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Abstract
Interactive-proof games model the scenario where an honest party interacts with powerful but
strategic provers, to elicit from them the correct answer to a computational question. Interactive
proofs are increasingly used as a framework to design protocols for computation outsourcing.

Existing interactive-proof games largely fall into two categories: either as games of cooperation
such as multi-prover interactive proofs and cooperative rational proofs, where the provers work
together as a team; or as games of conflict such as refereed games, where the provers directly compete
with each other in a zero-sum game. Neither of these extremes truly capture the strategic nature of
service providers in outsourcing applications. How to design and analyze non-cooperative interactive
proofs is an important open problem.

In this paper, we introduce a mechanism-design approach to define a multi-prover interactive-
proof model in which the provers are rational and non-cooperative – they act to maximize their
expected utility given others’ strategies. We define a strong notion of backwards induction as our
solution concept to analyze the resulting extensive-form game with imperfect information.

We fully characterize the complexity of our proof system under different utility gap guarantees.
(At a high level, a utility gap of u means that the protocol is robust against provers that may not
care about a utility loss of 1/u.) We show, for example, that the power of non-cooperative rational
interactive proofs with a polynomial utility gap is exactly equal to the complexity class PNEXP.
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1 Introduction

Game theory has played a central role in analyzing the conflict and cooperation in interactive
proof games. These games model the scenario where an honest party interacts with powerful
but strategic agents, to elicit from them the correct answer to a computational question.
The extensive study of these games over decades has fueled our understanding of important
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complexity classes (e.g., [4, 16,22–24,26,27,37]). From a modern perspective, these games
capture the essence of computation outsourcing – the honest party is a client outsourcing his
computation to powerful rational service providers in exchange for money.

In this paper, we consider a natural type of interactive-proof game. For the moment, let
us call our client Arthur. Arthur hires a service provider Merlin to solve a computational
problem for him, and hires a second service provider Megan to cross-check Merlin’s answer.
Arthur wants the game (and associated payments) to be designed such that if Merlin gives
the correct answer, Megan agrees with him; however, if Merlin cheats and gives a wrong
answer, Megan is incentivized to contradict him, informing Arthur of Merlin’s dishonesty.
This means that Merlin and Megan are not purely cooperative nor purely competitive. Each
is simply a rational agent who wants to maximize their own utility.

This is a mechanism design problem – how can Arthur incentivize non-cooperative rational
agents (Merlin and Megan) to give truthful answers to his questions, helping him solve a
computational problem? This problem is the focus of our paper.

Structure of the game

We borrow the structure and terminology of interactive proofs [3,6,29], as was done in previous
work on rational proofs [1, 2, 11, 12, 17–19, 31, 32] and refereed games [16, 22, 24–26, 35, 40].
We call Arthur the verifier and assume that he is computationally bounded (he may
be probabilistic, but must run in polynomial time). Arthur’s coin flips are treated as
Nature moves in the game. We call Merlin and Megan the provers; they have unbounded
computational power.

The verifier exchanges messages with the provers in order to determine the answer to
a decision problem. The exchange proceeds in rounds: in a round, either a verifier sends
a message to all provers or receives a response from each. The provers cannot observe the
messages exchanged between the verifier and other provers.

At the end, the verifier gives a payment to each prover. Our goal is to design protocols
and payments such that, under an appropriate solution concept of the resulting game, the
provers’ best strategies lead the verifier to the correct answer.

The interactive protocols described above form an extensive-form game of imperfect
information. To analyze them, we essentially use a strong notion of backward induction as
our solution concept. We refine it further by eliminating strategies that are weakly dominated
on “subgames” within the entire game. We define the solution concept formally in Section 2.1.

Comparison to previous work

The model of our games is based on interactive proof systems [3, 29], in which a verifier
exchanges messages with untrustworty provers and at the end either accepts or rejects their
claim. Interactive proofs guarantee that, roughly speaking, the verifier accepts a truthful
claim with probability at least 2/3 (completeness) and no strategy of the provers can make
the verifier accept a false claim with probability more than 1/3 (soundness).

The study of interactive proofs has found extensive applications in both theory and
practice. Classical results on IPs have led us to better understand complexity classes through
characterizations such as IP = PSPACE [37, 43] and MIP = NEXP [4, 23,27], and later led to
the important area of probabilistically checkable proofs [44]. More recently, the study of IPs
has resulted in extremely efficient (e.g., near linear or even logarithmic time) protocols for
delegation of computation [7,9,15,30,41]. Such super-efficient IPs have brought theory closer
to practice, resulting in “nearly practical” systems (e.g., see [8, 13,45,47]).
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Indeed, interactive proofs are not only a fundamental theoretical concept but an indis-
pensable framework to design efficient computation-outsourcing protocols.

Existing interactive-proof games

Interactive-proof systems with multiple provers have largely been studied as games that
fall into two categories: either as games of cooperation such as MIP [6], cooperative multi-
prover rational proofs (MRIP) [18], and variants [4, 10, 27, 30, 33], where the provers work
together to convince the verifier of their joint claim; or as games of conflict such as refereed
games [14–16,22, 24, 26, 34], where the provers directly compete with each other to convince
the verifier of their conflicting claims.

Both of these categories have limitations. In a game of cooperation, provers cannot be
leveraged directly against each other. That is, the verifier cannot directly ask one prover if
another prover is lying. On the other hand, in a game of conflict, such as refereed games, one
prover must “win” the zero-sum game. Thus, such games need to assume that at least one
prover – who must be the winning prover in a correct protocol – can be trusted to always tell
the truth. Despite their limitations, both models have proved to be fundamental constructs
to understand and characterize important complexity classes [4, 16, 18, 22, 26], and to design
efficient computation outsourcing protocols [7, 8, 14,15,30].

1.1 Contributions and Results
In this paper, we introduce a new interactive-proof game, non-cooperative rational interactive
proofs (ncRIP). This model generalizes multi-prover rational proofs [17–19].

Solution concept for ncRIP

We define a refinement of sequential equilibrium [36], strong sequential equilibrium
(SSE), that essentially says that players’ beliefs about the histories that led them to an
unreachable information set should be irrelevant to their best response. From a mechanism-
design perspective, we want to design the protocols and payments that allow this strong
guarantee to hold – letting the players’ best responses be unaffected by their beliefs.1

Finally, we eliminate SSE strategies that are suboptimal within “subgames” by defining
and enforcing a backward-induction-compatible notion of dominance. Roughly speaking, we
say a protocol is a ncRIP if there exists a strategy profile of the provers that is a dominant
SSE among the subforms of the extensive form game, and under this strategy the provers’
lead the verifier to the correct answer. We define the model formally in Section 2.

Utility gap for non-cooperative provers

Utility gap is a fundamental concept for rational proofs [2, 18,19,31] which is analogous to
soundness gap in interactive proofs. It measures how robust a protocol is against the provers’
possible deviations from the desired strategy.

This notion is straightforward to define for cooperative rational protocols – they have a
utility gap of u if the total expected payment decreases by 1/u whenever the provers report
the wrong answer. In non-cooperative protocols, however, it is not a priori clear how to
define such a payment loss or to choose which prover should incur the loss. A payment loss

1 We believe that SSE is of independent interest as a solution concept for designing extensive-form
mechanisms (e.g. [21,28,46]). In the full version of the paper, we prove important properties of SSE
that may prove useful in future studies.
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solely imposed on the total payment may not prevent some provers from deviating, and a
loss solely imposed on the provers’ final payments may not prevent them from deviating
within subgames.

We define a meaningful notion of utility gap for ncRIP that is naturally incorporated in
a backward-induction-compatible way to the dominant SSE concept.

Tight characterizations of ncRIP classes

In this paper, we completely characterize the power of non-cooperative rational proofs under
different utility-gap guarantees.

We construct ncRIP protocols with constant, polynomial, and exponential utility gaps
for powerful complexity classes, demonstrating the strength of our solution concept. Our
protocols are simple and intuitive (requiring only a few careful tweaks from their cooperative
counterparts), and are thus easy to explain and implement. However, proving their correctness
involves analyzing the extensive-game (including subtleties in the incentives and beliefs of
each player at each round) to show that the protocol meets the strong solution-concept and
utility-gap requirements.

We then prove tight upper bounds for all three ncRIP classes. Proving tight upper
bounds is the most technically challenging part of the paper. We prove the upper bounds by
simulating the decisions of the verifier and provers with a Turing Machine. However, there
are several obstacles to attain the correct bounds. For example, the polynomial randomness
of the verifier can induce an exponential-sized game tree, which is too large to be verified by
the polynomial-time machine in Theorems 1 and 2. Furthermore, an NEXP oracle cannot
itself verify whether a strategy profile is a dominant SSE. The key lemma that helps us
overcome these challenges is the pruning lemma (Lemma 13). At a high level, it shows that
we can prune the nature moves of the verifier in the resulting game tree, while preserving
the dominant-SSE and utility-gap guarantees.

Our results are summarized in Figure 1, where we use O(1)-ncRIP, poly(n)-ncRIP and
exp(n)-ncRIP to denote ncRIP classes with constant, polynomial and exponential utility
gaps respectively. The notations are analogous for MRIP [17] (the cooperative variant). We
characterize ncRIP classes via oracle Turing machines. In particular, PNEXP[O(1)] is the class
of languages decided by a polynomial-time Turing machine that makes O(1) queries to an
NEXP oracle, and EXPpoly-NEXP is the class decided by an exponential-time Turing machine
with polynomial-length queries to an NEXP oracle.

Note that lower and upper bounds for the case of exponential utility gap (that is,
Theorem 3 and Corollary 6) are deferred to the full version of the paper.

I Theorem 1.O(1)-ncRIP = PNEXP[O(1)]

I Theorem 2.poly(n)-ncRIP = PNEXP

I Theorem 3.exp(n)-ncRIP = EXPpoly-NEXP

I Corollary 4.O(1)-ncRIP = O(1)-MRIP

I Corollary 5.poly(n)-ncRIP ⊇ poly(n)-MRIP

I Corollary 6.exp(n)-ncRIP = exp(n)-MRIP

Figure 1 Summary of our results.

Power of non-cooperative vs. cooperative and competitive provers

Interestingly, in the case of constant and exponential utility gap, the power of ncRIP and
MRIP coincide. This can be explained by the power of adaptive versus non-adaptive queries
in oracle Turing machines.
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Indeed, our results reveal the main difference between non-cooperative and cooperative
provers: the former can be used to handle adaptive oracle queries, the latter cannot (see [17,
18]). Intuitively, this makes sense – cooperative provers may collude across adaptive queries,
answering some of them incorrectly to gain on future queries. On the other hand, non-
cooperativeness allows us to treat the subgame involving the oracle queries as a separate
game from the rest.

Our results also show that non-cooperative provers are more powerful than competing
provers. Feige and Kilian [22] proved that the power of refereed games with imperfect
information and perfect recall is equal to EXP.

2 Non-Cooperative Rational Interactive Proofs

In this section we introduce the model for ncRIP.

Notation

First, we review the structure of ncRIP protocols and related notation; this is largely the
same as [18].

The decision problem being solved by an interactive proof is modeled as whether a given
string x is in language L. An interactive protocol is a pair (V, ~P ), where V is the verifier,
~P = (P1, . . . , Pp(n)) is the vector of p(n) provers, where p(n) is polynomial in n = |x|.
The verifier runs in polynomial time and flips private coins. Each Pi is computationally
unbounded. The verifier and provers are given the input x. Similar to classical multi-prover
interactive proofs, the verifier can communicate with each prover privately, but no two
provers can communicate with each other once the protocol begins.

In a round, either each prover sends a message to V , or V sends a message to each
prover, and these two cases alternate. The length of each message `(n), and the number of
rounds k(n) are both polynomial in n. The final transcript ~m of the protocol is a random
variable depending on r, the random string used by V . At the end of the communication, the
verifier computes an answer bit c ∈ {0, 1} for the membership of x in L based on x, r, and
~m. V also computes a payment vector ~R = (R1, R2, . . . , Rp(n)), where Ri is the payment
given to Pi, Ri ∈ [−1, 1], and the total

∑p(n)
i=1 Ri ∈ [−1, 1] as well.2 The protocol and the

payment function ~R are public knowledge.
Each prover Pi’s strategy at round j maps the transcript seen at the beginning of round

j to the message he sends in that round. Let si = (si1, . . . , sik(n)) be the strategy of prover Pi,
and s = (s1, . . . , sp(n)) be the strategy profile of the provers. Given input x, and strategy
profile s, let uk(x, s, (V, ~P )) denote the expected payment of prover Pk in the protocol (V, ~P )
based on randomness r, input x and s; if (V, ~P ) is clear from context, we shorten this to
uk(x, s) or uk(s).

The protocol forms an extensive-form game with imperfect information and should be
designed such that the provers are incentivized to reach an equilibrium that leads V to the
correct answer bit c. We formalize the solution concept next.

2 Negative payments are used to reflect punishment. The individual payments and the total payment can
be shifted and scaled to lie in [0, 1].
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2.1 Solution concept for ncRIP
We want the solution concept for ncRIP to satisfy a strong notion of backward induction [39],
a standard criterion applied to extensive-form games based on the common knowledge of
rationality. Backwards induction refers to the condition of being “sequentially rational” in
an extensive-form game, that is, each player must play his best response at each node where
he has to move, even if his rationality implies that such a node will not be reached.

If an interactive protocol forms an extensive-form game of perfect information, it is easy
to formalize this condition. A strategy s is sequentially rational or satisfies backward
induction, if for every player i and every decision node of i, conditioned on reaching the
decision node, si is a best response to s−i, that is, ui(si, s−i) ≥ ui(s′i, s−i) for any strategy
s′i of prover i. In other words, s induces a best response at every subgame.3

In a game of imperfect information, the decision nodes corresponding to a player’s turn
are partitioned into information sets, where the player is unable to distinguish between
the possible histories within an information set. To reason about sequential rationality we
need a probability distribution uI on each information set I, so as to determine the players’
expected utility conditioned on reaching I and thus their best response at I. The probability
distribution µI is referred to as the player’s beliefs about the potential histories leading to I.

Given a strategy profile s, beliefs uI at reachable information sets (reached with non-
zero probability under s) are derived from s using Bayes’ rule; this is a standard derivation
used in most solution concepts for extensive-form games [39]. We sometimes write µsI to
emphasize that the beliefs depend on s.

Past work has introduced a variety of methods for defining the beliefs usI at unreachable
information sets I (i.e. information sets reached with probability zero under s); see
e.g. [20,36,38,42]. The most well-known is sequential equilibrium [36], which demands an
explicit system of beliefs that satisfies a (somewhat artificial) consistency condition. Other
equilibria, like trembling hand [42], reason implicitly about beliefs at unreachable information
sets by assigning a negligible probability with which the player’s hand “trembles,” and reaches
an otherwise-unreachable information set. Further refinements of these take the structure
and payoffs of the game into account [5, 20,38].

The treatment of beliefs at unreachable information sets in these solution concepts is often
focused on ensuring that they can be used to analyze every extensive-form game. From a
mechanism-design perspective, our focus is different – we want to design mechanisms in such
a way that they admit much stronger equilibrium requirements, even if such an equilibrium
cannot be used to analyze every game.

At a high-level, we want the players’ beliefs to be irrelevant in determining their best
response at unreachable information sets. We call this notion strong sequential rationality.
A strategy profile s is strongly sequentially rational if for every information set I,
conditioned on reaching I, si is a best response to s−i with respect to µsI , where

µsI is derived using Bayes’s if I is reachable under s, and
µsI is any arbitrary probability distribution if I is unreachable under s.

In the full version of the paper, we show that this requirement is equivalent to saying that, at
an unreachable information set I, si must be a best response to s−i conditioned on reaching
each history h ∈ I. In other words, at an unreachable information set I, each player must
have a single action that is the best response to every possible history in I. We say a strategy
profile is a strong sequential equilibrium (SSE) if it satisfies strong sequential rationality.

3 A subgame is a subtree that can be treated as a separate well-defined game. In a perfect-information
game, every node starts a new subgame. “Backward induction” and “subgame-perfect equilibrium” are
used interchangeably in the literature [28].
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We refine our solution concept further to eliminate strategies that are weakly dominated
within “subgames” of the entire game. This is crucial to deal with equilibrium selection, in
particular, because the players’ cannot unilaterally deviate out of a suboptimal equilibria.
We say an SSE s weakly dominates another SSE s′ if, for any player i, ui(s) ≥ ui(s′).
A strategy s is weakly dominant if it dominates all SSEs. Next we eliminate SSEs that
are weakly dominated in subgames of the entire game. We use the generalized notion of
subgames, called subforms, defined by Kreps and Wilson [36] for extensive-form games with
imperfect information.

To review the definition of subforms, we need further notation. Let H be the set of
histories of the game. Recall that a history is a sequence (a1, . . . , aK) of actions taken by the
players.4 For histories h, h′ ∈ H, we say h has h′ as a prefix if there exists some sequence of
actions b1, . . . , bL (possibly empty) such that h = (h′, b1, . . . , bL). For a history h ∈ H, let
I(h) be the unique information set containing h.

For an information set I, let HI be the set of all histories following I, that is, HI is the
set of all histories h ∈ H such that h has a prefix in I. We say that HI is a subform rooted
at I if for every information set I ′ such that I ′ ∩HI 6= ∅, it holds that I ′ ⊆ HI . Roughly
speaking, a subform HI “completely contains” all histories of the information sets following
I, so there is no information asymmetry between the players acting within HI .

Thus, given a strategy profile, the subform HI together with the probability distribution
µsI on I, can be treated as a well-defined game.

We say an SSE s weakly dominates SSE s′ on a subform HI if, for any player j
acting in HI , the expected utility of j under sI in the game (HI , µ

s
I) is greater than or equal

to their utility under s′I in the game (HI , µ
s′

I ).
We eliminate weakly dominated strategies by imposing this dominance condition in a

backward-induction-compatible way on the subforms as follows.

I Definition 7 (Dominant Strong Sequential Equilibrium). A strategy profile s is a dominant
strong sequential equilibrium if s is an SSE and

for every subform HI of height 1: s weakly dominates s’ on HI for any SSE s′

for every subform HI subgame of height > 1: s weakly dominates s′ on HI for any SSE
s′ that is a dominant SSE in all subforms of height at most h− 1.

We are ready to define non-cooperative rational interactive proofs.

I Definition 8 (Non-Cooperative Rational Interactive Proof). Fix an arbitrary string x and
language L. An interactive protocol (V, ~P ) is a non-cooperative rational interactive proof
(ncRIP) protocol for L if there exists a strategy profile s of the provers that is a dominant
SSE in the resulting extensive-form game, and under any dominant SSE, the answer bit c
output by the verifier is correct (i.e., c = 1 iff x ∈ L) with probability 1, where the probability
is taken over the verifier’s randomness.

2.2 Utility Gap in ncRIP Protocols
In game theory, players are assumed to be perfectly rational and “sensitive” to arbitrarily
small utility losses. In reality, some provers may not care about small losses. Such provers may
not have sufficient incentive to reach a dominant SSE, and could end up leading the verifier
to the wrong answer. To design ncRIP protocols that are robust against such “insensitive”
provers, we define the notion of utility gap.

4 In the full version of the paper, we present a more formal treatment of the underlying extensive-form
game, based on [39].

ESA 2019
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Informally, a utility gap of u means that if a strategy profile s leads the verifier to the
wrong answer, there must exist a subform, such that some provers must lose at least a
1/u amount in their final individual payments (compared to their optimal strategy in that
subform). As a consequence, these provers will not deviate to s, as long as they care about
1/u payment losses. We formalize this notion below. (We say a subform HI is reachable
under s if the information set I is reached under s with non-zero probability.)

I Definition 9 (Utility Gap). Let (V, ~P ) be an ncRIP protocol for a language L and s∗ be a
dominant SSE of the resulting game. The protocol (V, ~P ) has an α(n)-utility gap or α(n)-gap,
if for any strategy profile s′ under which the answer bit c′ is wrong, there exists a subform HI

reachable under s′, and a prover Pj acting in HI who has deviated from s∗ such that

uj(x, (s′−I , s∗I), (V, ~P ))− uj(x, (s′−I , s′I), (V, ~P )) > 1/α(n),

where s′−I denotes the strategy profile s′ outside subform HI , that is, s′−I = s′ \ s′I .

The class of languages that have an ncRIP protocol with constant, polynomial and
exponential utility gap, are denoted by O(1)-ncRIP, poly(n)-ncRIP, and exp(n)-ncRIP re-
spectively.5 Note that α(n) gap corresponds to a payment loss of 1/α(n), so an exponential
utility gap is the weakest guarantee.

3 Lower Bounds: ncRIP Protocols with Utility Gap

In this section, we give an O(1)-utility gap ncRIP protocol for the class NEXP and use it to
give an O(α(n))-utility gap ncRIP protocol for the class PNEXP[α(n)]. Setting α(n) to be a
constant or polynomial in n gives us PNEXP[O(1)] ⊆ O(1)-ncRIP and PNEXP ⊆ poly(n)-ncRIP
respectively.

Here we argue correctness of our protocols at a high level; see the full version of the paper
for formal proofs.

A constant-gap ncRIP protocol for NEXP

The ncRIP protocol for any language in NEXP is in Figure 2. The protocol uses the 2-prover
1-round MIP for NEXP [23] as a blackbox.6 The protocol in Figure 2 essentially forces the
non-cooperative provers to coordinate by giving them identical payments. As a result, it is
almost identical to the MRIP protocol for NEXP [18].

While the payment scheme is simple, in the analysis we have to open up the black-box
MIP. In particular, if P1 sends c = 0 in round 1, all the information sets of P1 and P2 in
round 3 become unreachable. To show that an SSE exists, we show that the provers have a
best response at these unreachable sets, which is argued based on the messages exchanged in
the MIP protocol.

I Lemma 10. Any language L ∈ NEXP has a 2-prover 3-round 6/5-gap ncRIP protocol.

5 These classes are formally defined by taking the union over languages with α(n) utility gap, for every
α(n) that is constant, polynomial and exponential in n respectively.

6 It is also possible to give a scoring-rule based ncRIP protocol for NEXP, similar to MRIP [18]. However,
such a protocol has an exponential utility gap.
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For any input x and language L ∈ NEXP, the protocol (V, P1, P2) for L is:
1. P1 sends a bit c to V . V outputs c at the end of the protocol.
2. If c = 0, then the protocol ends and the payments are R1 = R2 = 1/2.
3. Otherwise, V runs the classic 2-prover 1-round MIP protocol for NEXP [23] with P1

and P2 to prove if x ∈ L. If the MIP protocol accepts then R1 = 1, R2 = 1; else,
R1 = −1, R2 = −1.

Figure 2 A simple O(1)-utility gap ncRIP protocol for NEXP.

An O(α(n))-gap ncRIP protocol for PNEXP[α(n)]

Using the above NEXP protocol as a subroutine, we give an ncRIP protocol with O(α(n))-
utility gap for the class PNEXP[α(n)]. This protocol works for any function α(n) which (1) is a
positive integer for all n, (2) is upper-bounded by a polynomial in n, and (3) is polynomial-
time computable.7

I Lemma 11. Any language L ∈ PNEXP[α(n)] has a 3-prover 5-round ncRIP protocol that has
a utility gap of 6/(5α(n)).

The ncRIP protocol for any L ∈ PNEXP[α(n)] is in Figure 3. It is fairly intuitive – V
simulates the polynomial-time Turing machine directly, and uses the ncRIP protocol for NEXP
for the oracle queries.

For any input x of length n, the protocol (V, ~P ) works as follows.

1. P1 sends (c, c1, . . . , cα(n)) ∈ {0, 1}α(n)+1 to V . V outputs c at the end of the protocol.
2. V simulates M on x using the bits c1, . . . , cα(n) as answers to NEXP queries

φ1, . . . , φα(n) generated by M respectively. If M accepts and c = 0 or M rejects and
c = 1, then the protocol ends and R1 = −1, R2 = R3 = 0.

3. V picks a random index i′ from {1, . . . , α(n)} and sends (i′, φi′) to P2 and P3.
4. V runs the 2-prover 3-round O(1)-gap ncRIP protocol for NEXP (Figure 2) with P2

and P3 on φi. P2 and P3 get payments R2 and R3 based on the protocol. Let c∗i′ be
the answer bit in the NEXP protocol. If c∗i′ 6= ci′ , then R1 = 0; otherwise R1 = 1.

Figure 3 An O(α(n))-utility gap ncRIP protocol for PNEXP[α(n)].

We argue the correctness of this protocol at a high-level. Under any strategy of P1, the
resulting NEXP queries in the protocol in Figure 3 are the roots of non-trivial subforms.
Which of these subforms are reachable under a strategy profile s is determined solely by the
strategy of P1. However, because weak dominance is imposed on all subforms in a bottom-up
fashion, P2 and P3 must play their optimal strategy in these subforms regardless of their
reachability – and therefore, they must play optimally for any strategy of P1. (This is one
example of why ruling out weakly-dominated strategies in subforms in the definition of
dominant SSEs is crucial to arguing correctness.) From the correctness of the NEXP protocol
in Figure 2, we know that the optimal strategy of P2 and P3 is to compute the NEXP queries
correctly. Given that the best response of P2 and P3 is to solve the NEXP queries correctly,
and given that V randomly verifies 1 out of α(n) queries, P1 must commit to correct answer
bits in the first round, or risk losing a O(1/α(n)) amount from his expected payment.

7 For Theorem 1 and Theorem 2, α(n) need only be a constant or polynomial in n. However, Lemma 11
holds for all α(n)’s that are polynomial-time computable (given 1n) and polynomially bounded, such as
logn,

√
n, etc.
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If P1 gives the correct answer bits in step 1, but P2 or P3 deviate within a subform
corresponding to an NEXP query φq, then with probability 1/α(n), V simulates the protocol
in Figure 3 on φq, in which case they lose a constant amount of their expected payment.

4 Upper Bounds: ncRIP Protocols with Utility Gap

In this section, we prove matching upper bounds on the classes of ncRIP protocols with
constant and polynomial utility gaps. In particular, we show that any language in O(1)-ncRIP
(or poly(n)-ncRIP) can be decided by a polynomial-time Turing machine with a constant
(resp. polynomial) number of queries to an NEXP oracle.

To simulate an ncRIP protocol, we need to find a strategy profile “close enough” to the
dominant SSE so that the answer bit is still correct, i.e. a strategy profile that satisfies the
utility-gap guarantee. We formalize this restatement of Definition 9 below.

I Observation 12. Given input x and an ncRIP protocol (V, ~P ) with α(n)-utility gap, let s
be a strategy profile such that for all reachable subforms HI and all provers Pj acting in HI ,

uj(x, r, (V, ~P ), (s−I , s∗I))− uj(x, r, (V, ~P ), (s−I , sI)) <
1

α(n) ,

where s∗ is a dominant SSE. Then, the answer bit c under s must be correct.

There are several challenges involved in finding a strategy profile satisfying Observation 12.
First, the size of the game tree of any ncRIP protocol – small gap notwithstanding – can

be exponential in n. Even if the polynomial-time machine considers a single strategy profile
s at a time, since V can flip polynomially many coins, the part of the tree “in play” – the
number of decision nodes reached with positive probability under s – can be exponential in n.

The second (and related) challenge is that of verifying whether a strategy profile is a
dominant SSE. While the NEXP oracle can guess and verify an SSE, it cannot directly help
with dominant SSEs. The polynomial-time machine must check using backward induction if
an SSE is dominant on all its reachable subforms, which can again be exponential in n.

Finally, the polynomial-time machine needs to search through the exponentially large
strategy-profile space in an efficient way to find one which leads to the correct answer.

In the remainder of the section we address these challenges. In Lemma 13 we show that
we can prune the game tree, resolving the first two challenges. Then in Lemmas 17 and 18,
we show how to efficiently search through the strategy-profile space.

Pruning Nature moves in ncRIP protocols

We now give our main technical lemma for the upper bound, which shows that we can limit
ourselves to examining protocols with bounded game trees without loss of generality.

Recall that a verifier’s coin flips in an ncRIP protocol represent Nature moves in the
resulting game. The problem is that a polynomial-time verifier can result in Nature moves
that impose nonzero probabilities over exponentially many outcomes.

We prune the Nature moves of a verifier so that a polynomial-time Turing machine
simulating an α(n)-utility-gap protocol can traverse the game tree reachable under a given s.
This pruning operation takes exponential time (linear in the size of the game tree), and can
be performed by the NEXP oracle.

I Lemma 13 (Pruning Lemma). Let L ∈ α(n)-ncRIP and let (V, ~P ) be an ncRIP protocol
for L with α(n) utility gap and p(n) provers. Given an input x and a strategy s, the protocol
(V, ~P ) can be transformed in exponential time to a new protocol (V ′, ~P ), where
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the probability distribution on the outcomes imposed by the Nature moves of V ′ for input
x has O(α(n)) support,
if s is a dominant SSE of (V, ~P ), then s induces a dominant SSE in (V ′, ~P ),
|uj(x, s, (V, ~P ))− uj(x, s, (V ′, ~P ))| < 1/(4α(n)) for all j ∈ {1, . . . , p(n)}, and
the utility gap guarantee is preserved, that is, if the answer bit under s is wrong, then
there exists a subform HI in the game (V ′, ~P ) (reachable under s) and a prover Pj acting
at HI , such that Pj loses a 1/(2α(n)) amount in his expected payment compared to a
strategy profile where sI (induced by s on HI) is replaced by s∗I (the dominant SSE on
HI), keeping the strategy profile outside HI , s−I , fixed.

We prove Lemma 13 in several parts. First, given an input x and a strategy s of the
provers, we show how to transform any verifier V that imposes a probability distribution over
outcomes with exponential support into a verifier V ′ that imposes a probability distribution
with O(α(n)) support.

Let (V, ~P ) use p(n) provers and let the running time of V be nk for some constant k.
There can be at most 2nk different payments that V can generate for a particular prover
given input x. Given x and s, fix a prover index j ∈ {1, . . . , p(n)}. Let R1, R2, . . . , Rm be
the payments generated by V on s for Pj . Let V ’s randomness assign probability distribution
µ = (p1, p2, . . . , pm) to R1, R2, . . . , Rm respectively. Then, the expected payment of Pj under
s is uj(x, s, (V, ~P )) =

∑m
i=1 piRi.

Recall that uj(x, s, (V, ~P )) ∈ [−1, 1] for all 1 ≤ j ≤ p(n). For each prover Pj , divide the
interval [−1, 1] into 4α(n) intervals, each of length 1/(2α(n)). In other words, prover Pj ’s
ith interval is [i/2α(n), (i+ 1)/2α(n)),8 for each i ∈ {−2α(n), . . . , 2α(n)− 1}.

We round the possible payments for Pj to a representative of the their corresponding
interval. Specifically, we map each payment Ri to rj as described in Equation 1. There

rj =


4`+1
4α(n) if Ri ∈

[
`

2α(n) ,
2`+1
4α(n)

)
4`+3
4α(n) if Ri ∈

[
2`+1
4α(n) ,

`+1
2α(n)

) (1) p′i =
{ ∑

k∈Tj
pk if i = f(S(i))

0 otherwise
(2)

are potentially exponentially many different payments Ri, and only polynomially many
different payments rj , so several Ri must map to the same rj . Let Tj = {i : Ri maps to rj}.
Let T = ∪j{Tj}. Thus the total number of distinct rj is 8α(n), so |T | = O(α(n)). Let
S : {1, . . . ,m} → T such that S(i) = Tj if and only if i ∈ Tj .

For each Tj ∈ T , let f(Tj) denote a unique index in the set Tj . Without loss of generality,
let f(Tj) be the lowest index in Tj . We define a new probability distribution µ′ = (p′1, . . . , p′h)
over the payments R1, . . . , Rh respectively, given by Equation 2. In particular, for every
Tj ∈ T , assign Rf(Tj) probability

∑
k∈Tj

pk and for every other index ` ∈ Tj , ` 6= f(Tj),
assign R` probability 0.

Define V ′ as a polynomial-time verifier that simulates all deterministic computation
of V . For a fixed input x, V ′ imposes a probability distribution µ′ with O(α(n)) support
for any probability distribution µ imposed by V . For other inputs, V ′ simulates V without
any modification.

8 To include 1 as a possible payment, interval 2α(n)− 1 should be closed on both sides; we ignore this for
simplicity.
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Note that given input x, a strategy profile s and the protocol (V, ~P ), transforming the
distribution µ to µ′ takes time linear in the size of the game tree, and thus exponential
in n. (This means that an NEXP oracle, given x, can guess a particular s and perform
the transformation.)

The remainder of the proof of Lemma 13 consists of the following three claims. We argue
their correctness at a high-level and defer formal proofs to the full version.

First, we show that if the strategy profile s is a dominant SSE of (V, ~P ), then s restricted
to the pruned game tree of (V ′, ~P ) imposes a dominant SSE on (V ′, ~P ) as well.

I Claim 14. Any dominant SSE s of the game formed by (V, ~P ) induces a dominant SSE in
the game formed by (V ′, ~P ).

First, we prove that s is an SSE of (V ′, ~P ). Suppose by contradiction that s is not a SSE of
(V ′, ~P ). Then there exists an information set I, such that, conditioned on reaching I, the
prover acting at I can improve his expected payment by deviating (given his belief u′I at I
if I is reachable under s and for any belief he may hold at I if I is unreachable under s).
Writing out their expected payments, accounting for the probabilistic transformation between
V and V ′, in both cases leads to a contradiction to the assumption that s was an SSE in
(V, ~P ). We then argue that a similar contradiction holds for proving that s is a dominant
SSE of (V ′, ~P ).

The following claim states that for a given s, the expected payments of the provers
under (V, ~P ) and under (V ′, ~P ) are not too far off. This claim is one of the bullet points in
Lemma 13, and will be used to prove Claim 16.

I Claim 15. For all j ∈ {1, . . . , p(n)}, |uj(x, s, (V, ~P ))− uj(x, s, (V ′, ~P ))| < 1/(4α(n)).

With the above, we show that (V ′, ~P ) preserves utility gap guarantees.

I Claim 16. Given input x, if the answer bit under s is wrong, then there exists a subform
HI reachable under s in (V ′, ~P ) and Pj acting at HI , such that Pj ’s expected payment under s
is 1

2α(n) less than his expected payment under (s−I , s∗I), where s∗I is a dominant SSE on HI .

Consider a strategy profile s∗ that is a dominant SSE in the game tree of (V, ~P ). Since s
gives the wrong answer bit, from the α(n)-utility gap guarantee of (V, ~P ) and Definition 9,
there exists a subform HI reachable under s, such that a prover Pj acting in HI loses 1/α(n)
in his expected payment under s compared to the strategy profile (s−I , s∗I).

Using Claim 14, s∗ also induces a dominant SSE in the game tree of (V ′, ~P ). And since
HI is reachable under s in (V, ~P ), it is reachable under s in (V ′, ~P ) as well. Finally, Claim 16
follows by applying Claim 15 twice: once to show that payments under V and V ′ are similar
under s, and once to show that the payments are similar under (s−I , s∗I). In the worst case
this leads to a payment difference of 1/(4α(n)) + 1/(4α(n)) = 1/(2α(n)).

Using Lemma 13, given an O(α(n))-gap ncRIP protocol (where α(n) is constant or
polynomial), a polynomial-time oracle Turing machine can use its NEXP oracle to guess a
strategy profile s, prune the verifier’s Nature moves, and report the resulting O(α(n))-support
distribution bit-by-bit. Thus, it can simulate the new distribution and find the decision
nodes that are reachable under s.

Searching through the strategy-profile space efficiently

The next question is: how should the polynomial-time Turing machine navigate the potential
strategy-profile space (in polynomial time) to find the strategy profile that satisfies Observa-
tion 12? To cut down on the search space, we invoke a recurring idea: divide each prover’s
expected payment interval [−1, 1], evenly into 8α(n) subintervals of length 1/(4α(n)), and
consider subinterval profiles (a tuple of subintervals, one for each prover).



J. Chen, S. McCauley, and S. Singh 29:13

I Lemma 17. Given an input x and an ncRIP protocol (V, ~P ) with α(n)-utility gap, consider
a subinterval profile (L1, . . . , Lp(n)), where each Li = [k/(4α), (k + 1)/(4α+ 1)) denotes a
subinterval of prover Pi in [−1, 1], for some k ∈ {−2α(n), . . . , 2α(n)− 1}. Let s be an SSE
that has an expected payment profile ũ(x, s) such that ui(x, s) ∈ Li for all 1 ≤ i ≤ p(n),
and s does not satisfy Observation 12. Then the expected payment profile ũ(x, s∗) under a
dominant SSE s∗ cannot lie in the same subinterval profile, that is, there exists a prover
index j such that uj(x, s∗) /∈ Lj.

Using Lemma 17, if the polynomial-time Turing machine is able to test any SSE s with
ũ(x, s) in a subinterval profile, for all subinterval profiles, then it is guaranteed to find one
that satisfies Observation 12. This is because a dominant SSE of an ncRIP protocol is
guaranteed to exist and its expected payment profile must belong to some subinterval profile.

However, there are still O(α(n)) subintervals for each prover, and thus O(α(n)p(n)) total
subinterval profiles. A polynomial-time machine cannot test SSEs for each of them.

To reduce the search space further, we show that it is sufficient to consider subintervals
of the total expected payment rather than individual and test an SSE s for each of them.
Recall that a SSE s is weakly dominant if for any player i and SSE s′, ui(s) ≥ ui(s′).

I Lemma 18. If a weakly-dominant SSE exists, then a strategy profile s is a weakly-dominant
SSE if and only if s is an SSE and s maximizes the sum of utilities of all players among
all SSEs.

We are now ready to prove the upper bound for ncRIP classes with constant and
polynomial utility gap. We defer formal details of the proof to the full version of the paper.

Constant utility gap

Using Lemma 13 and Lemma 18, simulating a constant-gap protocol using a PNEXP[O(1)]

machine M is straightforward. We give a high-level overview below.
There are at most O(1) subforms that are reachable under any strategy profile s, and the

total expected payment of the provers conditioned on reaching these subforms will be in one
of the O(1) subintervals. Thus, there are O(1) combinations of total expected payments on
all subforms (including the whole game). M queries its NEXP oracle whether there exists an
SSE that achieves that combination of total expected payments on those subforms, for all
combinations. Then, M finds the maximum among all of the combinations that got a “yes.”
Such a maximum is guaranteed to exist for an ncRIP protocol. Finally, M queries the oracle
for the answer bit of the corresponding SSE by giving the dominant profile of total expected
payments over the subgames.

I Lemma 19. O(1)-ncRIP ⊆ PNEXP[O(1)].

Polynomial utility gap

To simulate a polynomial-utility gap ncRIP protocol (V, ~P ), using a PNEXP machine M , we
put to use all the structure we have established in this section.

For each of the O(α(n)) total payment subintervals of the interval [−1, 1] that correspond
to an SSE, M does a recursive search to find an exact total expected payment u(x, s) that is
generated by an SSE. (We can restrict ourselves to O(α(n)) oracle queries due to Lemma 18.)
In particular, M queries the NEXP oracle: Does there exist an SSE with total expected
payment in the first half of the ith interval?. If the answer is yes then M recurses on the first
half of the ith interval; M does not need to search the second half by Lemma 17. Otherwise
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(if the answer is no) then M recurses on the second half. Thus, in polynomial time and with
polynomial queries, M can find an exact u(x, s) for an SSE s in the subinterval using the
power of its adaptive queries.

Next, M simulates the protocol (V, ~P ) with the help of the oracle, under the SSE s for a
given subinterval. Lemma 13 is crucial for M to simulate the verifier’s moves, because V in
general can induce exponential-size distributions. M traverses the tree reachable under s
“top-down” using the oracle to learn the pruned distributions and provers’ moves. Finally, M
goes “bottom-up” to test whether s satisfies Observation 12 on all its reachable subgames.

I Lemma 20. poly(n)-ncRIP ⊆ PNEXP.
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