

Thedu prioritizes web pages using two key ideas. First, it uses a normalization

method so that relevance scores of web pages can be compared across queries. Second,

68

it computes the relevance probabilities of the normalized web pages, to prioritize the

web pages according to their relevance to the query.

Query normalization We explain the query normalization technique as a

modification of the Indri [105] search engine. Indri [105] is an academic search engine

shown to be effective for web search. Indri returns a ranked set of documents in

response to a query and associates each document with a relevance score. In case of

web search, a document is a web page.

In the Indri model, the relevance score of a document D for query Q is estimated

as

Score(D) =
∏
w∈Q

λP (w|D) + (1− λ)P (w|C) (4.1)

where λ is a smoothing constant, P (w|D) is the probability of a word w occurring

in a document D and P (w|C) is the probability of the word w occurring in C, the

entire collection of documents being searched.

Since the document score depends on the words in the query and the collection,

the scores of documents for different queries (or over different collections) are not

comparable. To normalize document scores across queries we propose estimating the

relevance score using Kullback-Liebler divergence as follows:

Score(D) =
1

|Q|
∑
w∈Q

log
λP (w|D) + (1− λ)P (w|C)

P (w|C)
(4.2)

This method normalizes scores so that document scores are comparable across queries

and collection. Note that the document rank remains unchanged by normalization,

as does the search effectiveness. In our deployment, we set λ = 0.4. A full derivation

and explanation of Eq. 4.2 is available in a technical report [120].

Query prioritization Thedu computes relevance probability given the normal-

ized relevance score, and prioritizes web pages according to the relevance probability.

The relevance probability is computed as follows. Let P (score|rel) denote the prob-

ability of score given the document is relevant and P (score|nonrel) the probability

69

of score given the document is not relevant. Manmatha et al. [77] analyze the score

distribution and suggest that scores of a relevant document, P (score|rel), follows a

gaussian distribution and scores for non-relevant documents, P (score|nonrel), follow

an exponential distribution. The relevance probability using Bayes’ rule is

P (rel|score) =

P (score|rel)P (rel)

P (score|rel)P (rel) + P (score|nonrel)P (nonrel)
(4.3)

We estimated the relevance probability of a document P (r) using Eq. 4.3 by esti-

mating the parameters for the Gaussian distribution (P (score|rel)) and Exponential

distribution (P (score|nonrel)). We used a training data set of 25 content queries and

45 name-page finding queries from 2001 TREC web-track. We retrieved responses for

the training data, classified them as relevant and non-relevant and used their rele-

vance scores to determine the parameters of the gaussian and exponential distribution

as N(µ = 0.669, σ = 0.00000517) and exp(λ = 1.489).

4.3.3 Exploiting mobile-to-mobile contacts

Thedu leverages mobile-to-mobile (m2m) contact to route web pages when mobile

nodes are within communication range of each other, using DTN-like communication.

When routing using m2m contacts, the goal is to ensure that the relevant response

is routed to the user before she disembarks from the vehicle. To this end, the goal is

to maximize the number of relevant web pages delivered within a deadline.

As a first step, during a m2i contact with the proxy, mobile nodes download web

pages that need to be routed to others, in addition to downloading their own web

pages. The natural question is, If a mobile client has pending web pages, should it still

download web responses for other peers? This notion is counter intuitive. Typically,

in the DTN [17, 31, 102, 63] and MANET [90, 66] literature, the primary focus is

to deliver a packet to its destination at the first available opportunity. However, for

70

Web search, we find that downloading peer responses, even when there are pending

web responses for one-self, can provide substantial benefit. The reason is that the

relevance probability is that responses have decreasing marginal utility and most of

the utility resides in the first few web pages. Next, mobile nodes exchange web pages

with each during node contacts. Below we describe m2m routing at the proxy and at

the mobile node.

4.3.3.1 mobile-to-mobile routing at the proxy

The goal of Thedu’s routing protocol is to maximize the number of relevant web

pages delivered by a deadline. Let P (ri) be probability that web page ri is relevant.

Let Q(ri) be the probability that the web page ri will be delivered within the deadline

by the AP, and QX(ri) be the probability that the web page ri will be delivered by

node X within the deadline. if ri is not destined to the node X, then the utility

of routing ri is probability of relevant responses delivered within the deadline =

P (ri) × QX(ri); i.e., the probability that ri is relevant to the query (P (ri))and the

probability that ri will be delivered within the deadline (QX(ri)). If the web page

ri is destined to X, the utility of downloaded ri is the probability that the relevant

response will not be delivered within the deadline if ri is not downloaded immediately,

given by, P (ri)× (1−Q(ri)).

Web pages are routed using these utilities as follows: when X meets an AP, the

proxy ranks two web pages ri and rj as shown in Figure 4.5. The proxy returns ri if

ri has higher priority than rj and vice versa.

In Step 1 of Figure 4.5, Thedu prioritizes responses for peer nodes according to

the utility U . The utility ri is defined as the probability that the web page is relevant

and will be delivered within the deadline, i.e., the product of the relevance probability

and the delivery probability. Between delivering a pending web page ri and routing

another peer’s web page rj (Step 2), Thedu does the following: if the pending web

71

Thedu(ri, rj):

1. If ri and rj are both not destined to X:

(a) Set U(ri) = P (ri) ·QX(ri) and U(rj) = P (rj) ·QX(rj)

(b) Return web page with higher utility.

2. If ri is destined to X and rj is not:

(a) If number of replications of ri = 0, return ri.

(b) Else, set U(ri) = P (ri) · (1−Q(ri)), U(rj) = P (rj) ·QX(rj).

(c) Return web page with higher utility.

3. If both are destined to X: Send web page with higher relevance proba-
bility

Figure 4.5. Thedu: Prioritization at the proxy when leveraging m2m routing.

page ri has never been routed though any peer node, then the client downloads the

web page. If ri has already been routed through a peer but is not yet delivered,

Thedu estimates the utility of downloading ri, which is the probability that the web

response will miss its deadline. The utility of the other web page rj is same as the

first case. If both web pages are pending for X (Step 4), Thedu prioritizes the web

pages according to the relevance probability.

4.3.3.2 mobile-to-mobile routing at the mobile node

Routing between two mobile nodes is also based on utility-driven prioritization.

Suppose mobile node Y has an m2m contact with mobile node X. Node Y prioritizes

all web pages to be delivered to X first, using the relevance probability. Y prioritizes

the remaining web pages using the utility function

U(ri) = Pr(ri) ·QX(ri) (4.4)

Eq. 4.4 represents the probability that the web page ri is relevant and will be delivered

within the deadline by node X.

72

Both the prioritization protocol at the proxy as well as at the client use the proba-

bility that a web page is delivered within a deadline. To estimate this probability, the

Thedu node estimates the expected meeting time with all other nodes as an average

of past meeting times. Some nodes may never meet; in this case the expected meet-

ing time is set to infinity. Thedu makes a simplifying assumption that the meeting

times are exponentially distributed with the parameter equal to the expected meeting

time. Accordingly, Thedu computes the probability that the web page is delivered

within the deadline as 1 − e−
1
λ

d where λ is the expected meeting time and d is the

deadline. Approximating inter-meeting time to an exponential distribution simplifies

delay computation and works well in practice [17].

4.3.3.3 Exploiting query locality

Thedu uses caching to further benefit from m2m contacts. Web queries are known

to exhibit locality [116] and the query frequency follows Zipf’s law. Thedu nodes

exploit this domain knowledge by caching all web pages they route because the queries

are likely to be requested by other users. On meeting a peer node, the node returns

web pages from its cache if there is a hit. The proxy tracks the popularity of queries

based on its frequency and marks each response web page with an indicator of the

popularity of the query. This indicator allows the clients to remove web pages for

unpopular queries from the cache, if necessary.

4.3.4 Scope and limitations

Several applications other than Web search can benefit from a design similar to

Thedu to adapt to intermittently connected networks. For example, several com-

mercial accelerators for Web browsing prefetch hyperlinks on a page to reduce user-

perceived response time. Popular prediction algorithms use a Markov model [88] to

estimate the probability that a user clicks on a hyperlink, which naturally serves as

a utility in Thedu. Li et al. [73] present a utility-driven atmospheric sensing system

73

that uses progressive compression to send the most important data first under limited

bandwidth, which is crucial for hazardous weather prediction applications like tor-

nado detection. Similarly, layered-encoded multimedia can be streamed to vehicular

users for buffered playback by prioritizing base layers.

The Thedu design cannot improve performance for interactive applications that

do not permit prefetching. Our implementation of Thedu does not support dynamic

content, mobile code, or interactive Ajax applications. Such applications require a

more sophisticated proxy engineering which is outside the scope of this work.

4.4 Evaluation

We evaluate Thedu in two ways: (i) Using deployment on the Dome-Infrastructure

testbed to compare the performance of Thedu with a state-less proxy that emulates

todays web search engines and (ii) trace-driven simulations to compare the perfor-

mance of Thedu with other variants and to quantify the benefits of m2m routing.

4.4.1 Deployment set up

We deployed Thedu and a stateless proxy, each for 5 days from March to April

2007. The two experiments differ as follows.

• The Thedu proxy is implemented as described in Figure 4.4.

• The stateless proxy strips features from the Thedu proxy so that it is equivalent

to the case where mobile nodes do not use a proxy. The stateless proxy retrieves

web pages for queries and returns bundles to the client in FIFO order (i.e., by

completed retrieval time). It terminates all incomplete transactions when the

client disconnects; retrievals begins anew upon reconnection.

Recall, from Section 4.3.1 that the Thedu proxy interfaces with an already avail-

able Web search engines (e.g., Yahoo, Google, or MSN) to retrieve the URLs of top

74

web pages, and then it prefetches the contents of the web pages. For our deployment

we chose to use Indri [105], an academic Web search engine. An important difference

between commercial search engines and Indri is that the latter indexes a large col-

lection of static web pages; commercial search engines, on the other hand, actively

crawl the web. Two features of Indri make it more appropriate for evaluating Thedu

than a commercial search engine.

1. Indri allows evaluation of retrieval performance: The IR community and NIST’s

TREC [5] have built a standard web collection. The web collection has prede-

fined user queries and human relevance judgments for each query; i.e., a list of

web pages in the collection that are relevant to the query. Indri indexes this

static web collection. The relevance judgment allows us to evaluate the perfor-

mance of Thedu in terms of the number of relevant web pages delivered to the

user. Note that the judgments are used only for evaluation and Thedu does not

know a priori which web pages are relevant and which are not.

2. Indri provides response scores: Indri assigns a relevance score for the web pages.

Thedu uses the relevance score to estimate the relevance probability, which is

subsequently used to prioritize web pages. Commercial search engines use (non-

normalized) relevance scores, but these relevance scores cannot be obtained by

us. Instead, commercial search engines only return a ranked list of web pages.

The reason that we do not provide an interface from Thedu to a commercial API

(e.g., Google) is that we would not be able to present evaluation results without a

large study of user experiences. In contrast, by using Indri and TREC we control

repeatable experiments that leverage past user studies of search relevance. In future

work, we plan to deploy Thedu with the Google API using a simple heuristic to

translate the rank to a relevance probability.

75

Collection: W10g [5]
Number of TREC queries: 150
Queries: TREC 2001
Search engine: Indri
Query deadline: 30 min
Queries per hour: 10 per bus

Table 4.4. Thedu: IR parameters used for deployment.

We used Indri to index and store a standard collection of web pages from the

TREC WT10G web collection [5]. We used standard queries from 2001 TREC web-

track associated with the WT10G collection, for evaluation. We evaluate the retrieval

performance using the relevance judgments. This query set and evaluation technique

is commonly used in the IR community to measure retrieval effectiveness. We modified

the Indri source code to provide normalized scores as described in Section 4.3.2.2.

For both proxies, we removed queries and associated web pages after 30 min (since

we assume most passengers would exit the bus by that point). The deployment

parameters are tabulated in Table 4.4.

The queries associated with the W10G collection are limited and relevance judg-

ments are only available for the TREC prescribed queries. The vehicular client peri-

odically generates a (queryID, query) pair, where queryID is a monotonically increases

sequence number and query is chosen from the predefined query set. The queryIDs

allow a query to be repeated as if it were completely new, and allow us to evaluate

performance for a large number of queries.

For both deployment experiments, queries are generated with an average of 10

per hour per bus with inter-arrival times drawn from an exponential distribution. At

each AP opportunity, the bus connects to the proxy and sends all queries generated

since the last connection. The buses periodically upload statistics of queries, web

pages, and delays. Delays are calculated against each query’s generation time stamp,

so they include the time waiting for the next AP.

76

Statistics Thedu Stateless
Proxy Proxy

Number of meetings 897 935
Total queries: 780 743

Total web pages returned: 5639 1207
Avg resps. per query: 7.2 1.6

Relevant web pages: 1630 401
Queries with at least 1 relevant web page: 529 (68%) 291 (39%)

Table 4.5. Thedu: Average per day network statistics during deployment.

4.4.2 Deployment results

The results of our deployments are presented in Table 4.5. Each result is a per-

day average. Thedu was able to return more than 4.5 times as many web pages

on average. More importantly, by prioritizing web pages according to the relevance

probability, the number of relevant web pages sent by Thedu is 4 times larger than

the stateless proxy. Finally, Thedu was able to send at least one relevant web page

for twice as many queries compared to the stateless proxy. We measure the delay of

receiving a relevant web page for a query. Figure 4.6 shows an empirical CDF of the

delay of receiving relevant web pages at the client. We note that 90% of the time, the

first relevant web page is received within 5 min. The mean delay is receiving the first

relevant web page is 2.7 min and the mean delay in receiving all relevant web pages

is 2.3 min. In the next section, we show that the average delay in receiving relevant

web pages is a function of AP density.

4.4.3 Trace-driven simulation set up

We collected traces from the Dome-Infrastructure testbed between October 22 to

November 18, 2007, which resulted in 20 days of trace data by excluding weekends

and holidays. Each bus in the testbed constantly scans for open APs and other

buses. If an AP is found, our software caches the DHCP lease to speed up the IP

address acquisition process in the future. To determine if the connection is usable,

77

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 5 10 15 20 25 30
C

D
F

Delay for relevant response (min)

Avg delay of all responses
Delay until first response

Figure 4.6. Thedu: CDF of the average delay in receiving relevant web pages during
deployment.

the bus pings a known Internet server. If another bus is found, the connection lasts

until the radios are out of range. During contacts, buses transfer random data, to

measure the capacity of the connection. However, buses do not transfer data during

m2i contacts to avoid overloading open APs operated by third parties; instead the

buses ping a known server through the AP to estimate contact duration. The buses

log information about both m2i and m2m contacts. The buses log the identity of

the remote connection (SSID), the location and duration of contact, and for a m2m

meeting, the number of bytes transfered. The logs are periodically uploaded to a

central server. Table 4.6 tabulates the statistics of the collected trace data.

The experimental set up for the trace-driven simulations is similar to the deploy-

ment set up, described in Section 4.4.1. Each node simulates query generation and the

inter-query time is drawn from an exponential distribution. The proxy retrieves the

top 20 web pages from the Indri search engine. We compute the number of relevant

responses delivered using the relevance judgement. The contact time and transfer

size between two buses is given by the trace data. In the case of AP contacts, the

trace provides contact duration but not the transfer size, because we do not send data

during m2i contacts. We set the bandwidth for m2i contacts to 205 KBps, which is

78

Statistic m2m AP
Avg unique nodes: 21 (buses) 151 (APs)

Number of
contacts:

242 4964

Avg contact
duration (sec):

10.3 15.17

Avg bandwidth
(KBps):

204.9 N/A

Total transfer
(MB):

482 15, 071

(at 205 KBps)

Table 4.6. Thedu: The characteristics of m2i and m2m contacts.

the bandwidth of m2m contacts (see Table 4.6). The deadline for each query is set

to 30 min.

4.4.4 Trace-driven simulation results

In this section, we present the trace-driven simulation results.

4.4.4.1 Thedu performance

We used the trace-driven simulation experiments to compare the performance

of Thedu to two variants: (i) Thedu without the query-type classification that we

describe in Section 4.3.2.1; and (ii) Round-Robin allocation of bandwidth for down-

loading responses. Last, we compare the performance of Thedu with a stateless proxy

similar to our deployment.

Thedu without the query-type classification prioritizes responses based on rele-

vance probability without considering the type of query (i.e., topic or homepage). The

Round-Robin variation uses round-robin prioritization and allocates equal bandwidth

to all queries. Round-Robin neither uses query-type classification nor prioritization.

Figure 4.4.4.1 shows the total number of web pages delivered as query load in-

creases. The results are an average of 10 trials per point on the graph. The vertical

lines at each point in the graph show the 95% confidence interval. The experiment

79

 0

 2000

 4000

 6000

 8000

 10000

 0 10 20 30 40 50 60 70 80T
ot

al
 r

el
ev

an
t r

es
po

ns
es

 d
el

iv
er

ed

Queries generated per hour per bus

DTNWeb
DTNWeb w/o qry classfication

Round Robin
Stateless

Figure 4.7. Thedu: Comparing the number of relevant web pages delivered using
trace-driven simulations.

shows that Thedu increases the number of relevant web pages delivered by over 28%

compared to a round-robin scheme. The experiments also show that the improve-

ment in performance when using Thedu over Round Robin is statistically significant

for loads greater than 5 queries per hour. Interestingly, we are only able to achieve

this improvement when we predict the query-type with our classification algorithm;

Thedu performs about 12% worse when it does not classify query-type. This is be-

cause, when Thedu does not use query-type classification, it returns several responses

for a homepage query when only one is relevant, wasting bandwidth. Our results also

indicate that maintaining state provides the most benefit in terms of performance.

Stateless proxy performs about 40% worse than Round Robin and about 70% worse

than Thedu.

4.4.4.2 Effect of AP density on Thedu

To understand the effect of AP density on Thedu performance, we divide the

deployment region into grids, and study the delay of receiving relevant responses

versus the AP density of a grid. The grid is centered at the Amherst town center and

spans about 1 mile on each side. Though the Dome deployment spans a larger area,

we concentrate on a snapshot of the deployment region that has a high frequency of

80

(7, 2.8min)
(24, 2.4min)

(33, 2.9min)

(75, 2.6min)

(140, 1.34min)

(33, 2.7min)

(101, 1.9min)
(93, 2.01min)

(0, 0min)

(10, 2.6min)
(27, 3.1min)

(50, 2.6min)

(48, 2.7min)

(196, 0.55min)

(28, 2.8min)
(184, 0.8min)

(112, 2.1min)
(0, 0min)

(num of AP meetings per day,
avg response delay per query)(a) Deployment: March 2007

(b) Trace: November 2007

Figure 4.8. Thedu: Trends in AP density.

bus visits. We compare the deployment results with trace-driven simulations from

traces collected in August 2007. In August 2007, a mesh network was added to the

Dome testbed in the center of the town. Therefore, in the recent trace data, AP

connectivity in the mesh area has increased, compared to during the deployment.

Figure 4.8 is a heat map of m2i contact frequency of the Thedu deployment in

March 2007 and using 5 days of traces collected in November 2007. Buses meet APs

more frequently in November for two grids compared to during the deployment: in

the town (center grid) and near the university (top left grid). AP meeting frequency

in the other grids does not change significantly between the deployment and trace.

The meeting frequencies refer to per-day frequencies.

81

Next, we compute the average delays for responses delivered in each grid. In

Figure 4.8, the average delay to deliver relevant responses is greater than 2.53 min

in grids where the number of m2i contacts is less than 60. The delay reduces to less

than 1.51 min when the number of m2i contacts becomes greater than 120. In the

November traces, Thedu delivers relevant responses with a delay of 0.55 min in the

Amherst town center. There are about 25 unique APs in the town center excluding

the mesh. In a separate trace-driven experiment (not shown here), we find that the

delay in receiving the first relevant response in the town center is 1.67 min. During

the deployment, this delay was 2.11 min.

Though our measurement study shows that AP density has been increasing since

March 2007, the trend may not be universal. In Dome, m2i meetings have increased

partially due to the deployment of a mesh network.

4.4.4.3 Benefits of leveraging mobile-to-mobile contacts

In this section, we evaluate the benefits of m2m routing for our vehicular testbed

using trace-driven simulations. Table 4.6 tabulates per-day statistics collected from

the trace data. Access points are an inexpensive commodity product, and securing

their access is harder than allowing public access. Hence, there were 151 open APs in

our environment put up by third parties. Network-equipped buses are an expensive

research platform, and the buses in our testbed were deployed by the authors only.

Accordingly, our testbed has an imbalance. Given the APs found on the field, the

ratio of m2m contacts to m2i contacts is 1:20. In terms of throughput, m2m routing

can at most provide a benefit of 482
15,071

= 3.2% (refer to “total transfer” in Table 4.6).

It is clear that even in a semi-urban area such as Amherst, m2m routing can provide

little benefit.

82

 0

 100

 200

 300

 400

 500

 600

 700

 0 20 40 60 80 100

Av
g

re
l r

es
po

ns
e

pe
r b

us

Queries generated in 30 min per bus

No m2m Routing
m2m routing

Figure 4.9. Thedu: Benefits of leverag-
ing m2m contacts with 5 APs using trace-
driven simulations.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 5 10 15 20 25 30

C
D

F

Delay for relevant response (min)

5APs: Response delay

Figure 4.10. Thedu: Delay in receiving
relevant responses with 5 APs using trace-
driven simulations.

Instead, we evaluate the benefits of m2m routing when only a small number of APs

are available. For example, in rural environments and OLPC 3-like environments, AP

deployment is sparse, but mobile laptop devices can help deliver web pages to clients

that are multiple hops from the APs. In this experiment, we randomly chose 5 APs

from the 151 APs available in the Dome testbed, and we find that the m2m-to-m2i

contact ratio is 1:1.3, compared to 1:20 when 151 APs are available.

Figure 4.9 shows the number of relevant web pages delivered for all buses for

varying load. In this setting, m2m routing provides up to 28% benefit over not

using m2m routing. Figure 4.10 shows the CDF of the delay in receiving relevant

web pages. The mean delay is 6.7 minutes, three times higher compared to when

all APs were available for contact. In rural scenarios, even though m2m routing

delivers more relevant web pages, the delays may deter users from using WiFi for

interactive applications such as Web search. Therefore, our experimental results

limit the applicability of m2m routing only to delay-tolerant applications even in

rural areas with limited AP infrastructure.

3One Laptop Per Child

83

4.5 Thedu Conclusions

In this chapter, I establish the thesis statement (Section 1.1) in the context of

intermittently connected networks. Specifically, I show that opportunistic prefetching

can be exploited to enable moderately interactive applications such as web search

in an intermittently connected network. Thedu uses opportunistic prefetching to

converts the interactive web search process to a one-shot request/response process,

more suitable for disruption-prone environments. However, aggressive prefetching

introduces a resource management challenge of determining what data to prefetch.

Thedu uses a utility-driven prioritization protocol to implement prefetching in the

resource constrained environment.

I answer the research questions raised in Section 1.2 with respect to the inter-

mittently connected environment using measurement, protocol design, and testbed

evaluation. Using a measurement study on the Dome-Infrastructure testbed, we

characterize disruptions in the testbed. We observe that vehicles are connected to an

Internet connected AP for a median duration of 45 seconds, and are disconnected for

a median duration of 8 minutes. In this environment, it is challenging to support the

interactive web search application.

Instead, we design the Thedu protocol to overcome disruptions by translating the

interactive web search process to a transactional process using aggressive prefetching.

To determine what data to prefetch in the resource constrained environment, Thedu

uses (1) a simple classifier that identifies queries that likely require only a single

web response and (2) a utility-based prioritization protocol to normalize ranking of

web pages across different search queries and determine the relative importance of the

web pages. Thedu assigns a relevance probability to each web page to prioritize them.

Finally, Thedu leverages m2m contacts in addition to the m2i contacts to improve

web search in rural areas where connectivity is sparse.

84

We evaluate the performance of Thedu using a real deployment and using trace-

driven simulation study on Dome-Infrastructure testbed. In our experiments, for areas

with a high density of open APs, queries are answered in 0.55 minutes; the overall

mean is 2.3 minutes. Moreover, compared to not using Thedu, users can expect a

fourfold increase in the number of useful web pages retrieved in response to queries.

Note that our results measure the time from querying to completed retrieval of a

relevant web page, rather than simply the search engine results page or retrieval of the

first, possibly irrelevant, result listed. Our trace-driven simulations show that in our

testbed, where APs are densely deployed, m2m routing does not provide significant

benefit compared to using m2i contacts alone. However, when buses are limited to

using only 5 APs in our testbed to emulate a rural scenario, m2m routing provides

up to 58% increase in the number of relevant web pages delivered per bus.

85

CHAPTER 5

VIFI: INTERACTIVE APPLICATIONS IN
WELL-CONNECTED NETWORKS

There is an increasing number of WiFi mesh deployments that provide ubiquitous

coverage, and in many cases, entire cities are being covered [113, 114]. The question

we ask is: can WiFi mesh deployments support highly interactive applications such as

Voice over IP (VoIP) from moving vehicles?. Highly interactive applications such as

VoIP are challenging to support because they have strict requirements with respect

to loss rates and connectivity. Supporting these applications at vehicular speeds will

require highly efficient handoff policies as the vehicle moves from one mesh node to

another.

In this chapter, I present ViFi, a protocol that supports interactive applications

in WiFi meshes. As a first step, I present a measurement study to understand the

challenges in supporting interactive applications in this setting. We find that with

current WiFi handoff methods clients experience frequent disruptions in connectivity

even when they may be close to WiFi AP. Handoffs in WiFi today are hard, i.e.,

at any given time, clients communicate with only one AP that is expected to offer

the best connectivity. Instead, we find that using multiple APs simultaneously (i.e.,

exploiting overhearing by neighboring APs), can help reduce disruptions for vehicular

clients.

Next I present the ViFi handoff protocol that reduces disruptions by leveraging

opportunistic overhearing in wireless networks. The challenge in designing a protocol

that exploits overhearing is in coordinating among APs to determine which AP should

86

forward the packet to the intended next hop. Without such coordination, multiple

APs that opportunistically overhear the packet can transmit the packet, wasting re-

sources. This coordination must be nimble enough to allow per-packet processing and

must use the communication channel efficiently. ViFi addresses this challenge using a

utility-driven sender prioritization protocol that assigns relaying probabilities to each

node. APs that opportunistically overhear a packet but not its acknowledgment, relay

the packet to the intended next hop according to their probability. The probabilities

are computed by each node individually without need for per-packet coordination.

The prioritization problem is formulated such that, collectively, wasted transmissions

are minimized.

The rest of this chapter is organized as follows: In Section 5.1, I describe related

work. In sections 5.2 and 5.3, I describe the measurement study and the ViFi protocol,

respectively. In section 5.4, I describe the evaluation of ViFi and Section 5.5 concludes

this chapter.

5.1 Related Work

Our work benefits from and builds upon a large body of work in wireless handoffs

and opportunistic forwarding. We divide prior work into the following categories.

Using multiple APs

Distributed Radio Bridges [72], Divert [79], and MRD [80] all use multiple APs

to improve client performance in enterprise WLAN deployments. The AP coordi-

nation mechanism in these systems assumes that a high-capacity LAN is available.

For instance, in MRD, APs coordinate by sending all received frames to a central

controller that is responsible for forwarding only one copy to the Internet. Thus, if

clients typically reach three APs, the required LAN capacity is at least three times the

cumulative sending rate of all clients. Because a high-speed backplane is typically not

87

available in mesh environments, the coordination mechanism of ViFi imposes little

additional load on the backplane.

Network access from moving vehicles

Several early works (including our own), consider the problem of transferring

data to individual APs as a vehicle drives by them, without maintaining a connection

across APs [61, 58, 49, 55, 19]. They find that performance in this setting is severely

hindered by overheads at several layers, such as DHCP and aggressive TCP backoffs

due to losses, and propose methods to lower these overheads. We investigate the

possibility of continuous connectivity across APs. We find that even if some of the

overheads they observe (e.g., DHCP) are removed completely, the basic link layer

connectivity remains problematic, especially for interactive applications.

Fast Handoffs There is a large body of work on minimizing the delay associated

with handoffs in wireless networks [92, 16, 95, 28, 60]. This delay can be a major

source of disruption in networks that otherwise have good wireless connectivity. Our

work instead focuses on reducing packet losses during handoff, which can severely

affect performance of interactive applications, even if the handoff delays are minimal.

Finally, related work on exploiting opportunistic overhearing in static mesh net-

works such as ExOR [27] and MORE [36] share similar goals but are not suitable for

interactive applications, as described in Section 2.3.3.

5.2 Measurement

Our measurements are performed on the VanLAN testbed described in Section 2.2.

We measure packet reception from a vehicle to every AP within communication dis-

tance. We then characterize the performance of applications, given the packet re-

ception observed during measurement, using trace-driven studies. The goal of the

measurement study is to characterize the performance of applications under different

handoff policies.

88

5.2.1 Methodology

For the measurement study, each AP and vehicle broadcasts a 500-byte packet

at 1 Mbps every 100 ms. We verified that self-interference of this traffic is minimal

by comparing its packet reception ratio with the case where only one node sends

at a time. Even though unicast packets, followed by acknowledgments, are more

common today, broadcast packets suffice to probe the underlying connectivity and

let us measure connectivity from a sender to all receivers simultaneously [15]. Nodes

log all correctly decoded packets and beacons. Our results are based on analysis of

traces collected over a two-week period.

We analyze the performance of different handoff policies using the collected trace.

There are many possible handoff strategies; for a comprehensive evaluation, we study

six different policies. Four of these are practical and are based on existing literature;

the other two are idealized methods and lend insight into the inherent limitations

of the practical policies. Our goal is to first understand the fundamental differences

among the policies, so we ignore the time taken to switch between APs and the

time to scan for APs. Research shows that careful design can tackle these issues

effectively [92, 28, 60, 16].

We evaluate a handoff policy using these traces as follows. The policy determines

which AP a client associates with at a given time. The client can communicate with

only the associated AP when using a hard handoff policy. We assume that clients

have a workload that mirrors our trace traffic; i.e., they wish to send and receive

packets every 100 ms. The traces of broadcast packets and the current association

determine which packets are successfully received.

We use two measures to provide insight into the performance of different kinds

of applications under the different handoff policies: (i) aggregate performance; (ii)

periods of uninterrupted connectivity. An aggregate performance measure considers

the total number of packets delivered and the total time or distance over which the

89

vehicle is connected. These are relevant to delay or disruption-tolerant applications

that care most about throughput during a large time interval, such as a few hours;

e.g., synchronizing mail folders in the background. The period of uninterrupted con-

nectivity measures contiguous time intervals when the performance of an application

is above a threshold, for some definition of performance and threshold. This metric

cares about performance at extremely short time intervals. Measuring periods of un-

interrupted connectivity will, for example, tell us the length of time a VoIP caller can

talk before the call quality drops. Applications such as instant messaging lie between

these extremes; interpolating our results can provide insight into their performance.

The six handoff policies that we study are the following.

1. RSSI, where the client associates to APs with higher signal strength, measured

as the exponential average of the RSSIs of received beacons. This policy is similar to

what many clients, including the NICs in our testbed, use currently in infrastructure

WiFi networks.

2. BRR, where the client associates to the AP with the highest exponentially

averaged beacon reception ratio. This policy is inspired by wireless routing protocols

that are based on the reception ratio of probes [42].

We use an exponential averaging factor of half for both methods above and find

the results robust to the exact choice.

3. Sticky, where the client does not disassociate from the current AP until con-

nectivity is absent for a pre-defined time period, set to three seconds in our evaluation.

Once disassociated, the client picks the AP with the highest signal strength. This

policy was used in the CarTel study [61].

4. History, where the client associates to the AP that has historically provided

the best average performance at that location. Performance is measured as the sum

of reception ratios in the two directions, and the average is computed across traversals

90

4 6 8 10

BSs

60

80

100

P
k
t
s

(
K
)
/
d
a
y AllBSe

BestBS
Histor
RSSI
BRR
Sticky

Figure 5.1. ViFi: Average number of packets delivered per day in VanLAN by
various methods.

of the location in the previous day. MobiSteer shows the value of history in vehicular

environments [83].

5. BestBS, where at the beginning of each one-second period, the client as-

sociates to the AP that provides the best performance in the future one second.

Performance is measured as the sum of reception ratios in the two directions. This

method is not practical because clients cannot reliably predict future performance.

In cellular terminology, all of the policies above use hard handoff because the client

associates with only one AP at a time. Using future knowledge, BestBS represents

an upper bound on the performance of hard handoff methods.

6. AllBSes, where the client opportunistically uses all APs in the vicinity. A

transmission by the client is considered successful if at least one AP receives the

packet. In the downstream direction, if the client hears a packet from at least one

AP in an 100-ms interval, the packet is considered as delivered.

AllBSes is an ideal method that represents an upper bound on the performance

of any handoff protocol. It exploits path diversity between the client and the set of

nearby APs. Because of differences in CDMA and CSMA, it is not identical to, but

is inspired by, macrodiversity methods in cellular networks [111]. Path diversity is

known to improve performance in WiFi mesh and indoor infrastructure networks as

well [27, 79]. We study if such benefits materialize in vehicular WiFi settings.

91

(a) BRR (b) BestBS (c) AllBSes

0 50 100 150 200 250

session length (s)

0

20

40

60

80

100

%

o
f

t
i
m
e

(
C
D
F
)

Sticky
BRR
BestBS
AllBSes

(d) Distribution of session
length

Figure 5.2. ViFi: (a)-(c): The behavior of three handoff methods for an example
path segment in VanLAN. Black lines represent regions of adequate connectivity,
i.e., more than 50% reception ratio in a one-second interval. Dark circles represent
interruptions in connectivity. (d): The CDF of the time the client spends in a session
of a given length.

5.2.2 Aggregate Performance Results

Figure 5.1 shows the packets delivered by the six handoff policies. To study the

impact of AP-density, the independent variable in the graph is the number of APs in

the system. There are eleven APs in VanLAN, and each point in the figure represents

the average of ten trials using randomly selected subset of APs of a given size.

The graph shows that more packets are delivered as the density of APs increases

but the relative performance of various methods is similar. AllBSes performs best,

followed by BestBS, and then by History, RSSI, and BRR; the performance of Sticky

is the worst. Ignoring Sticky, all methods are within 25% of AllBSes. This result

suggests that for non-interactive applications, the choice of the exact method is not

critical — however, results below demonstrate that interactive applications manifest

great differences among the policies. Because of space limitations, we omit similar

results for other aggregate performance metrics, such as the total time or distance for

which the methods provide some minimal connectivity.

92

History, RSSI and BRR perform similarly for all measures that we study. The

competitive performance of History confirms recent results [83] about the feasibility

of using past experience to predict future performance. For visual clarity, we present

results for only BRR as representative of all three in the remainder of this paper.

5.2.3 Uninterrupted Connectivity Results

To compare the ability of different handoff methods in providing uninterrupted

connectivity, we start with a qualitative example. Figure 5.2 shows the behavior of

BRR, BestBS, and AllBSes during one example trip of the vehicle. In this example,

we define adequate connectivity to mean at least 50% of the packets are received

in a one-second interval. Consistent with our aggregate performance measurement,

each method provides adequate connectivity for roughly the same total path length.

However, BRR contains several regions of inadequate connectivity. BestBS has fewer

interruptions because it uses the optimal BS. AllBSes performs best as it uses multiple

APs to further reduce the number of interruptions.

Frequent interruptions in BRR can be explained through a detailed analysis of the

connectivity between a vehicular WiFi client and aAP. Contrary to earlier studies of

controlled environments [87, 52], we find that in realistic environments this connec-

tivity is often marred by gray periods where connection quality drops sharply. Gray

periods are unpredictable and occur even close to APs. With BRR, the clients often

find themselves experiencing a gray period with respect to the associated BS, which

causes frequent disruptions in connectivity. But because they tend to be short-lived,

gray periods do not severely impact aggregate performance. We have analyzed gray

periods in our testbeds in more detail [23, 76] but omit that analysis from this paper.

Figure 5.2(d) quantitatively compares the handoff policies with respect to the

cumulative time clients spend in an uninterrupted session of a given length. We

see that the median session length of AllBSes is more than twice that of BestBS and

93

1 10

interval (s)

0

50

100

150

200

s
e
s
s
i
o
n

l
e
n

(
s
)

Figure 5.3. ViFi: The median session
length in VanLAN as a function of the time
interval and the minimum reception ratio.

0 20 40 60 80 100

reception ratio (%)

0

50

100

150

200 AllBSe
BestBS
BRR
Sticky

Figure 5.4. ViFi:The median session
length in VanLAN as a function of the time
interval used to define adequate connectiv-
ity.

more than seven times that of the more practical BRR. This suggests that a practical,

multi-BS handoff policy can achieve significant gains over hard handoff.

To investigate how applications with different requirements can be supported,

we now explore other definitions of adequate connectivity. Figure 5.3 varies the

averaging interval while keeping the minimum reception ratio requirement fixed at

50%; Figure 5.4 varies the minimum reception ratio while keeping the averaging

interval fixed at one second. A longer averaging interval represents less stringent

requirements because the session is said to be interrupted only if there is no activity for

a longer period. Similarly, a shorter reception ratio represents a weaker requirement.

The results suggest that when the requirements are less stringent all methods other

than Sticky perform similarly. But as the requirements become more demanding the

relative advantage of using multiple APs increases. The right end of Figure 5.4 does

not represent convergence but a degenerate point where the requirements are so strict

that all methods have short sessions.

The above result suggests that for aggregate metrics, the choice of the exact

handoff policy is not critical — however, the performance of interactive applications

greatly vary depending on the handoff policy.

94

0 500 1000 1500 2000

k

0.0

0.2

0.4

0.6

0.8

1.0

l
o
s
s

p
r
o
b
a
b
i
l
i
t
y

Figure 5.5. ViFi: Probability of losing packet i+k from an AP to vehicle given that
packet i was lost.

Reception probabilities

P (A) 0.75
P (Ai+1|¬Ai) 0.24
P (Bi+1|¬Ai) 0.57
P (B) 0.67
P (Bi+1|¬Bi) 0.18
P (Ai+1|¬Bi) 0.62

Table 5.1. ViFi: Unconditional and conditional packet reception probability from
two APs to the vehicle.

5.2.4 Why is using multiple APs effective?

We now explain why AllBSes is significantly more effective than using only one

AP even when that AP is judiciously chosen (as in the case of BestBS).

In the upstream direction, using multiple APs is effective because losses are

roughly independent across APs and a packet sent by the vehicle is received by at

least one AP with a high probability. In other words, the fact that a packet from the

vehicle is lost at, for instance, the closest AP, has little bearing on whether it is lost

at another AP. This independence of losses at receivers has been shown previously

for outdoor WiFi meshes [27]. We find that it holds in our setting as well but omit

detailed results.

95

Using multiple APs is effective in the downstream direction because it can tackle

bursty losses better than single-AP systems [79]. Figure 5.5 shows evidence that

losses are bursty in the vehicular setting. The figure plots the probability of losing

the packet (i+k) from an AP to vehicle in VanLAN given that packet i was lost. In

this experiment, a single AP sends packets every 10 ms; we pick a different sending

AP for each trip by the vehicle. The probability of losing a packet immediately after

a loss is much higher than the overall loss probability. Thus, even when a vehicle is

associated with an AP with a low average loss rate, it can lose many packets in a

small time period, hurting interactive applications.

Leveraging overhearing by multiple APs helps overcome burst losses because when

the vehicle is in a burst-loss phase with one AP a second AP may still be able to deliver

packets to it. That is, most burst losses are path dependent (e.g., due to multipath

fading) rather than receiver dependent. Figure 5.1 shows evidence that this holds

for the vehicular environment and quantifies the effect for one pair of chosen APs in

VanLAN. Each AP sends a packet every 20 ms. P (A) and P (B) are the unconditional

downstream packet reception probabilities from APs A and B. P (Ai+1|¬Ai) is the

conditional reception probability of receiving (i+1)-th packet from A given that the

i-th packet from A was lost. Other probabilities can be similarly interpreted. We

see that after a loss from an AP, the reception probability of the next packet from

it is very low. But the second AP’s probability of delivering the next packet is only

slightly lower than its unconditional loss probability.

5.3 ViFi design

Motivated by the effectiveness of leveraging overhearing, we seek to develop a prac-

tical protocol that leverages AP overhearing to reduce disruptions. The key challenge

is in coordinating among the APs such that the coordination scheme: (i) imposes

minimal additional load on the inter-AP and vehicle-AP communication plane; (ii)

96

does not increase per packet latency, as that hurts interactive applications; (iii) can

handle rapidly changing sets of APs.

Other works that leverage overhearing in WiFi networks either assume a high-

speed inter-AP backplane [80, 79] or batch packets to amortize overhead [27, 36]. In

our setting, however, a high-capacity backplane is often not available. We also cannot

use batching because that increases latency for packets.

Our approach is to leverage opportunistic receptions by nearby APs, followed by

utility-driven sender prioritization. Opportunistic receptions provide a low-overhead

but unreliable means for disseminating information. With prioritization, each AP re-

lays based on an independently computed relaying probability, which avoids the need

for explicit coordination messages between APs. The resulting protocol is lightweight

and decentralized. This protocol is similar in spirit to opportunistic scheduling pro-

tocols. A survey of opportunistic scheduling protocols for wireless networks can be

found in [34]. The different scheduling protocols in literature are designed to provide

fairness or to optimize throughput across nodes in the network. The goal of ViFi is

to reduce disruption caused by dropped packets for a given set of source-destination

pair.

In ViFi, the vehicle designates one of the nearby APs as the anchor. The anchor

can be selected using any of the association methods that clients use today to pick an

AP. The anchor is responsible for the vehicle’s connection to the Internet—packets

from the vehicle are forwarded through the anchor and packets from the Internet

destined for the vehicle first arrive at the anchor. The vehicle designates other nearby

APs as auxiliary.

The operation of ViFi is symmetric in both directions and is described below

in terms of the source, src, and destination, dst, of the transfer. In the upstream

direction, the vehicle is the source and the anchor is the destination. The roles are

reversed in the downstream direction.

97

1. src transmits the packet P .

2. If dst receives P , it broadcasts an ACK.

3. If an auxiliary overhears P , but within a small window has not heard

an ACK, it probabilistically relays P .

4. If dst receives relayed P and has not already sent an ACK, it broad-

casts an ACK.

5. If src does not receive an ACK within a retransmission interval, it

retransmits P .

ViFi can improve handoff performance because relaying by an auxiliary AP is

better than a retransmission by the source itself (Section 5.2.4).

5.3.1 Computing relaying probability

The key challenge in computing the relaying probability for an auxiliary AP is to

balance the trade-off between too few and too many relayed transmissions. With the

former, the performance will degrade to that of hard handoff protocols; the latter will

lead to excessive load on the vehicle-AP and inter-AP communication mediums.

The relay probability computation in ViFi is based on the following guidelines.

G1: Account for relaying decisions made by other potential relaying auxiliaries.

G2: Prefer auxiliaries with better connectivity to the destination.

G3: Limit the expected number of relayed transmissions.

The first two guidelines are easily motivated, but the third one is not immediately

obvious. Should the number of relayed transmissions be low or be such that at least

one of them reaches the destination? We use the former in ViFi, but we also considered

a formulation based on the latter. We outline this formulation in Section 5.4.5, and

show that it leads to too many relayed transmissions. Similarly, in Section 5.4.5, we

study formulations that do not adhere to the other two guidelines and show that they

do not perform well either.

98

Let B1, · · · , BK be the current set of auxiliary APs. Let node s be the source

of a packet and node d be its destination, where node refers to either a vehicle or

anchor AP depending on the packet’s direction. Let pab denote the probability that

b correctly receives a transmission from a, for a, b ∈ {s, d, B1, ..., BK}. ViFi estimates

and disseminates the pab using periodic beacons (described in Section 5.3.3).

When some auxiliary Bx, (x = 1, · · · , k) hears a packet but not an acknowledg-

ment, it uses its computed relaying probability to decide whether to relay. The overall

strategy is to compute relaying probabilities so that the expected copies of the same

packet relayed across all auxiliary APs equals 1. Within this constraint, auxiliary

APs that are better connected to the destination are preferred.

We write the constraint on the expected copies of the same packet relayed using

K∑
i=1

ciri = 1 (5.1)

Here ci is the probability that auxiliary Bi is contending on this packet, that is, that

Bi has heard the packet but not an acknowledgment, and ri is Bi’s relay probability.

Strictly speaking, however, ri is the number of times Bi should relay the packet.

Except in pathological cases, ri evaluates to less than one. We do not allow an

auxiliary AP to relay a packet more than once.

We compute ci using an approach described below. We then pick ri satisfying

Eq. 5.1 in a way that favors auxiliaries that are better connected to the destination

node d. Specifically, we choose ri such that

ri

rj

=
pBid

pBjd

(5.2)

implying that ri = r · pBid for some r. Each contending auxiliary Bx solves Eq. 5.1

uniquely for r, and then relays the packet with probability min(r · pBxd, 1).

99

A contending relay Bx computes ci for each Bi, including itself, as the uncondi-

tional probability:

ci = psBi
(1− psdpdBi

) (5.3)

Here the first term, psBi
, is the probability that Bi receives the original packet, the

second is the probability that Bi does not hear an acknowledgment. We have assumed

that the two events are independent.

5.3.2 Salvaging

Sometimes a vehicle moves out of range before the anchor AP can deliver packets

from the Internet. Application performance, especially that of TCP, can suffer if such

groups of back-to-back packets are frequently lost.

To avoid this problem in ViFi, newly designated anchors salvage packets by con-

tacting the previous anchor over the backplane. The new anchor learns the identity

of the previous anchor from the beacons. Upon contact, the old anchor transfers

any unacknowledged packets that were received from the Internet within a certain

time threshold. We set the threshold to one second in our experiments, based on the

minimum TCP retransmission timeout. The new anchor treats these packets as if

they arrived directly from the Internet. Our salvaging mechanism is inspired by DTN

routing and DSR [66], but it is based on pulling data rather than pushing.

5.3.3 Estimating packet reception probabilities

As WiFi APs do today, ViFi nodes send periodic beacons. The beacons are

used to disseminate information about the packet reception probabilities needed by

auxiliary APs, which include those between the other auxiliary APs and the anchor

and between the other auxiliary APs and the vehicle.

A ViFi node estimates the reception probability from another node to itself using

the number of beacons received in a given time interval divided by the number that

must have been sent. Incoming reception probabilities are maintained as exponential

100

averages (α=0.5) over per-second beacon reception ratio. In their beacons, nodes

embed the current incoming reception probability from all nodes that they heard

from in the last interval. They also embed the packet reception probability from

them to other nodes, which they learn from the beacons of those other nodes.

5.3.4 Retransmission timers

In the current 802.11 standard, acknowledgments are sent immediately after packet

transmission, so the source knows when to retransmit an unacknowledged packet. But

acknowledgments in ViFi may be delayed if they are generated in response to a relayed

packet. The delay depends on the time for relayed packets to reach the destination,

and thus retransmission timers must be set based on current network conditions.

The ViFi source sets the retransmit timer adaptively based on the observed de-

lays in receiving acknowledgments. The source keeps track of the delays in receiving

acknowledgments for its transmissions. The source then picks as the minimum re-

transmission time the 99th percentile of measured delays. Picking this high percentile

means that sources err towards waiting longer when conditions change rather than

retransmitting spuriously.

Transmission opportunities can arise for the source before the retransmission time

for the earliest packet in the queue elapses. In such an event, instead of leaving the

medium idle, the source sends the earliest queued packet that is ready for transmis-

sion. This can cause some amount of reordering when a later packet reaches the

destination first. In our experiments, we find that the amount of reordering is small

and does not hurt TCP performance. Hence, our current implementation does not

attempt to order packets. If need be, it is straightforward to order packets using a

sequencing buffer at anchor APs and vehicles.

101

5.4 Evaluation

Our evaluations are based on a deployment of ViFi on the VanLAN testbed and

a trace-driven simulation based on traces collected from the Dome-Mesh testbed.

While we deployed the APs in the VanLAN testbed and can modify the APs, we

cannot modify the APs used in the Dome-Mesh testbed. Both testbeds are described

in detail in Section 2.2.

We analyze a range of ViFi characteristics,

• Link layer performance of ViFi handoff

• Application performance when using ViFi handoff in comparison to using cur-

rent 802.11 handoff

• Effectiveness of ViFi coordination and its efficiency with respect to medium

usage

• Comparison with alternate formulations of the coordination problem

5.4.1 Methodology

Below we describe our implementation, trace-driven simulation set up and other

experimental details.

5.4.1.1 Implementation

We have implemented ViFi on the Windows operating system. Almost all of

our implementation sits in user space. A special in-kernel network driver intercepts

packets from the OS and hands it to our process.

Our current implementation uses broadcast transmissions at the MAC layer be-

cause this lets us disable the automatic retransmission behavior of the NIC. Instead,

a ViFi node sends it own acknowledgments for received packets. However, broadcast

transmissions disable exponential backoff in response to losses which is intended to

102

reduce collisions. To reduce collisions, our implementation relies on carrier sense. The

implementation also ensures that there is no more than one packet pending at the

interface, to prevent a node from sending multiple back-to-back broadcast packets.

As an optimization, ViFi packets carry a 1-byte bitmap that signals which of the

last eight packets before the current packet were not received by the sender. This

helps save some spurious retransmissions of data packets that are otherwise made due

to loss of acknowledgment packets.

Our implementation of ViFi was deployed on the VanLAN testbed for 2 months.

5.4.1.2 Trace-driven simulation set up

The trace-driven simulations are based on beacons logged by the buses in Dome-

Mesh. The beacon loss ratio from an AP to the vehicle in each one-second interval

is used as the packet loss rate from that AP to the vehicle and from the vehicle to

the AP. This assumption ignores any asymmetry or finer-timescale behavior of packet

loss. For inter-AP loss rates, we assume that AP pairs that are never simultaneously

within the range of a bus cannot reach one another. For other pairs, we assign loss

ratios between 0 and 1 uniformly at random. Our results are based on multiple trials

and random seeds.

We use a QualNet-based implementation of ViFi to analyze performance. The loss

rates are instantiated in the QualNet simulator by mapping them to the corresponding

path loss values. This method allows us to program loss rates found in a real vehicular

environment and therefore includes losses due to mobility and multipath fading, while

still losing packets to events such as collisions.

Our experiments are based on a fixed 802.11b transmission rate of 1 Mbps to max-

imize range. We compare the performance of ViFi against BRR, the practical, hard

handoff protocol. In BRR, client associates to the AP with the highest exponentially

averaged beacon reception ratio.

103

We validate our trace-driven simulation method by collecting the same measure-

ments from VanLAN and comparing its results to the deployment, i.e., we set the loss

rate for each one-second interval to be the beacon loss ratio between the vehicle and

the AP in that one second. Because we have inter-AP beacon loss ratios in VanLAN,

unlike Dome-Mesh, we configure the inter-AS loss rates also as the inter-AP beacon

loss ratio during each one-second interval.

5.4.1.3 Experimental set up

We compare the performance of ViFi against BRR, the practical, hard handoff

protocol that we studied previously. To ensure a fair comparison, we implement BRR

within the same framework as ViFi but with the auxiliary AP functionality switched

off. Like ViFi, BRR uses broadcast transmissions without exponential backoff re-

strictions and uses bitmap acknowledgments. We omit experiments that show that

BRR performs worse with unicast transmissions. The poor performance is because

of backoffs in response to losses. In VoIP experiments, for instance, the length of

disruption-free calls were 25% shorter.

Our experiments are based on a fixed 802.11b transmission rate of 1 Mbps to

maximize range. Rate adaptation in vehicular networks is an open problem as current

algorithms assume an environment that is less dynamic [58, 49].

Unless otherwise specified, results for VanLAN are based on at least three days of

data for each protocol and workload configuration. For the Dome-Mesh simulations,

we use traces from Channels 1 and 6. We profile each channel and log all received

beacons. We profiled for 3 days in December 2007, during which the vehicle logged

more than 100,000 beacons. The profiling channel was fixed so that beacons are not

lost while scanning. We limit our analysis to BSes in the core of the town and to

APs that are visible on all three days. There are 10 such APs on Channel 1 and 14

on Channel 6. About half of the APs on each channel belong to the town’s mesh

104

1 10

interval (s)

0

50

100

150

200

s
e
s
s
i
o
n

l
e
n

(
s
)

(a) Reception ratio=50%

0 20 40 60 80 100

reception ratio (%)

0

50

100

150

200 AllBSe
ViFi
BestBS
BRR

(b) Interval=1 sec

Figure 5.6. ViFi: The median session length in VanLAN as a function of the
reception ratio threshold and time interval used to define adequate connectivity.

network and the rest belong to nearby shops. All errors bars in the graphs below

represent 95% confidence intervals.

5.4.2 Link layer performance

We start by evaluating the basic link-layer connectivity provided by ViFi. This

analysis is based on the VanLAN deployment and uses a methodology similar to that

described in Section 5.2.

Figure 5.6 quantifies the performance of ViFi in comparison to the BRR, BestBS,

and AllBSes handoff policies. The curves for AllBSes and BestBS are identical to those

in Figures 5.3 and 5.4. In this experiment, the van and a remote computer attached

to the wired network send a 500-byte packet to each other every 100 ms. Since we

focus on basic link-layer quality provided by each protocol, link-layer retransmissions

are disabled. The figure plots the median uninterrupted session length for various

definitions of interruptions, as in Figures 5.3 and 5.4. The performance of ViFi is

even better than BestBS and closely approximates AllBSes. It is notable that our

simple and practical opportunistic protocol is able to beat the performance of the

ideal single-AP protocol and approximate the ideal multi-AP protocol.

105

(a) BRR (b) ViFi

Figure 5.7. ViFi: The behavior of BRR and ViFi along a path segment in VanLAN.

0.0

0.2

0.4

0.6

0.8

1.0

t
r
a
n
s
f
e
r

t
i
m
e

(
s
)

B
R

R

O
nl

y
D

iv
er

si
ty

V
iF

i

Figure 5.8. ViFi: TCP connection dura-
tion during VanLAN deployment.

0

20

40

60

80

100

t
r

a
n

s
f

e
r

s
/

s
e

s
s

i
o

n

B
R

R

O
nl

y
D

iv
er

si
ty

V
iF

i

Figure 5.9. ViFi: Number of successful
TCP transfers before disconnection during
VanLAN deployment.

Figure 5.7 illustrates the behavior of BRR and ViFi, in a format similar to Fig-

ure 5.2. Black lines represent regions where the reception ratio was more than 50%

in 1-second intervals. Dark circles represent interruptions. These are average case ex-

amples for the performance of these two protocols; individual runs differ. The paths

are similar but not identical as they represent different days. We see that with BRR

the path has several interruptions. ViFi performs significantly better, with only one

interruption.

5.4.3 Application performance

We evaluate the performance of ViFi for two common interactive applications:

short TCP transfers that are typical in web browsing and VoIP.

106

0.0

0.2

0.4

0.6

t
r

a
n

s
f

e
r

s
/

s
e

c
o

n
d

B
R

R

V
iF

i

Figure 5.10. ViFi: TCP performance in
Dome-Mesh Channel 1 in trace-driven sim-
ulations.

0.0

0.2

0.4

0.6

t
r

a
n

s
f

e
r

s
/

s
e

c
o

n
d

B
R

R

V
iF

i

Figure 5.11. ViFi: TCP performance
in Dome-Mesh, Channel 6 in trace-driven
simulations.

5.4.3.1 Performance of TCP transfers

In this set of experiments, we focus on: (i) the time to complete a transfer; (ii) the

number of completed transfers in a session, where a session is a period of time in which

no transfer attempt was terminated due to a lack of progress. The vehicle repeatedly

fetches a 10 KB file from a server connected to the wired network and the server

does the same in the other direction. Transfers that make no progress for ten seconds

are terminated and started afresh; we impose this limit because some transfers either

hang or take a very long to complete due to packet losses at inopportune times in the

TCP exchange.

Figure 5.8 shows the median time to complete a transfer. To isolate the benefits

of leveraging overhearing and salvaging in ViFi, the middle bar shows the median

time for a configuration in which probabilistic relaying was enabled but salvaging

was disabled. The results show that ViFi’s median TCP transfer time is about 0.6

seconds, which represents a 50% improvement over BRR. This improvement is higher

than what would be predicted based on the number of additional packets delivered

by the link layer (Figure 5.1). This brings out the difference between improvement

in aggregate performance versus performance of interactive applications when using

multiple APs to deliver the packet. The figure also shows that most of ViFi’s gain

results from leveraging overhearing, although salvaging does provide a noticeable gain

107

of about 10%. Figures 5.10 and 5.11 show the TCP performance over Dome-Mesh

channels 1 and 6 respectively; ViFi significantly improves TCP performance in the

Dome-Mesh testbed as well.

Figure 5.9 shows the average number of completed transfers per session. The

average for ViFi is more than twice of BRR. Combined with its lower transfer times,

this implies that users of ViFi will experience fewer disrupted transfers as well as

better performance for individual transfers.

5.4.3.2 Performance of VoIP traffic

We evaluated the performance of VoIP sessions over ViFi by measuring the lengths

of uninterrupted VoIP sessions. Supporting VoIP is more challenging than TCP

because quality is sensitive to both loss and delay.

The industry-standard for evaluating a voice call is the Mean Opinion Score (MoS),

which ranges from 1–5, with labels of perfect (5), fair (4), annoying (3), very annoying

(2), and impossible to communicate (1). MoS is a perceptual measure, but it is

commonly estimated from an R-factor score [41] as: 1, if R < 0; 4.5, if R > 100; and

1 + 0.035R + 7× 10−6R(R − 60)(100− R), otherwise. R-factor is sum of four terms

R = 100− Is − Id − Ief + A, where Is is the signal-to-noise impairments, Id and Ief

are impairments due to delay and loss, and A is expectation factor, which is higher

when users expect lower quality. The impairments are functions of the codec.

We use the G.729 codec, which is implemented on most VoIP devices. For sim-

plicity, we set A to zero (though it may be higher given the challenging environment).

Then, the R-factor reduces to [41]: 94.2 − 0.024d − 0.11(d − 177.3)H(d − 177.3) −

11 − 40log(1 + 10e), where d is the mouth-to-ear delay which includes the coding

delay, network delay, and the delay introduced by the jitter buffer, e is the total loss

rate which includes losses in the network and losses due to late arrivals, and H is the

Heaviside step function: H(x) = 1 if x > 0; 0 otherwise.

108

0

50

100

s
e
s
s
.

l
e
n

(
s
)

B
R

R

V
iF

i

Figure 5.12. ViFi: Median length of uninterrupted VoIP sessions during VanLAN
deployment.

Per the codec, we generate 20-byte packets every 20 ms. Following convention, we

assume that the coding delay is 25 ms, the jitter buffer is 60 ms, and that the wired

segment of the end-to-end path adds 40 ms (corresponding to cross-country paths in

the USA) to each VoIP packet. Aiming for a mouth-to-ear delay of 177 ms (because

the impairment due to delay increases significantly beyond that) means that packets

that take more than 52 ms in the wireless part should be considered lost. We measure

one-way delays by applying piecewise linear regression [81] to remove clock skew and

assuming that the minimum one-way delay is identical in the two directions.

We quantify the VoIP performance using the median length of time between inter-

ruptions. We deem an interruption to have occurred when the MoS value drops below

2 for a three-second period. Three seconds is roughly the time it takes to enunciate

a short English sentence and a MoS value lower than 2 represents a severe disruption

in call quality.

Figure 5.12 shows the results for our deployment on VanLAN. Because our results

(not shown here) indicate that salvaging brings little benefit for VoIP, we do not isolate

overhearing and salvaging components of ViFi in the figure. The results show that the

average session lengths are much longer with ViFi: the gain is over 100%. Figures 5.13

and 5.14 show that ViFi improves VoIP performance over 50% in Channel 1 of Dome-

Mesh, and over 65% in Channel 6 of Dome-Mesh. We also find that the overall call

109

0

50

100

B
R

R

V
iF

i

Figure 5.13. ViFi: VoIP performance in
Dome-Mesh Channel 1 in trace-driven sim-
ulations.

0

50

100

B
R

R

V
iF

i

Figure 5.14. ViFi: VoIP performance
in Dome-Mesh, Channel 6 in trace-driven
simulations.

se
ss

io
n

le
ng

th
 (s

)

VanLAN
Experiment 1

VanLAN
Experiment 2

Figure 5.15. ViFi: Comparing VoIP performance between trace-driven simulation
and VanLAN deployment.

quality with ViFi is better as well. The average of three-second MoS scores is 3.4

with ViFi and 3.0 with BRR. Thus, our results show that users of ViFi experience

better call quality and significantly fewer disruptions in their voice calls.

Finally, we validate our simulator by comparing results of our deployment with

trace-driven experiments using VanLAN traces using two different days of trace data.

Figure 5.15 shows that the VoIP session lengths in the simulation come within 5

seconds of the observed session length for experiments done on two different days.

110

Upstream Downstream
A1 Median number of auxiliary APs 5 5
A2 Average number of auxiliary APs that hear a source

transmission
1.7 3.6

A3 Average number of auxiliary APs that hear a source
transmission but not the acknowledgment

0.6 2.5

B1 Source transmissions that reach the destination 67% 74%
B2 Relayed transmissions corresponding to successful

source transmissions (i.e., false positives)
25% 33%

B3 Average number of auxiliary APs that relay when a false
positive relay occurs

1.5 1.5

C1 Source transmissions that do not reach the destination 33% 26%
C2 Cases where at least one auxiliary AP overhears a failed

source transmission
66% 98%

C3 Cases where zero auxiliary APs relay a failed source
transmission (i.e., false negatives)

10% 34%

C4 Relayed packets that reach the destination 100% 50%

Table 5.2. ViFi: Detailed statistics on the behavior of ViFi during VanLAN deploy-
ment.

5.4.4 Analyzing ViFi

5.4.4.1 Effectiveness of coordination

In this section, we present detailed statistics on the behavior of ViFi to provide

insight into the effectiveness of its coordination mechanism. Table 5.2 shows data

from the TCP experiments in VanLAN. Row B2 shows that ViFi has few false posi-

tives. We define false positives as the number of additional relayed packets that are

relayed to the destination. Comparing it with the average number of auxiliary APs

that receive the source transmission (Row A2), we can infer that the coordination

mechanism of ViFi is effective at curtailing unnecessary relaying. If every auxiliary

AP that overheard a packet relayed the packet, the false positive rate would have been

170% and 360% in the upstream and downstream direction, respectively. If auxiliary

APs deterministically relayed whenever they hear source transmission but not an ac-

knowledgment, the false positive rate would have been 60% and 250% (Row A3). In

111

other words, relying on overhearing acknowledgments is not sufficient to curtail false

positives; probabilistic relaying is needed as well.

Row C2 shows that auxiliary APs often overhear packets that do not reach the

destination during the source transmission. Row C3 shows that in such cases, the

false negative rate is low. We define false negative rate as the number of times no

auxiliary relays a failed transmission divided by the number of failed source trans-

missions. Combining the two rows, we can infer that roughly 65% of the lost source

transmissions are relayed in each direction.

5.4.4.2 Efficiency of medium usage

The beter application performance of ViFi does not stem from it using the medium

more aggressively; in fact, its overall efficiency is comparable to that of BRR. We

measure efficiency as the number of application packets delivered per transmission,

in the channel between the vehicle and the APs.

We compare ViFi with PerfectRelay and BRR. In the PerfectRelay protocol, ex-

actly one basestation relays only if the intended destination did not hear the packet.

We estimate its efficiency using packet-level logs of ViFi. We use the logs collected

during the measurement study. In the upstream direction, a packet is considered

delivered by PerfectRelay if at least one AP hears it. In the downstream direction, a

complication is that even if an AP relays the packet, the vehicle may not hear it. We

get around this by: (i) assuming that the outcome of the relaying is identical to that

of ViFi if at least one of the APs relayed the packet; and (ii) the relaying is successful

if no AP relayed it in ViFi.

Figure 5.16 shows the upstream efficiency. We see that the efficiency of ViFi is

better than BRR and nearly as high as PerfectRelay. Figure 5.16 shows the down-

stream efficiency. For downstream, all three protocols have similar efficiency. BRR

112

0.0

0.2

0.4

0.6

0.8

1.0

e
f

f
i

c
i

e
n

c
y

B
R

R

V
iF

i

Pe
rf

ec
tR

el
ay

 Upstream

Figure 5.16. ViFi: Efficiency of medium
usage for upstream communication.

0.0

0.2

0.4

0.6

0.8

1.0

e
f

f
i

c
i

e
n

c
y

B
R

R

V
iF

i

Pe
rf

ec
tR

el
ay

 Downstream

Figure 5.17. ViFi: Efficiency of medium
usage for downstream communication.

has slightly better efficiency because in ViFi the AP chosen to relay a packet may be

distant.

5.4.5 Comparison with other formulations

We compare ViFi’s coordination mechanism with three other formulations. Each

formulation violates one of the three guidelines outlined in Section 5.3.

¬G1: Auxiliary BSes ignore the presence of other potential auxiliary BSes. Each

relays with a probability equal to its delivery ratio to the destination.

¬G2: Auxiliary BSes ignore loss rate to the destination. Each relays with a probability

equal to 1P
i ci

, where ci is that the auxiliary BS i is contending (Eq. 5.3)

¬G3: Auxiliary BSes relay such that the expected number of packets received by

the destination is 1. (Recall that in ViFi, the expected number of packets

relayed is 1.) Within this constraint, the objective is to minimize the number

of relays. This formulation is an optimization problem: min
∑

i ri · ci subject to∑
i ri · pBid · ci >= 1.

An optimal solution to this optimization problem, is ri = 0 if si > 1; ri = 1 if

si + pBid · ci < 1; and ri = 1−si

pBid·ci
otherwise; where si =

∑
j:pBjd≥pBid

pBjd · cj. In

simpler terms, this solution first picks the auxiliary BSx with the highest pBxd

and sets rx=1. It stops if that satisfies the constraint above. Otherwise, it picks

BSy with the next highest pByd. If the constraint is satisfied by ry=1, then y

113

ViFi ¬G1 ¬G2 ¬G3
False positives 19% 50% 40% 157%
False negatives 14% 14% 12% 10%

Table 5.3. ViFi: Comparison of different downstream coordination mechanisms for
DieselNet Ch. 1.

relays with a probability
(1−pBxd·cx)

pByd·cy
. Otherwise, ry is set to 1, and the BS with

the third highest pBid is picked, and so on.

We find that compared to these other schemes ViFi strikes a good balance between

false positives and false negatives. Table 5.3 shows the results for simulations over

DieselNet’s Channel 1 environment. While the false negatives for all schemes are

roughly similar, ViFi has substantially lower false positives. Further, we observe in

our experiments that the number of packets saved by ¬G2 is a lot lower than ViFi

and that the false positive rate of ¬G1 increases rapidly with the number of auxiliary

BSes.

Figures 5.18(a) - (b) show that the performance of the TCP application of all

three alternate schemes is worse than that of ViFi. However, in Figures 5.18(c) and

(d), the VoIP performance of ¬G1, ¬G3 is similar to that of ViFi for channel 1. Both

¬G1 and ¬G3 are aggressive protocols that relay several packets at the expense of

congesting the medium. The TCP application performance appears to be significantly

affected by congestion, unlike VoIP.

5.4.6 Findings from parameter-driven simulations

To understand the impact of environmental factors that we cannot control in

testbed experiments, we conduct parameter-driven simulations using Qualnet.

For the QualNet experiments, the node’s were placed randomly and the propaga-

tion pathloss model was set to the two-ray model. Figures 5.19(a) - (d) compares the

114

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

Le
ng

th
 o

f F
T

P
 s

es
si

on

(a) Testbed-II Ch1

BRR
ViFi

not G1
not G2
not G3

(a) FTP: Channel 1

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

Le
ng

th
 o

f F
T

P
 s

es
si

on

(b) Testbed-II Ch6

BRR
ViFi

not G1
not G2
not G3

(b) FTP: Channel 6

 0

 20

 40

 60

 80

 100

 120

Le
ng

th
 o

f V
oI

P
 s

es
si

on

(c) Testbed-II Ch1

BRR
ViFi

not G1
not G2
not G3

(c) VoIP: Channel 1

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

Le
ng

th
 o

f V
oI

P
 s

es
si

on

(d) Testbed-II Ch6

BRR
ViFi

not G1
not G2
not G3

(d) VoIP: Channel 6

Figure 5.18. ViFi: Comparison of application performance between BRR, ViFi and
three alternate formulations.

performance of ViFi and BRR for varying BS density and speed. Our main findings

are:

1. Across all BS density levels that we study, ViFi performs significantly better

than BRR for both TCP and VoIP experiments. Its relative benefit is highest for

higher density levels. For these experiments, the speed was set at 30Kmh.

2. Across all speed levels that we study, ViFi performs significantly better than

BRR. While speed does not affect the TCP experiments, higher speeds decreased the

session length of VoIP. We fixed the number of BSes to 8. In a separate experiment,

we also find that at low BS densities, it is better for vehicles to drive faster as they

are able to get out of regions of poor coverage faster.

115

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 0 5 10 15 20

Le
ng

th
 o

f T
C

P
 s

es
si

on

Number of BSes

(a) TCP transfer: Varying density

BRR
ViFi

(a)

 0

 50

 100

 150

 200

 250

 300

 0 2 4 6 8 10 12 14

Le
ng

th
 o

f v
oi

p
se

ss
io

n

Number of BSes

(c) VoIP: varying density

BRR
ViFi

(b)

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50

Le
ng

th
 o

f T
C

P
 s

es
si

on

Speed(Km/h)

(b) TCP transfers: Varying speed

BRR
ViFi

(c)

 0

 50

 100

 150

 200

 250

 300

 350

 0 10 20 30 40 50

Le
ng

th
 o

f v
oi

p
se

ss
io

n

Speed(Km/h)

(d) VoIP: Varying speed

BRR
ViFi

(d)

Figure 5.19. ViFi: Comparisons between BRR and ViFi using the QualNet simu-
lated environment under varying speed and density.

5.4.7 Limitations

Finally, we tested the relaying mechanism of ViFi in a range of simulated con-

ditions to understand where it might perform poorly. We find two such conditions.

First, when the number of auxiliary BSes is high (e.g., greater than 15). Second, all

auxiliary BSes are equi-distant from both the source and the destination. In both

conditions, while the average number of relays per packet is one (Eq. 5.1), the vari-

ance in the number of relays per packet increases, resulting in higher false positives

and negatives. Neither of these situations arise in our testbed environments. To

make ViFi robust in environments where they might, it can be extended such that

the number of auxiliary BSes is limited or the symmetry between them is broken.

These extensions are subject of future work.

116

5.5 ViFi conclusions

In this chapter, I establish the thesis statement (Section 1.1) in the context of

mesh networks. Specifically, I show that leveraging opportunistic overhearing re-

duces disruptions and enables highly interactive applications in vehicular-mesh net-

works. Leveraging opportunistic overhearing by neighboring nodes introduces a re-

source management question — Of the multiple APs that overhear a packet, which

AP should forward the overheard packet to the next hop? ViFi solves the resource

management problem using a utility-driven sender prioritization protocol.

I answer the research questions raised in Section 1.2 with respect to the mesh

environment using measurement, protocol design, and testbed evaluation. Using a

measurement study on the VanLAN testbed, we characterize disruptions in vehicular-

mesh networks. We find that with current WiFi handoff methods, clients experience

frequent disruptions in connectivity even when they may be close to WiFi AP. Fur-

ther, we find that such disruptions do not significantly affect performance of bulk-

transfer applications, but severely affect performance of interactive applications. Our

measurement study shows that leveraging opportunistic overhearing can significantly

reduce disruptions. It overcomes the limitations of using a single AP for reception

because of independence of packet losses across APs.

Next, we design the ViFi protocol to exploit opportunistic overhearing. The chal-

lenge in designing ViFi is in coordinating among APs that opportunistically overhear

packets. If every AP that overhears the packet relays the packet to the next hop, there

is a significant waste of resources. IViFi addresses this challenge using a utility-based

prioritization protocol. ViFi nodes run the prioritization protocol to decide the relay-

ing probability with which each neighbor should forward the overheard packet. The

prioritization is decentralized, where each node computes its own relaying probability

without need for per-packet coordination. The prioritization problem is formulated

to minimize the number of wasted transmissions, while reducing packet losses.

117

We implement and deploy ViFi on the VanLAN testbed for over two months. We

evaluate ViFi using our deployed prototype and simulations driven by traces from

our Dome-Mesh testbed. We study the performance of ViFi for two commonly used

interactive applications: VoIP and short TCP transfers that are typical in Web brows-

ing. Our evaluation using deployment and trace-driven simulations shows that the

link-layer performance of ViFi comes close to an ideal oracular protocol that leverages

multiple APs. We show that the link layer performance improvement translates to

better application performance. In our deployment, ViFi doubles the number of suc-

cessful short TCP transfers and doubles the length of disruption-free VoIP sessions

compared to an existing WiFi-style handoff protocol. Trace-driven simulations on

our Dome-Mesh testbed corroborate our findings.

118

CHAPTER 6

WIFFLER: AUGMENTING 3G CONNECTIVITY

Cellular access is the most preferred means for mobile connectivity among urban

users today. There is widespread deployment of cellular infrastructure by providers

that offer near-perfect connectivity to mobile users. As a result, millions of users are

subscribing for cellular service, with an expected subscription of 1 billion by 2011 [12].

However, cellular spectrum is limited, and the popularity of cellular networks is

creating immense pressure on the spectrum. Subscribers, especially in big cities,

are experiencing deteriorating 3G quality because the network cannot cope with the

high demand [115]. In response to this pressure, wireless providers are attempting to

reduce usage by such as imposing a limit of 5GB per month [121] and “educating”

their users on “responsible” access [106]. Such methods are unlikely to be sufficient

in the long run.

In this chapter, I present the Wiffler protocol that answers the following question:

Can cellular spectrum be augmented using WiFi connectivity for vehicular users?.

WiFi networks operate in the unlicensed spectrum and a WiFi AP only provides

coverage to only a small area of around 100-200 meters. In contrast, 3G cellular

towers have a much larger range of 1 Km and can provide connectivity to a larger

number of users, and therefore have more demand on their spectrum. Augmenting

the long range 3G network with short range and cheap WiFi connectivity can reduce

the spectrum pressure on 3G.

As a first step, we conduct a joint measurement study of cellular and WiFi net-

works in 3 cities, to understand the disruption and performance characteristics of

119

the two networks. Our study shows that 3G is only available 87% of the time, but

combining 3G and WiFi can reduce disruptions/unavailability in 3G networks by

50%. However, in terms of reducing 3G spectrum pressure, our study suggests that

straightforward methods of combining 3G and WiFi can reduce 3G load by at most

11%, and even that will come at the expense of poor application performance.

We then design Wiffler, to overcome these availability and performance challenges.

Its two key ideas are leveraging delay tolerance and fast switching to 3G. We observe

that many applications, such as email or file transfer, can afford to delay data trans-

fers without significantly hurting user experience. Wiffler leverages this observation:

Using a simple method to predict future WiFi throughput, it delays data transfer to

wait for WiFi connectivity, but only if 3G savings are expected. Additionally, so that

the performance of delay and loss sensitive applications is not hurt, Wiffler quickly

switches to 3G if WiFi is unable to transmit the packet within a time window.

The rest of this chapter is organized as follows: In Section 6.1, I describe related

work and in Sections 6.2, I present results from our measurement study. Section 6.3

describes the Wiffler protocol. In Sections 6.4 and 6.5, I present Wiffler evaluations

using deployment experiments and trace-driven experiments, respectively. Section 6.6

concludes this chapter.

6.1 Related Work

In Wiffler, we characterize vehicular connectivity using a joint 3G/WiFi measure-

ment study, and predict future connectivity to augment 3G with WiFi. Below, I

describe research related to characterizing connectivity from moving vehicles, pre-

dicting future connectivity, and augmenting a network interface.

Characterizing vehicular connectivity. Several studies have characterized

WiFi and 3G connectivity in isolation for vehicular settings. For WiFi, the Car-

Tel study quantifies the frequency of AP encounters and the throughput that can

120

be achieved using open APs [61]. Various researchers have since studied link-layer

characteristics [76, 22], TCP throughput [59], as well as the performance of specific

applications (e.g., web search [19]) and handoff policies [54]. Similarly, for 3G, several

recent works have studied characteristics such as signal strength, loss rate, latency,

and TCP throughput [75, 85].

In contrast, we conduct a joint characterization that enables a head-to-head com-

parison of 3G and WiFi. For any one technology, our results are qualitatively consis-

tent with the studies above, but our joint characterization is crucial to understanding

and leveraging their combined power.

Predicting future connectivity. Breadcrumbs predicts future WiFi con-

nectivity based on a model of the environment [84]. Similarly, Deshpande et al. [46]

use WiFi prediction to improve mobile access. Both of these schemes rely on the

existence of an AP location database that provides the WiFi capacity of APs in dif-

ferent locations. In addition, breadcrumbs uses mobility prediction as part of its

model, which means that clients must store and estimate the transition probabilities

between different locations.

In contrast, our model does not require an external database, and predicts based

only on a short meeting history. In our evaluation, we compare the performance of

Wiffler with a Breadcrumbs-like prediction model.

Using multiple interfaces. In Section 2.3.4, I describe several related projects

that propose mobile systems that augment one network using a second available

network. The goal of these previous works is to improve performance or energy

efficiency. In contrast our primary goal is to offload as many bytes on the second

network as possible, while satisfying an application-specific performance requirement.

Thus, instead of responding purely to current conditions, we also base decisions on

predictions of future conditions.

121

6.2 Measurement

We conduct a joint study of 3G and WiFi network characteristics. We seek to

answer the following questions: (i) What is the availability of 3G and WiFi networks

as seen by a vehicular user? (ii) What are the performance characteristics of the two

networks?

6.2.1 Testbeds and methodology

We conducted measurements in three geographically separate, outdoor testbeds

that include effects present in real vehicular settings, such as noise, fading, interfer-

ence, occlusions, and traffic patterns. We refer to the three testbeds as Amherst,

Seattle, and Sfo.

Amherst is located in Amherst, MA and uses the Dome-3G testbed described in

Section 2.2.. The vehicles are equipped with a 3G data modem, in addition to the

other components available on the Dome vehicles. The 3G modem has HSDPA-based

service via AT&T. We collected more than 3000 hours of measurement data from

Amherst over 12 days. Cumulatively, over 500 GB of data was transfered.

The vehicles in Amherst go through areas of sparse connectivity for the most part,

but also are within range of 1.5 sq mile area of a mesh environment. When vehicles

are in the mesh environment, they connect to the mesh APs. In the remaining areas,

the vehicles connect to open, reachable APs. In our data, over 70% of the connections

are through non-mesh APs [101].

The software on the vehicles includes two main programs. The first program

scans the WiFi and 3G channels simultaneously and obtains an IP address whenever

a connection is available. Once a connection is established on any interface, the second

program sends and receives data to a server. Both the server and the vehicle log the

characteristics of the duplex data transfer on the WiFi and the 3G interfaces. More

than 55% of the APs that vehicles in Amherst encountered are closed. Nevertheless,

122

the vehicles were able to successfully exchange data with more than 100 unique open

WiFi APs each day.

Seattle is located in the metropolitan region of Seattle, WA. It consist of one vehicle

that is equipped with the same hardware and software as the vehicles in Amherst.

Measurements in Seattle include large portions of highway driving and we present

results for data collected over 6 days. From the single vehicle, about 5GB of data

were sent and received over the course of the experiment.

Sfo is located in a metropolitan region of San Francisco, CA. We presents results

from 3 days of data, gathered from one vehicle using the same setup as the oher two

testbeds.

The vehicles in both Seattle and Sfo exchange data with open APs that we did not

deploy. Unlike Amherst, in which the buses scheduled routes, Seattle and Sfo data

were collected using unscheduled driving patterns that did not follow a regular path.

All of our measurements and performed on the AT&T network and as a result,

our conclusions are specific to the AT&T network.

6.2.2 Availability of 3G and WiFi

To measure availability, the vehicle and the server periodically send data to each

other over UDP. Availability is measured over 1-second intervals. In each interval,

an interface (WiFi or 3G) is considered available if at least one packet was received

in the interval. Availability is defined as the number of available 1-second intervals

divided by the total number of intervals.

Figure 6.1 shows that availability in each testbed. We see that in Amherst, 3G

and WiFi are available 90% and 12% of the time, respectively. Interestingly, the

percentage of time neither 3G or WiFi is available is only 5%. In other words, com-

bining 3G and WiFi can reduce 3G unavailability from 10% to 5%, a 50% reduction.

The combination of WiFi and 3G reduces unavailability significantly because of a

123

 0

 20

 40

 60

 80

 100

SfoSeattleAmherst

P
er

ce
nt

ag
e

av
ai

la
bi

lit
y

3G
WiFi

None

Figure 6.1. Wiffler: 3G and WiFi avail-
ability on the three testbeds.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60

A
va

ila
bi

lit
y

Interval Length (sec)

3G
WiFi

None

Figure 6.2. Wiffler: 3G and WiFi avail-
ability in Amherst at longer time intervals.

negative correlation between the availability of 3G and WiFi. Out of the 12% WiFi

availability, 5% of the WiFi availability is when 3G is not available. If WiFi and 3G

availability were completely independent, the overall unavailability even when both

3G and WiFi are combined would be (1− 0.90)(1− 0.12) = 9%.

Figure 6.1 shows that in Seattle, 3G availability is only 82%, and the WiFi avail-

ability is 10%. When 3G and WiFi are both considered, network unavailability is

11%. Again, if only the 3G interface is used, the unavailability would be roughly

16%. Similarly, in Sfo, 3G availability is 89% leading to an unavailability of 11%.

But when combined with WiFi, the total unavailability reduces to 5%. Figure 6.1

shows that the negative correlation between 3G and WiFi is not specific to Amherst,

but can also be observed in Seattle and Sfo.

In summary, in all three testbeds, network unavailability is reduced by over 50%

by combining WiFi and 3G compared to using 3G alone. We were not able to uncover

the reason for the negative correlation observation.

6.2.2.1 Availability over longer intervals

For less-demanding applications, such as email or file transfer, intervals longer

than 1 second are more appropriate for measuring availability. Figure 6.2 shows the

availability of 3G and WiFi over longer time intervals, from 10 to 60 seconds. The

124

 0

 20

 40

 60

 80

 100

WiFi3G
P

er
ce

nt
ag

e
av

ai
la

bi
lit

y Off-Peak hours
Peak hours

Figure 6.3. Wiffler: Comparing 3G and WiFi availability during peak and off-peak
hours in Amherst.

results are based on Amherst measurements. 3G is available (i.e., at least one packet

is received in an interval) close to 98% of the time with 60-second intervals. The

availability of WiFi also increases with 60-second intervals, to 30%. We observed

qualitatively similar effects in Seattle and Sfo (not shown in figure).

6.2.2.2 Availability in peak vs. off-peak hours

We study availability of 3G and WiFi with respect to time of day, in particular,

during peak and off-peak hours. We define peak hours to be from 8.00 AM to 9.00

PM and off-peak hours to be from 9.00 PM to 8.00 AM.

The vehicles in Amherst operate throughout the day but operate in fewer locations

during off-peak hours. For a fair comparison, we only consider locations where the

vehicle operates during both the peak and off-peak hours. We perform the experiment

using days when the vehicles were operational during both peak and off-peak hours

for at least 2 hours. The availability is computed as an average availability during

2-hour intervals.

Figure 6.3 shows the 3G and WiFi availability during peak and off-peak hours

in Amherst. The results are computed over 4 days and the error bars show the

95% confidence interval. 3G availability during off-peak hours in Amherst is 9%

125

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

C
D

F

UDP throughput (Mbps)

Upstream

WiFi
3G

Figure 6.4. Wiffler: Upstream UDP
throughput in Amherst.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

C
D

F

UDP throughput (Mbps)

Downstream

WiFi
3G

Figure 6.5. Wiffler: Downstream UDP
throughput in Amherst

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

C
D

F

UDP throughput (Mbps)

Upstream

WiFi
3G

Figure 6.6. Wiffler: Upstream UDP
throughput in Seattle.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

C
D

F

UDP throughput (Mbps)

Upstream

WiFi
3G

Figure 6.7. Wiffler: Downstream UDP
throughput in Seattle.

greater than the availability during peak hours. WiFi availability during peak hours

is lower by 4%. We find that similar trends hold in Seattle as well. The difference

in 3G availability between peak and off-peak hours is 6%, and the difference in WiFi

availability is less than 3%.

The results indicate that the performance of 3G and WiFi networks suffers during

periods of high spectrum use (i.e., during peak hours). But our experiments do not

provide stronger evidence to show causality between availability and spectrum use.

6.2.3 Performance of WiFi and 3G

We use three measures—UDP throughput, TCP throughput, and loss rate—to

characterize the performance of 3G and WiFi networks. To measure the upstream

126

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

C
D

F

TCP throughput (Mbps)

Upstream

WiFi
3G

Figure 6.8. Wiffler: Upstream TCP
throughput in Amherst.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

C
D

F

TCP throughput (Mbps)

Downstream

WiFi
3G

Figure 6.9. Wiffler: Downstream TCP
throughput in Amherst.

and downstream UDP throughput, the vehicle and server each send 10 back-to-back

1500-byte packets every 20 ms. We measure UDP throughput in all three testbeds.

To measure loss rate, the vehicle and server each send a 20-byte packet every 100

ms. To measure TCP throughput, the vehicle and the server each create a TCP

connection and send 100KB data to each other repeatedly. At the end of a 100KB

transfer, the TCP connection is closed and a new connection is created. We measure

loss rate and TCP throughput only in Amherst. All performance results are based

on at least 3 days of measurement data.

6.2.3.1 UDP throughput

Figures 6.4 and 6.5 show the CDF of the 3G and WiFi UDP throughput in the

upstream and downstream directions. All CDFs are generated using measurements

over 1-second intervals. They include points only for intervals with non-zero through-

put (i.e., non-zero availability). The 3G lines thus have almost 10 times as many

points as the WiFi lines.

In the upstream direction, 3G and WiFi achieve a median UDP throughput of

850 Kbps and 400 Kbps respectively in Amherst. In the downstream direction, the

median 3G throughput is again about twice that of WiFi. For example, in Amherst,

we observe a median 3G throughput of 1Mbps and a median WiFi throughput

127

of 500Kbps. The median upstream and downstream UDP throughput is similar in

Seattle, as shown in Figures 6.6 and 6.7. In both testbeds the median WiFi UDP

throughput is about half of the median 3G throughput, but the top 20th percentile

of WiFi outperforms 3G.

6.2.3.2 TCP throughput

Figures 6.8 and 6.9 show the upstream and downstream TCP throughput of 3G

and WiFi in Amherst. In the upstream direction, the median TCP throughput of 3G

and WiFi are 500 Kbps and 200 Kbps, respectively. In the downstream direction, the

median TCP throughput of 3G and WiFi are 600 Kbps and 280 Kbps, respectively.

Thus, the median TCP throughput is only about half of the median UDP throughput

for both the 3G and WiFi networks. However the relative TCP performance of 3G

versus WiFi is similar to the relative UDP performance.

Taken together with the UDP measurements, the results above suggest that the

throughput performance of WiFi in mobile outdoor environment is poorer than 3G.

The result points to an important difference between stationary and mobile environ-

ments. In typical stationary settings, WiFi throughput is significantly higher than

3G throughput.

6.2.3.3 Loss rate

Figure. 6.10 shows the loss rates over 1-second intervals for 3G and WiFi in

Amherst. We see that 3G loses no packets in 93% of the intervals. WiFi has no

packet loss in 78% of the intervals but loses all packets in 12% of the intervals. In

other words, in 90% of the intervals WiFi delivers no packet or delivers all of them.

This behavior is consistent with prior studies that have shown that WiFi losses are

bursty in both indoor and vehicular settings [104, 22] and losses are bi-modal. These

bursty losses make WiFi offloading challenging, especially for applications with strict

QoS requirements such as VoIP or video conferencing.

128

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
C

C
D

F
Loss rate

3G
WiFi

Figure 6.10. Wiffler: 3G and WiFi loss rate in Amherst.

6.2.3.4 Spatial variations in performance

Using data collected in Amherst, we study the geographical distribution of 3G and

WiFi performance. Our goal is to characterize the locations where WiFi can augment

3G connectivity. We divide the geographical area into grids and compute the total

data transfered over the 3G and WiFi per unit time spent in the grid, averaged over

a day.

Figure 6.11 compares the performance of 3G and WiFi at different grid locations.

In all, there were 120 grid locations in which packets were received on either WiFi

or 3G at least once. In 47% of the grid locations, the total data sent on WiFi is

insignificant compared to the data sent over 3G. In the remaining 53% of the grid

locations, at least 20% of the 3G data could be shifted to WiFi. In 9% of the grid

locations, equal or more data was sent over WiFi than 3G, i.e., all 3G traffic could

be offloaded to WiFi.

6.2.4 Measurement summary

In summary, the measurement study shows that

• The availability of WiFi is an order of magnitude poorer than 3G.

129

WiFi << 3G
(47%)

WiFi = 20% of
3G

(31%)

WiFi = half
of 3G
(13%)

WiFi = 3G
(5%)

WiFi = Twice
of 3G (3%)

No 3G,
only WiFi

(1%)

Figure 6.11. Wiffler: The spatial distribution of 3G and WiFi performance in
Amherst. The Amherst testbed was divided into grids of size is 0.5 miles × 0.5 miles.

• The WiFi loss rate performance is also poorer compared to 3G. Therefore, lever-

aging WiFi to augment 3G may incur performance penalties. WiFi throughput

is also much lower than 3G throughput.

6.3 Wiffler Protocol

The goal of Wiffler is to reduce 3G usage by leveraging WiFi connectivity when

available, but to do so without affecting application performance.

The simplest policy for using WiFi is to send data on the WiFi network when

available and switch to the 3G network when WiFi is unavailable. Results from our

measurement study show, however, that this policy does not work well in practice

because of two key challenges. First, the average availability of WiFi can be low—11%

in our measurements—which severely limits the fraction of data that can be offloaded

to WiFi. Second, WiFi loss rate is higher than 3G. For applications that are sensitive

to losses, such as VoIP, using WiFi irrespective of its loss characteristics will degrade

application quality.

130

Wiffler uses two ideas to address these two challenges: leveraging delay tolerance

and fast switching to 3G. The key insight in the former is that delay tolerance allows

applications to trade-off completion time for 3G usage. A user may be willing to

tolerate a few seconds delay to send their email or complete a file transfer if it reduces

3G usage. Wiffler delays data transfers to reduce 3G usage, but only delays a transfer

if the added delay results in 3G savings and is within the application’s delay tolerance.

For applications with strict quality of service requirements, such as VoIP and

video, Wiffler uses the fast switching mechanism. When using WiFi, it promptly

switches packets to 3G if WiFi cannot deliver them within a certain time period.

6.3.1 Wiffler API

Wiffler takes as input application data, which is characterized using S, the size of

the transfer, D, the delay tolerance and an application-specified QoS metric. Based

on these characteristics and those of the operating environment, it decides how to

distribute the data across 3G and WiFi.

6.3.2 Leveraging delay tolerance

Wiffler estimates future WiFi throughput and delays transfers only if the estimate

indicates that delaying transfer will reduce 3G usage. Wiffler’s’s prediction method

is described in Section 6.3.4. For now, assume that we have a predictor that yields a

(possibly erroneous) estimate of WiFi capacity from the current time until a future

time.

Wiffler uses the predictor to estimate offload capability of the WiFi network until

the delay tolerance threshold. The decision to either wait for a potential WiFi offload

opportunity or to send immediately on 3G is made based on the predicted WiFi

capacity and the application workload. For example, one possible strategy is to wait

for WiFi only if all of the application data can be transfered over WiFi before the

delay tolerance threshold. Since the estimate can be wrong, an alternative, more

131

conservative strategy is to wait for WiFi only if the predictor estimates that twice the

application data can be transfered over WiFi before the delay tolerance threshold.

The completion time versus 3G savings trade-off for these two strategies is clearly

different.

To capture this trade-off, we introduce a tuning parameter called the conservative

quotient. The conservative quotient, c, is a number between 0 and ∞. For a given

value of c, the Wiffler offloading protocol is shown in Figure 6.12. The protocol con-

siders the total data S that needs to be transfered within the earliest delay tolerance

threshold, and the total data the node can transfer on WiFi, W . The next two steps

are done in parallel. If WiFi is available, we use it immediately to transfer data. 3G

connectivity is used only if we estimate that W ≤ S · c.

If c < 1, Wiffler will wait for a WiFi offload opportunity even if only a fraction c of

the total application data can be transfered on WiFi in expectation. Therefore, this

strategy will offload more data on WiFi at the expense of completion time. On the

other hand, if c > 1, Wiffler waits for WiFi only if the WiFi capacity is substantially

greater than the load. Therefore, the completion time of the strategy is likely to be

lower, but it also has a lower offload potential. Unless stated otherwise, we set c = 1

in our experiments.

The conservative quotient can be set not only by the system or the application but

also by the 3G provider. For example, during peak times when 3G spectrum pressure

is high, the provider may decide to offload more data on WiFi at the expense of

application latency and set c to a small value. But during the off-peak times, c can

be increased to improve application latency.

6.3.3 Fast switching to 3G

lin as video streaming and VoIP are sensitive to even small delays and losses.

Because of a greater chance of loss, using WiFi to transfer such data can hurt appli-

132

D: earliest delay tolerance threshold among queued transfers
S: size in bytes to be transferred by D
W : estimated WiFi transfer size

if (WiFi is available):

• send data on WiFi and update S

if (W < S · c and 3G is available):

• send data on 3G and update S

Figure 6.12. Wiffler: Prediction-based offloading protocol.

cation performance. Thus, if WiFi is losing or delaying packets, we should send them

on 3G as soon as possible.

Wiffler uses low-level, link-layer information to enable fast switching to 3G in

the face of poor WiFi conditions. We added a signaling mechanism in the mobile

node’s driver that signals the application when the wireless card receives a link-

layer acknowledgement. The signal contains the identity of the acknowledged packet.

The application matches the acknowledgement with its outstanding packets. If the

application does not receive a link-layer acknowledgement for a packet before a delay

threshold, it sends the packet on the 3G interface. We set the delay threshold to

50 ms.

Link layer information is needed because the WiFi NIC frequently takes a long

time to complete retransmission attempts. For instance, the driver that we use in our

testbed (Madwifi) retries packets 11 times, which even if we ignore medium access

delays takes more than 120 milliseconds with the default 802.11b specification. This

delay can affect performance of applications such as VoIP.

Our fast switching mechanism is simple: it sends the packet on 3G if the WiFi

link-layer fails to deliver the packet within a delay threshold. The motivation for

this protocol is that waiting for WiFi link-layer retransmissions incurs delays. In

addition, when a packet is lost, there is a high chance that the retransmission will

133

fail, since losses are bursty in the vehicular environment [22, 104]. Thus, it is better

to send time-sensitive packets on 3G rather than waiting for likely more failures on

WiFi. Choosing the delay threshold involves a trade-off between better application

performance and 3G load. In Section 6.5, we analyze this trade-off in detail.

6.3.4 WiFi throughput prediction

We predict WiFi offload capacity based on an estimate of the average throughput

offered by an AP and a prediction of the number of APs that will be encountered

until a given future time interval.

Our prediction of AP encounters is based on the observation that AP meetings

occur in bursts. That is, if the mobile node meets APs frequently (e.g., because it

is in a dense urban area with many APs), then the node is likely to meet the next

AP within a short time interval. Similarly, if the mobile node has not met an AP for

a long period of time (e.g., because it is on a highway), then the node is unlikely to

meet an AP within a short time interval. An analysis of our measurement data shows

that AP meetings in reality indeed have this property.

Based on this observation, we predict the number of AP encounters using a simple

history-based predictor. The mobile node keeps track of the last n AP encounters

and computes the average time between the encounters. Wiffler predicts the number

of AP encounters until a future time using the average inter-meeting time of the past

encounters. For example, if the average inter-meeting time of the past encounters is

I seconds, then Wiffler predicts the number of AP encounters in the next T seconds

to be T
I
. Similarly, the average throughput is estimated based on the throughput

observed by the vehicle at each AP encounter.

We study the accuracy of the AP encounter prediction using the traces we gathered

from our testbeds. Figure 6.13 shows the AP prediction error for different values of

n, the number of previous encounters used in the prediction. The prediction error is

134

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

Pr
ed

ic
tio

n
er

ro
r

Future time-interval (or prediction interval)

n = 8
n = 4
n = 1

(a) Amherst

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

Pr
ed

ic
tio

n
er

ro
r

Future time-interval (or prediction interval)

n = 8
n = 4
n = 1

(b) Seattle

Figure 6.13. Wiffler: The relative average error between the number of APs pre-
dicted and the number of AP meetings observed in the measurement. Based on
measurements collected from Amherst and Seattle. Vertical bars shows the 95% con-
fidence interval around the mean.

presented for different future time-intervals (or prediction intervals). We compare the

predicted number of encounters with the actual number of encounters over 10-second

time periods, and present the average.

Figure 6.13(a) shows for the Amherst testbed that if the prediction is based on only

one previous AP encounter (n=1), the prediction accuracy is low. The prediction error

is close to 20% even for predicting AP encounters until a small future time-interval of

20 seconds. On the other hand, when prediction is based on the previous 4 or 8 AP

encounters, the prediction error is less than 5% up to a future prediction time-interval

of 50 seconds. The prediction error increases to 20% for a prediction time-interval

of 100 seconds. Figure 6.13(b) shows that AP prediction yields high accuracy in the

Seattle testbed as well, even though the vehicle did not follow preset routes, unlike

the vehicles in the Amherst testbed.

Since in both testbeds the accuracy of prediction based on 8 previous encounters

is similar to the prediction based on 4, our experiments use n=4.

Our simple prediction framework allows us to estimate the WiFi offload capacity

with no pre-programmed knowledge about the environment. More complicated pre-

diction models that use additional information about the environment exist in the

135

Completion % offloaded
time to WiFi

Wiffler offloading 45 sec 30%

Table 6.1. Wiffler: Deployment results of prediction-based offloading.

literature. For example, if the AP locations are available a priori, then the WiFi

offload capacity can be predicted by predicting user mobility, instead of AP predic-

tion [84, 46]. In Section 6.5, we show that the marginal improvement obtained by

using location information is small.

6.4 Deployment results

We implemented both Wiffler’s’s prediction-based offloading and fast switching

and deployed it on the Dome-3G testbed. We evaluated the performance of Wiffler

with respect to delay tolerant file transfer and highly interactive Voice Over IP.

6.4.1 Prediction-based offloading

This experiment uses a deployment of Wiffler on 20 nodes over a period of 2

days. Each node generates 5Mb (or 5000,000 bytes) of application data. The data

is generated as a uniform process with a mean interval of 100 seconds. We set the

delay tolerance threshold for data delivery to be 60 seconds. All data is destined to

a known server that we control.

Table 6.1 shows the results. For 5Mb transfers and a deadline of 60 seconds,

Wiffler reduces 3G usage by 30%, even though the WiFi availability is only 12%

(Section 6.2.2).

6.4.2 Fast switching

We evaluate fast switching in the context of VoIP. We assume that the VoIP

application uses the popular G.729 codec and generates 20-byte packets every 20 ms.

136

% time voice % offloaded
quality good to WiFi

Fast switching 68% 34%
WiFi when available 42% 40%

Table 6.2. Wiffler: Deployment results for VoIP using fast switching.

We calculate VoIP quality by using the standard MOS metric that ranges between

1 (unacceptable) and 5 (best). To evaluate VoIP performance in a quickly changing

environment, we estimate the MOS value for 3-second intervals and quantify the

overall quality as the fraction of intervals where the MOS value is more than 3.0.

3-second is roughly the time it takes to enunciate a short English sentence. The

methodology to estimate the MOS score is described in Chapter 5, Section 5.4.3.2.

Implementing fast switching in the downstream direction is challenging. It needs

either support from the APs or detailed information at the proxy on current WiFi

conditions. In this work, we implement fast switching only in the upstream direction.

Our trace-driven simulations study the benefit of fast switching in the downstream

direction as well.

Table 6.2 shows the results using one vehicle in our deployment that operated

in an area with high WiFi availability. Fast switching maintains good voice quality

for over 68% of the time and reduces 3G usage by 34%. Instead, if we used WiFi

whenever available, without switching to 3G during periods of bad WiFi quality, voice

quality is maintained only 42% of the time, even though the 3G savings marginally

increases from 34% to 40%.

6.5 Trace-driven evaluation

We now present extensive trace-driven evaluation of Wiffler. We consider a range

of different conditions as well as compare Wifflerto alternatives strategies for offload-

ing data.

137

6.5.1 Evaluation of prediction-based offloading

To evaluate Wiffler’s prediction-based offloading, we use the TCP throughput

traces collected during our measurements. The traces provide information on how

much data can be sent or received on 3G and WiFi during 1-second intervals. We

show below that our trace-driven simulations yield results similar to those in our

deployment.

We characterize offloading performance using two metrics: (i) the fraction of data

sent over WiFi, which measures the reduction in 3G usage; and (ii) the average

completion time.

We evaluate the performance of Wiffler and some alternate offloading strategies

over three dimensions.

• Workload: We use realistic application workloads as well as synthetic work-

loads.

• Location: We use traces collected from Seattle and from Amherst. We also

evaluate the performance of the protocols in areas with higher AP density.

• Application conservativeness: We use different conservative quotients and delay

tolerance thresholds.

6.5.1.1 Alternative strategies

We compare Wiffler with several alternative strategies to offload data to WiFi.

We consider three classes of alternative algorithms.

Algorithms without prediction: To understand the value of prediction, we

evaluate two algorithms that do not use prediction. The Impatient algorithm uses a

very simple policy: use 3G whenever WiFi is unavailable; else use WiFi. The Patient

algorithm waits and sends data on WiFi until the delay tolerance threshold, and only

138

switches to 3G if all of the data are not sent on WiFi before the delay tolerance

threshold. Patient and Impatient present the two extreme points in the design space.

Algorithms with prediction: To understand the accuracy versus complexity

trade-off, we compare Wiffler’s simple prediction scheme against a more sophisticated

prediction model that we call Adapted-Breadcrumbs. This model is similar to the

Breadcrumbs system [84]. At each location grid, the system learns the available

WiFi bandwidth and the probability of the client moving to an adjacent grid. It

forecasts WiFi transfer sizes by taking the weighted average of expected transfers at

each future grid. We use grid sizes of 0.2 miles × 0.2 miles and the learning phase

uses the previous day of data.

Algorithm with future knowledge: To quantify the remaining room for im-

provement, we also consider an (impractical) algorithm with perfect future knowledge

that we call Oracle. Oracle knows the exact amount of data that can be transfered

using WiFi within the delay tolerance threshold, and uses this knowledge to make a

decision about when to use the 3G network. It minimizes 3G usage with the lowest

achievable completion time.

6.5.1.2 Workload

We conduct our experiments using two workloads.

Realistic application workload: We obtained the workload from two corpo-

rate commuter buses that provide Internet access to the passengers. We sniffed the

intra-bus WiFi network to capture packets that are sent and received by the riders.

Based on the captured traces, we obtain distributions of connection sizes and inter-

arrival times. We then generate realistic workloads based on the distributions. The

average size of workload is 58 Kbps but it is highly bursty.

Synthetic workload: In order to experiment with a wider range of workload

parameters, we generate a synthetic workload where a mobile node generates applica-

139

 0

 20

 40

 60

 80

 100

C
om

pl
et

io
n

Ti
m

e
(s

ec
on

ds
)

Deployment
Trace-driven simulation

(a) Completion time

 0

 0.2

 0.4

 0.6

 0.8

 1

Fr
ac

tio
n

da
ta

 o
n

W
iF

i

Deployment
Trace-driven simulation

(b) Fraction data offloaded to WiFi

Figure 6.14. Wiffler: Comparing the deployment versus simulation results.

tion data of size 5MB uniformly. The mean generation interval is set to 100 seconds.

Similarly, a remote server generates transfers for each client at the same rate. Each

experimental setting is run 10 times with different random seeds.

6.5.1.3 Validating trace-driven simulation

To validate the simulator, we collect throughput data during the deployment.

During deployment periods when there are no application data to be sent or received,

the vehicle transfers random data to the server both over WiFi and 3G and logs

details of this transfer. As a result, the logs contain the throughput trace for the

entire deployment duration. We conduct a trace-driven evaluation of Wiffler using

this collected trace. We use the same packet generation parameters as the deployment.

The simulation results are averaged over 10 runs with different seeds.

Figure 6.14 shows the performance of Wiffler observed in the deployment and

in the simulator. Error bars show the 90% confidence interval. We see that the

deployment results match well with the simulation results both in terms of completion

time and percentage of data offloaded to WiFi.

6.5.1.4 Realistic workload

Figure 6.15 shows the performance of the different offload algorithms for varying

delay tolerance threshold in Amherst. Wiffler offloads a significant fraction of data

140

 0
 10
 20
 30
 40
 50
 60
 70
 80

 0 20 40 60 80 100

C
om

pl
et

io
n

Ti
m

e
(s

ec
on

ds
)

Delay Tolerance (seconds)

Oracle
Wiffler

Adapted-Breadcrumbs
Impatient

Patient

(a) Completion time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

Fr
ac

tio
n

da
ta

 o
n

W
iF

i

Delay Tolerance (seconds)

Oracle
Wiffler

Adapted-Breadcrumbs
Impatient

Patient

(b) Fraction data offloaded to WiFi

Figure 6.15. Wiffler: Comparing offloading performance in Amherst with realistic
application workload.

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120

C
om

pl
et

io
n

T
im

e
(s

ec
on

ds
)

Delay Tolerance (seconds)

Oracle
Wiffler

Impatient
Patient

(a) Completion time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

F
ra

ct
io

n
da

ta
 o

n
W

iF
i

Delay Tolerance (seconds)

Oracle
Wiffler

Impatient
Patient

(b) Fraction data offloaded to WiFi

Figure 6.16. Wiffler: Comparing offloading performance in Seattle with realistic
application workload.

to WiFi. Figure 6.15(b) shows that if users are willing to wait 60 seconds, they can

reduce 3G usage by 45%. The offload fraction increases as delay tolerance increases.

The Patient protocol reduces 3G usage by the most, because Patient sends data on

WiFi opportunistically until the delay tolerance threshold. As a result, Figure 6.15(a)

shows that the completion time using Patient is significantly higher than all the other

protocols. In terms of completion time, the Impatient protocol performs the best since

the protocol sends data on both 3G and WiFi and does not leverage delay tolerance.

But as a result, Impatient reduces 3G usage by only 23% compared to the nearly 50%

reduction achieved by other protocols, for a delay tolerance of 100 seconds.

141

 0

 50

 100

 150

 200

 0 20 40 60 80 100

C
om

pl
et

io
n

Ti
m

e
(s

ec
on

ds
)

Delay Tolerance (seconds)

Oracle
Wiffler

Adapted-Breadcrumbs
Impatient

Patient

(a) Completion time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

Fr
ac

tio
n

da
ta

 o
n

W
iF

i

Delay Tolerance (seconds)

Oracle
Wiffler

Adapted-Breadcrumbs
Impatient

Patient

(b) Fraction data offloaded to WiFi

Figure 6.17. Wiffler: Comparing offloading performance in Amherst with synthetic
workload.

Oracle, with complete future knowledge achieves the optimal balance between

reducing 3G usage and decreasing completion time. Wiffler performs within 5% of

both Oracle and Patient in terms of 3G savings, and is within 7 seconds of Oracle with

respect to completion time. In contrast, the Patient scheme that uses no prediction

has a completion time that is 25 seconds more than Oracle on average.

Figures 6.15 shows that Adapted-Breadcrumbs performs similar to Wiffler both in

terms of completion time and 3G savings even though Adapted-Breadcrumbs uses a

more sophisticated prediction algorithm that learns WiFi performance in each loca-

tion.

Figure 6.16 shows the performance of the offload protocols in Seattle. Because

we did not measure TCP throughput in Seattle, we use UDP throughput for this

experiment. As in Amherst, Wiffler provides about the same amount of 3G savings

as Oracle. The completion time of Wiffler is within 10 seconds of Oracle.

6.5.1.5 Synthetic workload

We repeated the experiments above for a synthetic workload of 5Mb file transfers,

to understand the performance of the different protocols with larger transfer sizes.

Figure 6.17 shows the performance results for Amherst. We observe that less than

142

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100 120

C
om

pl
et

io
n

T
im

e
(s

ec
)

Deadline (seconds)

Oracle
Wiffler

Impatient
Patient

(a) Completion time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

F
ra

ct
io

n
da

ta
 o

n
W

iF
i

Deadline (seconds)

Oracle
Wiffler

Impatient
Patient

(b) Fraction data offloaded to WiFi

Figure 6.18. Wiffler: Comparing offloading performance in Seattle with synthetic
workload.

22% of data is offloaded to WiFi for small delay tolerance threshold. But for a delay

tolerance of 100 seconds, Wiffler offloads 40% of data over WiFi.

Not surprisingly, Figure 6.17(a) shows that the completion time for the synthetic

workload is higher than the completion time for the realistic workload, because of

the larger data sizes. The completion time of Patient is nearly 75 seconds more than

Oracle. Note that the average data size in the realistic application workload is 86Kbps

compared to 5Mb in the case of synthetic workload. With larger data transfers, it is

more likely that all of the data cannot be delivered using WiFi. This is both because

of the lower throughput on WiFi and lower availability. As a result, in Patient, most

transfers are completed only after the delay tolerance threshold, significantly inflating

its completion time. Similarly, the difference in completion time between Wiffler and

Oracle is about 35 seconds compared to only 5 seconds with the realistic workload

that had smaller data transfer sizes (Figure 6.15(a)). Figure 6.18 shows that the

results in Seattle are similar to those in Amherst.

6.5.1.6 Impact of AP density

3G cell towers are carefully placed to achieve near-complete coverage, but WiFi

AP placement tends to be organic. In Amherst, certain areas have high AP density,

but other areas have moderate to low AP density. As AP density is high typically

143

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

F
ra

ct
io

n
da

ta
 o

n
W

iF
i

Delay Tolerance (seconds)

Wiffler: AP availability 24%
Wiffler: AP availability 12%

Figure 6.19. Wiffler: Comparing the fraction of data offloaded to WiFi under
different AP availability conditions in Amherst with realistic workload.

in crowded downtown areas, where augmenting 3G capacity with WiFi is especially

useful, we created a second data set. This filtered data set includes only measurements

from a 15 sq. mile area with a high WiFi density. The availability of WiFi in this

filtered data set is 24%, compared to 12% in the entire data.

Figures 6.19 show the performance of Wiffler in the total and the filtered data.

In this experiment we used the realistic application workload. In areas with greater

WiFi availability, 3G usage is reduced by 75% for a delay tolerance threshold of

100 seconds compared to a 50% reduction in 3G usage in regions with lower WiFi

availability. The figure shows that even though the difference in WiFi availability in

only 12%, the corresponding increasing in 3G savings is much higher. However, this

is true only for large delay tolerance thresholds. For a lower threshold of 20 seconds,

the difference in 3G savings between the two areas is only 9%.

6.5.1.7 Impact of conservative quotient

Wiffler uses prediction to trade-off completion time and 3G savings. As a result,

the performance of Wiffler lies in between Patient and Impatient, the two extreme

offloading strategies. In Section 6.3.2 we described an additional parameter called

the conservative quotient c that allows Wiffler to achieve different trade-offs between

completion time and 3G savings. Recall that Wiffler waits for WiFi only if the

predicted WiFi capacity is c times the workload size.

144

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100

C
om

pl
et

io
n

tim
e

(s
ec

on
ds

)

Delay Tolerance (seconds)

Patient
c = 0.2

c = 1
c = 2
c = 5

c = 10
Impatient

(a) Completion time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

F
ra

ct
io

n
da

ta
 o

n
W

iF
i

Delay Tolerance (seconds)

Patient
c = 0.2

c = 1
c = 2
c = 5

c = 10
Impatient

(b) Fraction data offloaded to WiFi

Figure 6.20. Wiffler: Trade-off between application latency time and 3G usage, in
Amherst with synthetic workload.

Figures 6.20 shows the completion time and 3G savings for different values of c

from 0.2 to 10. As the value of c increases, Wiffler starts sending data on the 3G

interface much earlier instead of waiting for WiFi, which lowers completion time. On

the other hand, the total data offloaded to WiFi when c=10 is significantly lower.

When c=0.2, the total data offloaded to WiFi is 40% for a 100-second delay tolerance

and the performance is close to the Patient protocol. On the other hand, the strategy

has a poor completion time. The conservative quotient is thus an additional parameter

that can be tuned to achieve different trade-offs. We find that c=1 offers a good trade-

off between completion time and 3G savings.

6.5.2 Evaluation of fast switching

As with deployment experiments, we evaluate Wiffler’s’s fast switching in the

context of VoIP. We use two performance metrics: (i) fraction of time that the VoIP

quality is good; and (ii) fraction of data offloaded to WiFi. As before, we define VoIP

quality to be good if the mean opinion score (MOS) values greater than 3.0 for a

3-second interval.

A goal of the evaluation is to understand the trade-off between VoIP quality and

3G savings for different values of switching delay threshold. A higher switching delay

threshold increases 3G savings because there is a greater probability that the packet

145

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

%
 o

f t
im

e
V

oI
P

 q
ua

lit
y

go
od

Switching delay threshold (ms)

No switching
Only 3G

Oracle
Wiffler

(a) VoIP performance

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 20 40 60 80 100 120 140

F
ra

ct
io

n
of

flo
ad

ed
 to

 W
iF

i

Switching delay threshold (ms)

Wiffler

(b) Fraction data offloaded to WiFi

Figure 6.21. Wiffler: The performance of VoIP for varying switching time.

will be delivered using WiFi instead of 3G. However, the VoIP quality may be affected.

Similarly, a lower switching delay threshold improves VoIP quality but may reduce

3G savings.

We compare the performance of fast switching in Wiffler to three other strategies.

First, the Only-3G strategy supports VoIP using only 3G; the WiFi interface is never

used. Second, the No-switching strategy does not switch away from WiFi as long as it

is available. Finally, the Oraclestrategy knows ahead of time if the packet will be lost

on WiFi and, only in those cases, opts to send it on 3G. This strategy is impractical

and serves as an upper bound on the performance.

For this trace-driven evaluation, we collected traces on Amherst by instrumenting

one vehicle to send 20 byte packets every 20 ms to a server over both WiFi and 3G.

Unlike the implementation, packets are sent both in the upstream and downstream

direction. We evaluate the fraction of time the voice quality is good in both directions.

The traces are 1-hour long and from an area in Amherst with dense AP deployment.

Figure 6.21(a) shows VoIP performance as a function of switching delay threshold.

We see that for values below 60 ms, Wiffler is as good as the Oracle. It does not hurt

VoIP quality if we can discover within that time that WiFi will lose or delay the

packet. Of the four systems, No-switching performs the worst because of high loss

rates. Wiffler improves voice quality to 73%, compared to 41% when using the No-

146

switching system that switches to WiFi whenever available. Wiffler performs better

than Only-3G because 3G frequently experiences high delays [75]. By dynamically

deciding when to switch from WiFi to 3G, Wiffler provides both the low delays of

WiFi and the high reliability of 3G.

Figure 6.21(b) shows that this advantage does come at the cost of a modest

increase in 3G usage. Compared to No-switching, the increase in 3G usage is 10%

if the switching delay threshold is 60 ms. Given the benefits of fast switching to

application quality, we consider this increase to be a worthwhile trade-off.

6.6 Wiffler Conclusions

In this chapter, I establish the thesis statement (Section 1.1) in the context of

cellular networks. Specifically, I show that leveraging opportunistic WiFi connectivity

can reduce the spectrum pressure on 3G networks. Using a measurement study,

we find that disruptions/unavailability in 3G networks can be significantly reduced

using WiFi. But straightforward techniques of combining 3G and WiFi will not

significantly reduce spectrum pressure on 3G, and may affect application performance.

To overcome these challenges, we design Wiffler that substantially reduces 3G usage

for delay-tolerant applications, while ensuring that the performance of loss-sensitive

applications is not affected. Consistent with the thesis statement, we show that

opportunistic protocols can be used to improve performance of cellular networks.

However, unlike the protocols described in Chapters 3, 4, and 5, Wiffler is not a

utility-driven protocol.

I answer the research questions raised in Section 1.2 with respect to cellular net-

works using measurement, protocol design, and testbed evaluation. We conduct a

measurement study in 3 cities to understand the disruption and performance charac-

teristics of 3G networks. We find that 3G is available 87% of the time, but combining

WiFi and 3G can reduce disruptions/unavailability in 3G by 50%. However, our

147

study suggests that WiFi can at most offload 11% of 3G data. We also find that in

half of the locations where WiFi is available, its throughput is much less than 3G.

WiFi also experiences a much higher loss rate.

Our design goals in Wiffler is to address the availability and performance chal-

lenges of WiFi. Wiffler uses two key ideas to overcome these challenges: leveraging

delay tolerance and fast switching to 3G. For delay tolerant applications, Wiffler trades

off higher application latency for lower 3G spectrum usage. Instead of transmitting

data immediately, it waits for WiFi to become available. Using a prediction algorithm

to predict future WiFi throughput, it waits only if 3G savings are expected within the

application’s delay tolerance. For performance sensitive applications, Wiffler switches

quickly to 3G when WiFi quality becomes poor, to maintain application quality.

We implement and deploy Wiffler on the Dome-3G testbed. We evaluate Wiffler

using the deployment and using trace-driven simulations. In our deployment, we

observed that for transfers of size 5MB that can be delayed by at most 60 seconds,

Wiffler reduces 3G usage by 30%. In simulation using realistic workloads, we find

that Wiffler reduces 3G usage by 45% for a 60 second delay tolerance. Because of it’s

wait-only-if-it-helps strategy, the actual transfer latency is increased by only 7 seconds

on average. For a VoIP application, we find that the time periods with good VoIP

quality increases by 31% (absolute improvement) using fast switching, compared to

a system that switches to WiFi irrespective of its quality. More importantly, the

increase in quality is achieved even when 40% of the VoIP traffic was sent over WiFi.

148

CHAPTER 7

FUTURE WORK

The vision for this thesis is to provide ubiquitous network access to mobile users in

diverse environments. As a first step towards this vision, I designed robust protocols

to overcome disruptions and enable applications in mobile networks. However, to

make mobile access truly ubiquitous, two fundamental challenges remain, namely

energy limitations and the lack of adaptability.

Energy limitation is the primary impediment to deploying resource-intensive ap-

plications on mobile devices. As mobile devices become more powerful, they have the

potential to make pervasive computing a reality by providing support for applications

including face recognition, speech-to-text translation, and health care applications.

However, mobile devices cannot support several of these applications without quickly

draining their battery.

The second challenge is the lack of adaptability. Users not only operate in diverse

environments, but they also move between environments. For example, devices of-

ten go from being stationary to being mobile, or they move from mostly connected

environments to intermittently-connected environments. However, mobile protocols

and applications rarely adapt to these changes. For example, when a user moves to a

poorly connected environment, protocols and applications simply stop working rather

than degrading gracefully.

Below, I describe three research topics I wish to pursue as part of future work, to

address the above challenges.

149

Energy benefits by exploiting radio diversity: The network interface

is one of the main energy draws in mobile devices. The motivation for this work is

that most mobile devices today are equipped with multiple interfaces corresponding

to different radio technologies. Furthermore, the interfaces often have complimentary

energy profiles, as I observed in my recent work [25, 44] and as corroborated by other

researchers [91]. For example, transferring data on the WiFi interface is more energy

efficient compared to 3G. On the other hand, keeping the WiFi interface powered

on requires much more energy compared to 3G. The complimentary energy profiles

suggest that combining the different interfaces will provide substantial energy benefits.

My goal is to exploit this diversity in radio technology to reduce energy consumed

by the network interface. Specifically, I propose to design a virtual network interface

that chooses the optimal physical interface to transmit data at a given instant. There

are two challenges in exploiting diversity in radio technologies. First, it is non-trivial

to choose the best interface at a given instant, since it may depend on several factors

such as communication distance, loss rate, and the environment. Second, switching

between interfaces can incur a performance penalty. In addition, several systems

challenges will need to be addressed, including accommodating multiple IP end points

and maintaining end-to-end semantics.

Adaptation policies to support seamless connectivity: Mobile devices

operate in network environments that are constantly changing. However, protocol

design decisions that are suitable for one environment are often ill-suited for a different

environment. For example, opportunistic replication provides significant benefits for

DTN routing [17] but is likely to increase congestion in mostly connected networks.

My long term research agenda in this area is to design protocols that incorporate

adaptability as a first-class design concern.

As a first step, my goal is to design rate adaptation policies as a device moves

between stationary and mobile environments. Popular rate adaptation policies such

150

as SampleRate [82] vary the transmission rate according to the channel condition to

adapt to losses in stationary environments. The challenge is that rate adaptation

policies that work well in stationary environments do not work well in mobile envi-

ronments because of the dynamic nature of the mobile channel. These challenges are

further exacerbated in newer WiFi standards such as 802.11n [14] that have multiple

antennae.

Characterizing user behavior: User behavior is key to the success of a

mobile system. Today, it is difficult to design new protocols or evaluate the benefits

of existing protocols with respect to real users because of a lack of understanding of

mobile usage patterns. For example, the energy benefits of exploiting radio diversity

(the project described above), depends on how often a user is in an environment with

access to multiple network interfaces. One of my goals in this topic is to design a

platform that will help evaluate the performance of protocols with respect to real

users. As a first step, I will collect traces of real usage patterns and deploy a large

scale mobile testbed to replay the traces. Several challenges will need to be addressed,

including maintaining privacy, anonymizing traces, and monitoring the health of the

collected traces.

151

CHAPTER 8

CONCLUSIONS

In this thesis, I present a suite of opportunistic protocols that overcome disruptions

and enable applications in diverse network environments. Specifically, I focus on four

network environments that span the connectivity spectrum, starting from mostly

disconnected DTNs to mostly connected cellular networks. I show using detailed

measurement study on two vehicular testbeds that each of these environments are

prone to varying disruption characteristics that makes it difficult to support certain

kinds of applications.

The primary challenge in overcoming disruptions in the diverse environment is

uncertainty—uncertainty in topology, uncertainty in connectivity, and uncertainty in

channel conditions. In this thesis, I show that exploiting resources opportunistically,

i.e., using resources as they become available rather than planning for them a priori,

allows protocols to work well under uncertainty. However, naively using opportunism

can waste resources and hurt performance. Instead, I design utility-driven, proba-

bilistic, protocols that address the resource management challenge to implement the

following opportunistic mechanisms: Replication, Aggressive prefetching, Opportunis-

tic forwarding, and Opportunistic augmentation.

I show how the four protocols enable applications in diverse network environ-

ments: 1) rapid’s replication routing enables bulk transfer applications in DTNs, 2)

Thedu’s aggressive prefetching enables web search in intermittently connected net-

works, 3) ViFi’s opportunistic forwarding enables highly interactive applications such

as VoIP in well connected mesh networks, and 4) Wiffler’s opportunistic augmen-

152

tation reduces the demand on cellular network to improve application performance.

Today, these applications cannot be supported in their respective environments, and

even if supported, suffer from poor performance.

Finally, I present a detailed evaluation of the protocols using implementation and

deployment experiments on two vehicular testbeds. The deployment experiments

show that the protocols are practical and can be implemented in realistic usage en-

vironments. For a broader evaluation across a range of environmental factors, I also

conduct evaluations using simulation experiments based on real-world traces. The

deployment and simulation results show that the protocols significantly improve the

performance of applications compared to the state-of-the-art, in their respective en-

vironments.

153

APPENDIX

RAPID

A.1 DTN hardness results

In Section 3.5, I presented two theorems to formalize hardness of DTN routing.

Below, I provide a proof for the two theorems.

Any DTN routing algorithm has to deal with two uncertainties regarding the

future: unpredictable meeting schedule and unpredictable workload. rapid is a local

algorithm that routes packets based on the marginal utility heuristic in the face of

these uncertainties. In this section, we show two fundamental reasons that make the

case for a heuristic approach to DTN routing. First, we prove that computing optimal

solutions is hard even with complete knowledge about the environment. Second, we

prove that the presence of even one of the two uncertainties rule out provably efficient

online routing algorithms.

A.1.1 Competitive Hardness of Online DTN Routing

P = {p1, p2...pn}

u1

u2

un

Intermediate

un−1

Destination

vn

v1

destined topi vi

Figure A.1. DTN node meetings for Theorem A. Solid arrows represent node meet-
ings known a priori to the online algorithm while dotted arrows represent meetings
revealed subsequently by an offline adversary.

154

Let ALG be any deterministic online DTN routing algorithm with unlimited com-

putational power.

Theorem 1(a). If ALG has complete knowledge of the workload, but not of the

schedule of node meetings, then ALG is Ω(n)-competitive with an offline adversary

with respect to the fraction of packets delivered, where n is the number of packets in

the workload.

Proof. We prove the theorem by constructing an offline adversary, ADV, that incre-

mentally generates a node meeting schedule after observing the actions of ALG at

each step. We show how ADV can construct a node meeting schedule such that ADV

can deliver all packets while ALG, without prior knowledge of node meetings, can

deliver at most 1 packet.

Consider a DTN as illustrated in Fig. A.1, where P = {p1, p2, . . . , pn} denotes a

set of unit-sized packets; U = {u1, u2, . . . , un} denotes a set of intermediate nodes;

and V = {v1, v2, . . . , vn} denotes a set of nodes to which the packets are respectively

destined, i.e. pi is destined to vi for all i ∈ [1, n]. The following procedure describes

ADV’s actions given ALG as input.

Procedure for ADV:

• Step 1: ADV generates a set of node meetings involving unit-size transfer

opportunities at time t = 0 between A and each of the intermediate nodes

u1, . . . , un respectively (refer to Figure A.1).

• Step 2: At time t1 > 0, ADV observes the set of transfers X made by ALG.

Without loss of generality, X : P → U is represented as a (one-to-many) map-

ping where X(pi) is the set of intermediate nodes (u1, u2 · · ·un) to which ALG

replicates packet pi.

155

• Step 3: ADV generates the next set of node meetings (u1, Y (u1)), (u2, Y (u2)), . . . , (un, Y (un))

at time t1, where Y : U → V is a bijective mapping from the set of intermediate

nodes to the destination nodes v1, v2, · · · vn.

ADV uses the following procedure to generate the mapping Y given X in Step 3.

Procedure Generate Y(X):

1 Initialize Y (pi) to null for all i ∈ [1, n];

2 for each i ∈ [1, n] do

3 if ∃j : uj /∈ X(pi) and Y (uj) = null, then

4 Map Y (uj) → vi for the smallest such j;

5 else

6 Pick a j: Y (uj) = null, and map Y (uj) → vi

7 endif

Lemma 1. ADV executes Line 6 in Generate Y(X) at most once.

Proof. We first note that the procedure is well defined at Line 6: each iteration of

the main loop map exactly one node in U to a node in V , therefore a suitable j such

that Y (uj) = null exists. Suppose ADV first executes Line 6 in the m’th iteration.

By inspection of the code, the condition in Line 3 is false, therefore each intermediate

node uk, k ∈ [1, n], either belongs to X(pi) or is mapped to some destination node

Y (uk) 6= null. Since each of the m− 1 previous iterations must have executed Line 4

by assumption, exactly m−1 nodes in U have been mapped to nodes in V . Therefore,

each of the remaining n−m + 1 unmapped nodes must belong to X(pi) in order to

falsify Line 3. Line 6 maps one of these to vi leaving n−m unmapped nodes. None

of these n −m nodes is contained in X(pk) for k ∈ [m + 1, . . . , n]. Thus, in each of

the subsequent n−m iterations, the condition in Line 3 evaluates to true.

156

Lemma 2. The schedule of node meetings created by Y allows ALG to deliver at most

one packet to its destination.

Proof. For ALG to deliver any packet pi successfully to its destination vi, it must be

the case that some node in X(pi) maps to vi. Such a mapping could not have occurred

in Line 3 by inspection of the code, so it must have occurred in Line 6. By Lemma 1,

Line 6 is executed exactly once, so ALG can deliver at most one packet.

Lemma 3. The schedule of node meetings created by Y allows ADV to deliver all

packets to their respective destinations.

Proof. We first note that, by inspection of the code, Y is a bijective mapping: Line

4 and 6 map an unmapped node in U to vi in iteration m and there are n such

iterations. So, ADV can route pi by sending it Y −1(vi) and subsequently to vi.

Theorem 1(a) follows directly from Lemmas 2 and 3.

Corollary 1. ALG can be arbitrarily far from ADV with respect to average delivery

delay.

Proof. The average delivery delay is unbounded for ALG because of undelivered pack-

ets in the construction above while it is finite for ADV. If we assume that that ALG

can eventually deliver all packets after a long time T (say, because all nodes connect to

a well-connected wired network at the end of the day), then ALG is Ω(T)-competitive

with respect to average delivery delay using the same construction as above.

We remark that it is unnecessary in the construction above for the two sets of

n node meetings to occur simultaneously at t = 0 and t = t1, respectively. The

construction can be easily modified to not involve any concurrent node meetings.

Theorem 1(b). If ALG has complete knowledge of the meeting schedule, but not of

157

the packet workload, then ALG can deliver at most a third of the packets delivered

by an optimal offline adversary.

S

A

(a) The basic gadget forces ALG to
drop half the packets.

T1 T2

Basic Gadget
T1

(b) ADV can use a gadget of depth 2 to force
ALG to deliver at most 2/5'th of the packets

T1 T2 T3 T4 T5

R

p1, p2

p1, p2

v
′

1

v
′

1

v
′

2

v
′

2

v1

v1

v2

v2

v3

v4v
′′

4

v
′′

2

v
′′

3

v
′′

1

p
′

1

p
′

2

p
′

1

p
′

2

p3

p4

Figure A.2. DTN construction for Theorem A. Solid arrows represent node meetings
known a priori to ALG while vertical dotted arrows represent packets created by ADV
at the corresponding node.

Proof. We prove the theorem by constructing a procedure for ADV to incrementally

generate a packet workload by observing ALG’s transfers at each step. As before, we

only need unit-sized transfer opportunities and packets for the construction.

Consider the basic DTN “gadget” shown in Fig. A.2(a) involving just six node

meetings. The node meetings are known in advance and occur at times T1 and T2 > T1

respectively. The workload consists of just two packets P = {p1, p2} destined to v1

and v2, respectively.

158

Lemma 4. ADV can use the basic gadget to force ALG to drop half the packets while

itself delivering all packets.

Proof. The procedure for ADV is as follows. If ALG transfers p1 to v′1 and p2 to v′2,

then ADV generates two more packets: p′2 at v′1 destined to v2 and p′1 at v′2 destined

to v1. ALG is forced to drop one of the two packets at both v′1 and v′2. ADV can

deliver all four packets by transferring p1 and p2 to v′2 and v′1 respectively at time T1,

which is the exact opposite of ALG’s choice.

If ALG instead chooses to transfer p1 to v′2 and p2 to v′1, ADV chooses the opposite

strategy.

If ALG chooses to replicate one of the two packets in both transfer opportunities

at time T1 while dropping the other packet, ADV simply deliver both packets. Hence

the lemma.

Next, we extend the basic gadget to show that ALG can deliver at most a third of

the packets while ADV delivers all packets. The corresponding construction is shown

in Figure A.2(b).

The construction used by ADV composes the basic gadget repeatedly for a depth

of 2. In this construction, ADV can force ALG to drop 2/5th of the packet while

ADV delivers all packets. We provide the formal argument in a technical report [18]

in the interest of space. Similarly, by creating a gadget of depth 3, we can show that

ADV can force ALG to deliver at most 4/11’th of the packets. Effectively, each new

basic gadget introduces 3 more packets and forces ALG to drop 2 more packets. In

particular, with a gadget of depth i, ADV can limit ALG’s delivery rate to i/(3i−1).

Thus, by composing a sufficiently large number of basic gadgets, ADV can limit the

delivery rate of ALG to a value close to 1/3.

A.1.2 Computational Hardness of the DTN Routing Problem

159

Theorem 1 (a): Given complete knowledge of node meetings and the packet

workload a priori, computing a routing schedule that is optimal with respect to the

number of packets delivered is NP-hard and has a lower bound of Ω(n1/2−ε) on the

approximation ratio.

Proof. Consider a DTN routing problem with n nodes that have complete knowledge

of node meetings and workload a priori. The input to the DTN problem is the set

of nodes 1, . . . , n; a series of transfer opportunities {(u1, v1, s1, t1), (u2, v2, s2, t2), . . .}

such that ui, vi ∈ [1, n], si is the size of the transfer opportunity, and ti is the time

of meeting; and a packet workload {p1, p2, . . . ps}, where pi = (u′i, v
′
i, s

′
i, t

′
i), where

u′, v′ ∈ [1, n] are the source and destination, s′ the size, and t′ the time of creation of

the packet, respectively. The goal of a DTN routing algorithm is to compute a feasible

schedule of packet transfers, where feasible means that the total size of transferred

packets in any transfer opportunity is less than the size of the transfer opportunity.

The decision version On,k of this problem is: Given a DTN with n nodes such that

nodes have complete knowledge of transfer opportunities and the packet workload, is

there a feasible schedule that delivers at least k packets?

Lemma 5. O(n, k) is NP-hard.

Proof. We show that O(n, k) is a NP-hard problem using a polynomial-time reduction

from the edge-disjoint path (EDP) problem for a directed acyclic graph (DAG) to

O(n, k). The EDP problem for a DAG is known to be NP-hard [39].

The decision version of EDP problem is: Given a DAG G = (V, E), where |V | = n,

E ∈ V × V : ei = (ui, vi) ∈ E, if ei is incident on ui and vi and direction is from ui to

vi. If given source-destination pairs {(s1, t1), (s2, t2)...(ss, ts)}, do a set of edge-disjoint

paths {c1, c2...ck} exist, such that ci is a path between si and ti, where 1 ≤ i ≤ k.

Given an instance of the EDP problem, we generate a DTN problem O(n, k) as

follows:

160

As the first step, we topologically order the edges in G, which is possible given G

is a DAG. The topological sorting can be performed in polynomial-time.

Next, we label edges using natural numbers with any function l : E → N such

that if ei = (ui, uj) and ej = (uj, uk), then l(ei) < l(ej). There are many ways to

define such a function l. One algorithm is:

1 label = 0

2 For each vertex v in the decreasing order of the topological sort,

(a) Choose unlabeled edge e = (v, x) : x ∈ V ,

(b) label = label + 1

(c) Label e; l(e) = label.

Since vertices are topologically sorted, if ei = (ui, uj) then ui < uj. Since the

algorithm labels all edges with source ui before it labels edges with source uj, if

ej = (uj, uk), then l(ei) < l(ej).

Given a G, we define a DTN routing problem by mapping V to the nodes (1, .., n)

in the DTN. The edge (e = {u, v} : u, v ∈ V) is mapped to the transfer opportunity

(u, v, 1, l(e)), assuming transfer opportunities are unit-sized. Source and destination

pairs {(s1, t1), (s2, t2), . . . , (sm, tm)} are mapped to packets {p1, p2, . . . , pm}, where

pi = (si, ti, 1, 0). In other words, packet p is created between the corresponding

source-destination pair at time 0 and with unit size. A path in graph G is a valid route

in the DTN because the edges on a path are transformed to transfer opportunities of

increasing time steps. Moreover, a transfer opportunity can be used to send no more

than one packet because all opportunities are unit-sized. If we solve the DTN routing

problem of delivering k packets, then there exists k edge-disjoint paths in graph G,

or in other words we can solve the EDP problem. Similarly, if the EDP problem has

a solution consisting of k edge-disjoint paths in G, at least k packets can be delivered

161

using the set of transfer opportunities represented by each path. Using the above

polynomial-time reduction, we show that a solution to EDP exists if and only if a

solution to O(n, k) exists. Thus, O(n, k) is NP-hard.

Corollary 2. The DTN routing problem has a lower bound of Ω(n1/2−ε) on the

approximation ratio.

Proof. The reduction given above is a true reduction in the following sense: each

successfully delivered DTN packet corresponds to an edge-disjoint path and vice-

versa. Thus, the optimal solution for one exactly corresponds to an optimal solution

for the other. Therefore, this reduction is an L-reduction [89]. Consequently, the lower

bound Ω(n1/2−ε) known for the hardness of approximating the EDP problem [57] holds

for the DTN routing problem as well.

Hence, Theorem 2.

The hardness results naturally extend to the average delay metric for both the

online as well as computationally limited algorithms.

A. 2 Delay estimation based on dependency graphs

In Section 3, we presented Estimate Delay that estimates expected delays of

packets based on the packet’s position in a node’s buffer. The algorithm ignores some

dependencies between packets across node buffers. In this section, we present an

algorithm dag delay to estimate expected delays more accurately without ignoring

non vertical dependancies.

To formalize the dependancies, we introduce some notation. Let G = (V, E) be a

graph representing a markov network with vertices V = {V1 ∪ V2 ∪ . . . ∪ Vm} where

Vi = {xi,1, xi,2, . . . , xi,k} is the set of k replicas of packet i. All packets in V are

destined to the same DTN node — recall that we wish to estimate expected delays

of packets based on the current state of the network assuming no further replication,

so packets destined to other DTN nodes do not affect the delays of packets in V .

162

An edge (or a path) from one vertex to another indicates a dependency between the

delivery time distributions of the corresponding packets. The edges are constructed

as follows.

• Each replica is connected to its successor, i.e., the replica immediately ahead of

it in the current buffer.

• Each replica is connected to all the replicas of its successor at other DTN node

buffers.

a

b

c d

d(a) = min(ek, el)

d(b) = min(ej , d(a) ⊕ el, d(a) ⊕ el)

d(c) = el ⊕ d(b) d(d) = min(ej ⊕ d(b), ek ⊕ db, el ⊕ d(a))

Figure A.3. A topologically sorted dependancy graph.

Let the delay distribution of a packet in buffer x be ex. Let ⊕ represent the ad-

dition of two distributions (e.g., adding two identical exponential distributions yields

a gamma distribution with twice the mean). Assume unit-sized transfer opportunity

and packet.

dag delay first topologically sorts the dependancy graph. For example, the topo-

logical sort of Figure 3.4 is shown in Figure A.3. dag delay computes the delay of the

packets in the graph in the topologically order starting from the top. The information

maintained for each of the k replicas p1, . . . , pk of packet p is {succ(pj), evertex(pj)}, 1 ≤

j ≤ k, where succ(pj) is the successor of the replica pj, and vertex(pj) is the DTN

buffer where pj exists.

Procedure dag delay(p):

1 for each replica pj, 1 ≤ j ≤ k of p, do

163

(a) Let s = succ(pj), and n = vertex(pj)

(b) if d(s) is not defined, then

i. d(s) =dag delay(s)

(c) d′(pj) = d(s)⊕ en

2 return d(p) = min(d′(p1), . . . , d
′(pk))

Figure A.3 presents the delay of each packet as computed using dag delay.

Although the algorithm is recursive, sequentially computing the delay of packets top

down in the DAG and storing the delay values of already computed packets ensures

that the delay of each packet is computed exactly once. And since the DAG has no

cycles, dag delay will converge.

dag delay is an idealized algorithm and its implementation requires a global

control channel with complete knowledge of the system state. Therefore, in our

implementation, we use the less accurate but local Estimate Delay algorithm. In

addition, dag delay fails when the transfer opportunities are not unit-sized. For

example, in Figure 3.4, if the transfer opportunity and packets are unit-sized, then

the delay of packet b depends on the delay of packet a. But if not, then the delay of

b may not depend on the delay of a and the dependancy graph is no longer valid. In

general, estimating the expected delay of packets is a hard problem even when global

knowledge is available but transfer opportunities are not unit-sized.

Pathological examples when Estimate Delay fails

Estimate Delay ignores non-vertical edges in the dependency DAG and there-

fore is not an accurate estimate. Figure A.4 shows a pathological case of packet

distribution where the estimation error of Estimate Delay can be arbitrarily large.

In this example, we assume that all packets are destined to node Z. There are k + 1

replicas of a distributed among nodes W1, W2 · · ·Wk and X. There are no replicas

of b. We assume that the meeting times between all pairs of nodes is exponentially

164

distributed; further we let the mean meeting time between W1, W2 · · ·Wk and Z be

λ and between X and Z be 10 · λ. The transfer opportunities are unit-sized.

.......

Node W2Node W1

a a

Node X

b
aa

Node Wk

Figure A.4. A pathological example of packet distribution among nodes.

Algorithm Estimate Delay computes the delay of delivery b as the expected

time taken for X to meet destination Z twice. Accordingly, a rapid node estimates

the delivery delay of b as an exponential distribution with mean 20 · λ.

dag delay, on the other hand, takes into account non-vertical dependancies and

estimates the delivery delay distribution of b accurately as – the time taken for one of

the k +1 replicas of a to be delivered followed by X meeting Z. The time taken for a

to be delivered is an exponential distribution with mean λ
k
. Accordingly, dag delay

estimates the delivery time of b as a gamma distribution with mean 10 · λ + λ
k
.

The difference is delay estimation between dag delay and Estimate Delay can

be arbitrarily large in this pathological example. But notwithstanding such patho-

logical scenarios, Estimate Delay is simple, local, and computationally efficient

heuristic to estimate expected delays and we find that it works well in practice.

A.3 ILP formulation of DTN routing problem

In Section 3.6.2.4 we compare the performance of rapid with an optimal routing

protocol that solves the DTN routing problem with complete future knowledge. We

formulate the offline, optimal, DTN routing problem as an Integer Linear Program

(ILP) optimization problem when the meeting times between nodes are precisely

know. We divide time into discrete intervals so every node meets at most one other

node in an interval. Jain et al. [62] solve a similar DTN routing problem but allow

165

packets to be fragmented across links and mapped non-zero propagation delays on the

links. This severely limited the size of the network and the number of packets they

could evaluate. In comparison, our formulation lets us obtain the optimal solution

for realistic DTNs with small to moderate workloads.

The inputs to the problem are as follows.

• The set of time intervals I = 1, 2, . . . , h . The function b returns the beginning

of the interval. e returns the end of an interval and variable h represents the

last interval

• The set of nodes in the network N

• The set of edges E. An edge is defined when two nodes meeting in an interval.

We define functions f and s to return the first and the second node that meet

respectively, d returns the interval in which the edge is defined. When two

nodes i and j meet, they are represented two edges e and e′ on either direction.

E(x,y) represents an edge with source x and destination y.

• The set of packets P . Function st return the source of the packet, dt return the

destination of the packet, c returns the interval in which the packet was created,

t returns time the packet was created and size() returns the size of the packet.

• The bandwidth for each meeting is a constant and is B.

The variables are

• X(p ∈ P, e ∈ E) = 1 if j is forwarded over the edge e and is 0 otherwise

• N(p ∈ P, n ∈ N, i ∈ I) = 1 if node n has packet p in the interval i and is 0

otherwise

• D(p ∈ P, i ∈ I) = 1 if packet p is delivered before interval i and is 0 otherwise

166

X can be used to construct the optimal path taken by a packet.

min
∑
p∈P

∑
i∈I

∑
e∈E(dt(p),i)

(b(i)− t(p)) ·X(p, e)

+
∑
p∈P

(1−D(p, e(h)) · (b(h)− t(p))

All constraints use notations ∀p, n, i, e to mean ∀p ∈ P, ∀n ∈ N,∀i ∈ I and ∀e ∈ E.

The constraints are

Initialization constraints

N(p, n, i) = 0 if i < c(p) ∀p, n, i

N(p, n, i) = 1 if st(p) = n and c(p) = i ∀p

Bandwidth constraint∑
p∈P

(X(p, e) ∗ size(p) ≤ B ∀e

Transfer constraints

N(p, n, i− 1)−
∑

e∈E(i,n)

X(p, e) ∀ p, n, i

∑
e∈E(n,i)

X(p, e)−N(p, n, i) = 0 ∀p, n, i

N(p, f(e), d(e)− 1)−X(p, e) >= 0 ∀p, e

Conservation constraint

1−
∑
n∈N

N(p, n, i) = 0 if i > c(p) ∀p, e

Delivery Constraint

D(p, i)−
∑

e∈E(dt(p),.):d(e)<i

X(p, e) = 0 ∀ p, i

167

BIBLIOGRAPHY

[1] Google wifi. http://en.wikipedia.org/wiki/Google WiFi.

[2] One laptop per child. http://www.laptop.org.

[3] Optimized link state routing protocol. http: //www.olsr.org/.

[4] Qualnet. http://www.scalable-networks.com/products.

[5] Text Retrieval Conference (TREC). http://trec.nist.gov.

[6] TIER Project, UC Berkeley. http://tier.cs.berkeley.edu/.

[7] Umass dome testbed. http://prisms.cs.umass.edu/dome.

[8] Umass dome testbed. http://prisms.cs.umass.edu/dome.

[9] Umass turtlenet. http://prisms.cs.umass.edu/dome/turtlenet.

[10] White spaces. http://en.wikipedia.org/wiki/White spaces (radio)/.

[11] Stability properties of constrained queueing systems and scheduling policies for
maximum throughput in multihop radio networks. 1936–1948.

[12] EDGE, HSPA and LTE Broadband Innovation. http://www.3gamericas.org/
documents/EDGE HSPA and LTE Broadband Innovation Rysavy Sept 2008.

pdf/, 2010.

[13] Mobile Broadband Capacity Constraints And the Need for Optimization.
http://www.rysavy.com/Articles/2010 02 Rysavy Mobile Broadband

Capacity Constraints.pdf, 2010.

[14] 802.11n report. http://grouper.ieee.org/groups/802/11/Reports/tgn

update.htm.

[15] Aguayo, Daniel, Bicket, John, Biswas, Sanjit, Judd, Glenn, and Morris, Robert.
Link-level measurements from an 802.11b mesh network. In SIGCOMM (Aug.
2004).

[16] Amir, Yair, Danilov, Claudiu, Hilsdale, Michael, Musaloiu-Elefteri, Raluca, and
Rivera, Nilo. Fast handoff for seamless wireless mesh networks. In MobiSys
(June 2006).

168

[17] Balasubramanian, Aruna, Levine, Brian Neil, and Venkataramani, Arun. DTN
Routing as a Resource Allocation Problem. In Proc. ACM SIGCOMM (August
2007), pp. 373–384.

[18] Balasubramanian, Aruna, Levine, Brian Neil, and Venkataramani, Arun. DTN
Routing as a Resource Allocation Problem. Tech. Rep. 07-37, UMass Amherst,
2007.

[19] Balasubramanian, Aruna, Levine, Brian Neil, and Venkataramani, Arun. En-
abling Interactive Applications in Hybrid Networks. In Proc. ACM Mobicom
(September 2008).

[20] Balasubramanian, Aruna, Levine, Brian Neil, and Venkataramani, Arun. Repli-
cation Routing in DTNs: A Resource Allocation Approach. IEEE/ACM Trans-
actions on Networking 18, 2 (April 2010), 596–609.

[21] Balasubramanian, Aruna, Mahajan, Ratul, and Venkataramani, Arun. Aug-
menting mobile 3g using wifi. In MobiSys ’10: Proceedings of the 8th inter-
national conference on Mobile systems, applications, and services (New York,
NY, USA, 2010), ACM, pp. 209–222.

[22] Balasubramanian, Aruna, Mahajan, Ratul, Venkataramani, Arun, Levine,
Brian Neil, and Zahorjan, John. Interactive WiFi Connectivity for Moving
Vehicles. In Proc. ACM SIGCOMM (August 2008).

[23] Balasubramanian, Aruna, Mahajan, Ratul, Venkataramani, Arun, Levine,
Brian Neil, and Zahorjan, John. Interactive wifi connectivity for moving ve-
hicles. Tech. Rep. TR-2008-18, Dept. of Computer Science, University of Mas-
sachusetts, 2008.

[24] Balasubramanian, Aruna, Zhou, Yun, Croft, W. Bruce, Levine, Brian Neil, and
Venkataramani, Arun. Web Search From a Bus. In Proc. ACM Workshop on
Challenged Networks (CHANTS) (September 2007), pp. 59–66.

[25] Balasubramanian, Niranjan, Balasubramanian, Aruna, and Venkataramani,
Arun. Energy consumption in mobile phones: a measurement study and im-
plications for network applications. In IMC ’09: Proceedings of the 9th ACM
SIGCOMM conference on Internet measurement conference (New York, NY,
USA, 2009), ACM, pp. 280–293.

[26] Banerjee, Nilanjan, Corner, Mark D., and Levine, Brian Neil. An Energy-
Efficient Architecture for DTN Throwboxes. In Proceedings of IEEE Infocom
(Anchorage, Alaska, May 2007), pp. 776–784.

[27] Biswas, Sanjit, and Morris, Robert. ExOR: opportunistic multi-hop routing for
wireless networks. In SIGCOMM (Aug. 2005).

169

[28] Brik, Vladimir, Mishra, Arunesh, and Banerjee, Suman. Eliminating handoff
latencies in 802.11 WLANs using multiple radios: Applications, experience, and
evaluation. In IMC (Oct. 2005).

[29] Broder, Andrei. A taxonomy of web search. SIGIR Forum 36, 2 (2002), 3–10.

[30] Buddhikot, M., Chandranmenon, G., S.J.Han, Y.W.Lee, and amd L.Salgarelli,
S.Miller. Integration of 802.11 and Third Generation Wireless Data Networks.
In Proc. IEEE Infocom (April 2003).

[31] Burgess, John, Gallagher, Brian, Jensen, David, and Levine, Brian Neil. Max-
Prop: Routing for Vehicle-Based Disruption-Tolerant Networks. In Proc. IEEE
INFOCOM (April 2006).

[32] Burns, Brendan, Brock, Oliver, and Levine, Brian Neil. Autonomous Enhance-
ment of Disruption Tolerant Networks. In Proc. IEEE International Conference
on Robotics and Automation (May 2006).

[33] Camp, Joseph D., Knightly, Edward W., and Reed, William S. Developing
and deploying multihop wireless networks for low-income communities. In in
Proceedings of Digital Communities (2005).

[34] Cao, Y., and Li., V. Scheduling algorithms in broadband wireless networks.
vol. 1, pp. 76–87.

[35] Casella, George, and Berger, Roger L. Statistical Inference. Second Edition.
Duxbury, 2002.

[36] Chachulski, Szymon, Jennings, Michael, Katti, Sachin, and Katabi, Dina. Trad-
ing structure for randomness in wireless opportunistic routing. In SIGCOMM
(Aug. 2007).

[37] Chaintreau, A., Hui, P., Crowcroft, J., Diot, C., Gass, R., and Scott, J. Impact
of Human Mobility on the Design of Opportunistic Forwarding Algorithms. In
Proc. IEEE Infocom (May 2006).

[38] Chandra, Bharat, Dahlin, Mike, Gao, Lei, Khoja, Amjad-Ali, Nayate, Amol,
Razzaq, Asim, and Sewani, Anil. Resource Management for Scalable Discon-
nected Access to Web Services. In Proc. Intl World Wide Web Conf. (May
2001), pp. 245–256.

[39] Chekuri, Chandra, Khanna, Sanjeev, and Shepherd, F. Bruce. An O(
√

(n))
Approximation and Integrality Gap for Disjoint Paths and Unsplittable Flow.
Theory of Computing 2, 7 (2006), 137–146.

[40] Chen, Binbin, and Chan, Mun Choon. MobTorrent: A Framework for Mobile
Internet Access from Vehicles. In Proc. ACM Infocom (April 2009).

170

[41] Cole, R. G., and Rosenbluth, J. H. Voice over IP performance monitoring. CCR
31, 2 (2001).

[42] Couto, D. D., Aguayo, D., Bicket, J., and Morris, R. A high-throughput path
metric for multi-hop wireless routing. In MobiCom (Sept. 2003).

[43] CPLEX. http://www.ilog.com.

[44] Cuervo, Eduardo, Balasubramanian, Aruna, Cho, Dae-ki, Wolman, Alec,
Saroiu, Stefan, Chandra, Ranveer, and Bahl, Paramvir. Maui: making smart-
phones last longer with code offload. In MobiSys ’10: Proceedings of the 8th
international conference on Mobile systems, applications, and services (New
York, NY, USA, 2010), ACM, pp. 49–62.

[45] Demmer, Michael, and Fall, Kevin. Dtlsr: delay tolerant routing for developing
regions. In NSDR ’07: Proceedings of the 2007 workshop on Networked systems
for developing regions (New York, NY, USA, 2007), ACM, pp. 1–6.

[46] Deshpande, Pralhad, Kashyap, Anand, Sung, Chul, and Das, Samir R. Predic-
tive methods for improved vehicular wifi access. In Proc. MobiSys ’09 (June
2009).

[47] Ietf delay tolerant network research group.

[48] Eriksson, Jakob, Girod, Lewis, Hull, Bret, Newton, Ryan, Madden, Samuel,
and Balakrishnan, Hari. The Pothole Patrol: Using a Mobile Sensor Network
for Road Surface Monitoring. In The Sixth Annual International conference
on Mobile Systems, Applications and Services (MobiSys 2008) (Breckenridge,
U.S.A., June 2008).

[49] Eriksson, Jakob, Madden, Sam, and Balakrishnan, Hari. Cabernet: A Content-
Delivery Network for Moving Vehicles. In Proc. ACM Mobicom (September
2008).

[50] Gallager, R. A Minimum Delay Routing Algorithm Using Distributed Compu-
tation. In IEEE Trans. on Communications (Jan 1977), vol. 25, pp. 73–85.

[51] Garg, Nitin, Sobti, Sumeet, Lai, Junwen, Zheng, Fengzhou, Li, Kai, Krish-
namurthy, Arvind, and Wang, Randolph. Bridging the Digital Divide. ACM
Trans. on Storage 1, 2 (May 2005), 246–275.

[52] Gass, Richard, Scott, James, and Diot, Christophe. Measurements of in-motion
802.11 networking. In Workshop on Mobile Computing Systems and Applica-
tions (WMSCA) (Apr. 2006).

[53] Giannoulis, Anastasios, Fiore, Marco, and Knightly, Edward W. Supporting
vehicular mobility in urban multi-hop wireless networks. In MobiSys ’08: Pro-
ceeding of the 6th international conference on Mobile systems, applications, and
services (New York, NY, USA, 2008), ACM, pp. 54–66.

171

[54] Giannoulis, Anastasios, Fiore, Marco, and Knightly, Edward W. Supporting
Vehicular Mobility in Urban Multi-hop Wireless Networks. In Proc. MobiSys
(June 2008).

[55] Giordano, Silvia, Lenzarini, Davide, Puiatti, Alessandro, and Vanini, Salvatore.
Enhanced DHCP client. Demo at CHANTS, Sept. 2007.

[56] Goodman, D. J., Borras, J., Mandayam, N. B., and Yates, R. D. Infostations:
A New System for Data and Messaging Siervices. In Proc. Vehicular Technology
Conference (May 1997), pp. 969–973.

[57] Guruswami, Venkatesan, Khanna, Sanjeev, Rajaraman, Rajmohan, Shepherd,
Bruce, and Yannakakis, Mihalis. Near-Optimal Hardness Results and Approx-
imation Algorithms for Edge-Disjoint Paths and Related Problems. In Proc.
ACM STOC (1999), pp. 19–28.

[58] Hadaller, David, Keshav, Srinivasan, Brecht, Tim, and Agarwal, Shubham. Ve-
hicular opportunistic communication under the microscope. In MobiSys (June
2007).

[59] Hadaller, David, Keshav, Srinivasan, Brecht, Tim, and Agarwal, Shubham.
Vehicular Opportunistic Communication Under the Microscope. In Proc. ACM
Mobisys (June 2007), pp. 206–219.

[60] ho Shin, Min, Mishra, Arunesh, and Arbaugh, William. Improving the latency
of 802.11 hand-offs using neighbor graphs. In MobiSys (June 2004).

[61] Hull, Bret, et al. CarTel: A Distributed Mobile Sensor Computing System. In
Proc. ACM SenSys (Oct. 2006), pp. 125–138.

[62] Jain, Sushant, Demmer, Michael, Patra, Rabin, and Fall, Kevin. Using Re-
dundancy to Cope with Failures in a Delay Tolerant Network. In Proc. ACM
Sigcomm (August 2005), pp. 109–120.

[63] Jain, Sushant, Fall, Kevin, and Patra, Rabin. Routing in a Delay Tolerant
Network. In Proc. ACM Sigcomm (Aug. 2004), pp. 145–158.

[64] Jansen, B.J., Spink, A., and Saracevic, T. Real life, real users, and real needs:
a study and analysis of user queries on the web. Information Processing and
Management 36, 2 (2000), 207–227.

[65] Jiang, Z., and Kleinrock, L. Web prefetching in a mobile environment. In IEEE
Personal Communications (September, 1998), vol. 5, pp. 25–34.

[66] Johnson, David B, and Maltz, David A. Dynamic source routing in ad hoc
wireless networks. In Mobile Computing, Imielinski and Korth, Eds., vol. 353.
Kluwer Academic Publishers, 1996.

172

[67] Jones, Evan, Li, Lily, and Ward, Paul. Practical Routing in Delay-Tolerant
Networks. In Proc. ACM Chants Workshop (Aug. 2005), pp. 237–243.

[68] Kelly, F., Maulloo, A., and Tan, D. Rate Control for Communication Networks:
Shadow Prices, Proportional Fairness and Stability. In J. Op. Res. Society
(1998), vol. 49, pp. 237–252.

[69] Kotz, David, Newport, Calvin, and Elliott, Chip. The mistaken axioms of
wireless-network research. Tech. rep., Dartmouth College, July 2003.

[70] Leguay, Jeremie, Friedman, Timur, and Conan, Vania. DTN Routing in a
Mobility Pattern Space. In Proc. ACM Chants Workshop (Aug. 2005), pp. 276–
283.

[71] Leguay, Jeremie, Lindgren, Anders, Scott, James, Friedman, Timur, and
Crowcroft, Jon. Opportunistic content distribution in an urban setting. In
CHANTS ’06: Proceedings of the 2006 SIGCOMM workshop on Challenged
networks (New York, NY, USA, 2006), ACM, pp. 205–212.

[72] Leung, V., and Au, A. A wireless local area network employing distributed
radio bridges. ACM/Baltzer Wireless Network Journal 2 (1995).

[73] Li, Ming, Yan, Tingxin, Ganesan, Deepak, Lyons, Eric, Shenoy, Prashant,
Venkataramani, Arun, and Zink, Michael. Multi-user Data Sharing in Radar
Sensor Networks. In Proc. ACM SenSys (November 2007), pp. 247–260.

[74] Lindgren, Anders, Doria, Avri, and Schelén, Olov. Probabilistic Routing in
Intermittently Connected Networks. In Proc. SAPIR Workshop (Aug. 2004),
pp. 239–254.

[75] Liu, Xin, Sridharan, Ashwin, Machiraju, Sridhar, Seshadri, Mukund, and Zang,
Hui. Experiences in a 3G Network: Interplay between the Wireless Channel
and Applications. In Proc. MobiCom (September 2008).

[76] Mahajan, Ratul, Zill, Brian, and Zahorjan, John. Understanding WiFi-based
connectivity from moving vehicles. In IMC (Nov. 2007).

[77] Manmatha, R., Rath, T., and Feng, F. Modeling score distributions for com-
bining the outputs of search engines. In Proc. ACM SIGIR (2001), pp. 267–275.

[78] Mitchener, W.G., and Vadhat, A. Epidemic Routing for Partially Connected
Ad hoc Networks. Tech. Rep. CS-2000-06, Duke Univ., 2000.

[79] Miu, Allen, Tan, Godfrey, Balakrishnan, Hari, and Apostolopoulos, John. Di-
vert: fine-grained path selection for wireless LANs. In MobiSys (June 2004).

[80] Miu, Allen K., Balakrishnan, Hari, and Koksal, Can E. Improving Loss Re-
silience with Multi-Radio Diversity in Wireless Networks. In MobiCom (Sept.
2005).

173

[81] Moon, S. B., Skelly, P., and Towsley, D. Estimation and removal of clock skew
from network delay measurements. In INFOCOM (Mar. 1999).

[82] Morris, Robert T., and Bicket, John C. Bit-rate selection in wireless networks.
Tech. rep., Masters thesis, MIT, 2005.

[83] Navda, Vishnu, Subramanian, Anand Prabhu, Dhanasekaran, Kannan, Timm-
Giel, Andreas, and Das, Samir. MobiSteer: Using directional antenna beam
steering to improve performance of vehicular Internet access. In MobiSys (June
2007).

[84] Nicholson, Anthony J., and Noble, Brian D. Breadcrumbs: forecasting mobile
connectivity. In MobiCom ’08: Proceedings of the 14th ACM international
conference on Mobile computing and networking (New York, NY, USA, 2008),
ACM, pp. 46–57.

[85] Ormont, Justin, Walker, Jordan, Banerjee, Suman, Sridharan, Ashwin, Se-
shadri, Mukund, and Machiraju, Sridhar. A City-wide Vehicular Infrastructure
for Wide-area Wireless Experimentation. In WiNTECH (September 2008).

[86] Ott, J., and Kutscher, D. Bundling the Web: HTTP over DTN. In Proc.
Workshop on Networking in Public Transport (August 2006).

[87] Ott, Jorg, and Kutscher, Dirk. Drive-thru Internet: IEEE 802.11b for automo-
bile users. In INFOCOM (Mar. 2004).

[88] Padmanabhan, V., and Mogul, J. Using Predictive Prefetching to Improve
World Wide Web Latency. In Proc. ACM Sigcomm (July 1996), pp. 22–36.

[89] Papadimitriou, Christos. Computational Complexity. Addison Wesley, 1994.

[90] Perkins, C. Ad hoc on demand distance vector (aodv) routing, 1997.

[91] Rahmati, Ahmad, and Zhong, Lin. Context-for-wireless: Context-sensitive
Energy-efficient Wireless Data Transfer. In Proc. MobiSys (June 2007).

[92] Ramani, Ishwar, and Savage, Stefan. Syncscan: Practical fast handoff for 802.11
infrastructure networks. In INFOCOM (2005).

[93] Rodriguez, P., Chakravorty, R., Chesterfield, Julian, Pratt, I., and Banerjee, S.
MARS: A commuter router infrastructure for the mobile Internet. In MobiSys
(June 2004).

[94] S. A. Libby Levison, William Thies. Searching the World Wide Web in Low-
Connectivity Communities. In 2002 International Symposium on Technology
and Society (June 2002).

[95] Seshan, Srinivasan, Balakrishnan, Hari, and Katz, Randy H. Handoffs in cellu-
lar wireless networks: The Daedalus implementation and experience. Wireless
Personal Communications (Kluwer) 4, 2 (1997).

174

[96] Seth, A., Kroeker, D., Zaharia, M., Guo, S., and Keshav, S. Low-cost Commu-
nication for Rural Internet Kiosks Using Mechanical Backhaul. In Proc. ACM
Mobicom (September 2006), pp. 334–345.

[97] Shah, R. C., Roy, S., Jain, S., and Brunette, W. Data MULEs: Modeling a
Three-tier Architecture for Sparse Sensor Networks. In Proc. IEEE SNPA (May
2003), pp. 30–41.

[98] Shih, Eugene, Bahl, Paramvir, and Sinclair, Michael J. Wake on Wireless: An
Event Driven Energy Saving Strategy for Battery Operated Devices. In Proc.
MobiCom (September 2002).

[99] Small, Tara, and Haas, Zygmunt. Resource and performance tradeoffs in delay-
tolerant wireless networks. In ACM WDTN (2005).

[100] Sorber, Jacob, Balasubramanian, Aruna, Corner, Mark D., Ennen, Joshua,
and Qualls, Carl. Tula:balancing energy for sensing and communication in
a perpetual mobile network. Tech. Rep. 09-58, University of Massachusetts
Amherst, 2009.

[101] Soroush, Hamed, Banerjee, Nilanjan, Balasubramanian, Aruna, Corner,
Mark D., Levine, Brian Neil, and Lynn, Brian. DOME: A Diverse Outdoor
Mobile Testbed. In Proc. ACM Intl. Workshop on Hot Topics of Planet-Scale
Mobility Measurements (HotPlanet) (June 2009).

[102] Spyropoulos, Thrasyvoulos, Psounis, Konstantinos, and Raghavendra,
Cauligi S. Spray and Wait: An Efficient Routing Scheme for Intermittently
Connected Mobile Networks. In Proc. ACM WDTN (Aug. 2005), pp. 252–259.

[103] Spyropoulos, Thrasyvoulos, Psounis, Konstantinos, and Raghavendra,
Cauligi S. Performance analysis of mobility-assisted routing. In ACM MobiHoc
(May 2006), pp. 49–60.

[104] Srinivasan, Kannan, Kazandjieva, Maria A., Agarwal, Saatvik, and Levis,
Philip. The Beta-factor: Measuring Wireless Link Burstiness. In Proc. SenSys
(October 2008).

[105] Strohman, Trevor, Metzler, Donald, Turtle, Howard, and Croft, W. Bruce.
Indri: A Language Model-Based Search Engine for Complex Queries. In Proc.
Intl. Conf. on Intelligence Analysis (May 2005).

[106] Svennson, Peter. AT&T: Tighter Control of Cell Data Usage Ahead.
http://seattletimes.nwsource.com/html/businesstechnology/

2010461891 apustecattdatausage.html, 2009.

[107] T. Spyropoulos and K. Psounis and C. Raghavendra. Single-copy Routing in
Intermittently Connected Mobile Networks. In IEEE SECON (October 2004).

175

[108] Thiagarajan, Arvind, Ravindranath, Lenin, LaCurts, Katrina, Madden,
Samuel, Balakrishnan, Hari, Toledo, Sivan, and Eriksson, Jakob. Vtrack: accu-
rate, energy-aware road traffic delay estimation using mobile phones. In SenSys
’09: Proceedings of the 7th ACM Conference on Embedded Networked Sensor
Systems (New York, NY, USA, 2009), ACM, pp. 85–98.

[109] Tie, Xiaozheng, Balasubramanian, Aruna, Somasundaram, Manikandan, and
Venkataramani, Arun. Routing for diverse wireless networks. Um-cs-2010,
University of Massachusetts Amherst, 2010.

[110] Vanlan. http://research.microsoft.com/netres/projects/vanlan//.

[111] Viterbi, Andrew J., Viterbi, Audrey M., Gilhousen, Klein S., and Zehavi,
Ephraim. Soft handoff extends CDMA cell coverage and increases reverse cell
capacity. IEEE JSAC 12, 8 (Oct. 1994).

[112] Widmer, Jorg, and Le Boudec, Jean-Yves. Network Coding for Efficient Com-
munication in Extreme Networks. In Proc. ACM WDTN (Aug. 2005), pp. 284–
291.

[113] City-wide Wi-Fi rolls out in UK. http://news.bbc.co.uk/2/hi/technology/
4578114.stm.

[114] Cities unleash free Wi-Fi. http://www.wired.com/gadgets/wireless/news/

2005/10/68999.

[115] Wortham, Jenna. Customers Angered as iPhones Overload 3G.
http://www.nytimes.com/2009/09/03/technology/companies/03att.

html? r=2&partner=MYWAY&ei=5065/, 2009.

[116] Xie, Yinglian, and O’Hallaron, David R. Locality in Search Engine Queries and
Its Implications for Caching. In Proc. IEEE Infocom (June 2002), pp. 1238–
1247.

[117] Zhang, Pei, Sadler, Christopher M., Lyon, Stephen A., and Martonosi, Mar-
garet. Hardware Design Experiences in ZebraNet. In Proc. ACM SenSys (Nov.
2004), pp. 227–238.

[118] Zhang, X., Neglia, G., Kurose, J., and Towsley, D. Performance Modeling of
Epidemic Routing. In Proc. IFIP Networking (May 2006).

[119] Zhang, Xiaolan, Kurose, Jim, Levine, Brian Neil, Towsley, Don, and Zhang,
Honggang. Study of a Bus-Based Disruption Tolerant Network: Mobility Mod-
eling and Impact on Routing. In Proc. ACM Intl. Conf. on Mobile Computing
and Networking (Mobicom) (September 2007), pp. 195–206.

[120] Zhou, Yun, Levine, Brian Neil, and Croft, W. Bruce. Distributed Information
Retrieval For Disruption-Tolerant Mobile Networks. CIIR Technical Report
IR-412, University of Massachusetts Amherst, 2005.

176

[121] Ziegler, Chris. Sprint Falls in Line, Caps ”Unlimited”
Data at 5GB. http://www.engadgetmobile.com/2008/05/19/

sprint-falls-in-line-caps-unlimited-data-at-5gb/, 2008.

177

