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In this paper, we study the Provision-after-Wait problem in healthcare (Braverman, Chen, and Kannan,
2016). In this setting, patients seek a medical procedure which can be performed by different hospitals of
different costs. Each patient has a value for each hospital and a budget-constrained government/planner
pays for the expenses of the patients. Patients are free to choose hospitals, but the planner controls how
much money each hospital gets paid and thus how many patients each hospital can serve (in one budget
period, say one month or one year). Waiting times are used in order to balance the patients’ demand, and the
planner’s goal is to find a stable assignment that maximizes the social welfare while keeping the expenses
within the budget. It has been shown that the optimal stable assignment is NP-hard to compute, and beyond
this, little is known about the complexity of the Provision-after-Wait problem.

We start by showing that this problem is in fact strongly NP-hard, thus does not have an FPTAS. We then
focus on the common preference setting, where the patients have the same ranking over the hospitals. Even
when the patients perceive the hospitals’ values to them based on the same quality measurement —referred
to as proportional preferences, which has been widely studied in resource allocation— the problem is still
NP-hard. However, in a more general setting where the patients are ordered according to the differences
of their values between consecutive hospitals, we construct an FPTAS for it. To develop our results, we
characterize the structure of optimal stable assignments and their social welfare, and we consider a new
combinatorial optimization problem which may be of independent interest, the ordered Knapsack problem.

Optimal stable assignments are deterministic and ex-post individually rational for patients. The down-
side is that waiting times are dead-loss to patients and may burn a lot of social welfare. If randomness is
allowed, then the planner can use lotteries as a rationing tool: the hope is that they reduce the patients’
waiting times, although they are interim individually rational instead of ex-post. Previous study has only
considered lotteries for two hospitals. In our setting, for arbitrary number of hospitals, we characterize the
structure of the optimal lottery scheme and conditions under which using lotteries generates better (ex-
pected) social welfare than using waiting times.

CCS Concepts: rTheory of computation → Design and analysis of algorithms; Approximation al-
gorithms analysis; Packing and covering problems; Algorithmic game theory and mechanism
design;

Additional Key Words and Phrases: budget, resource allocation, healthcare, waiting time, lottery

1. INTRODUCTION
In this paper we consider the Provision-after-Wait problem in healthcare [Braverman
et al. 2016]. The problem studies the interaction among the patients, the hospitals,
and a planner such as the government. Each patient seeks a non-urgent medical ser-
vice, say X-ray or MRI, and has different values for different hospitals. Each hospital
has a cost for serving one patient, which must be paid. The patients do not pay for
the service and, instead, the planner pays for all of them (e.g., in the public sectors
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of healthcare). However, the planner has a budget for how much he can spend and
might not be able to afford the costs incurred by all patients going to their most pre-
ferred hospitals. The planner needs to decide how to distribute his budget among the
hospitals, and thus how many patients he can afford each hospital to serve (in one
budget period, say a month or a year). Patients choose their favorite hospitals and, if
a hospital is over-demanded, then a waiting-time is specified for it: the amount of time
each patient has to wait before getting served there. Given the waiting times, a patient
chooses the hospital that maximizes his utility, which is his value for the hospital mi-
nus the waiting time there.1 De facto, the planner uses waiting times as a rationing
tool and, when the patients pick their utility-maximizing hospitals, the total cost is
within the budget. In addition, each patient should have a non-negative utility at his
chosen hospital. We call such a solution a stable assignment (thus a stable assignment
is automatically envy-free). As waiting times are dead-loss to the patients, the social
welfare is the total utility of the patients rather than total value. Among all stable as-
signments, we are interested in finding the ones that maximize the social welfare. The
same social welfare was considered by [Hartline and Roughgarden 2008] in a different
model. Even when each patient i has value 0 for all hospitals but hospital i, the prob-
lem of computing the optimal stable assignment is NP-hard [Braverman et al. 2016].
The authors also provide an algorithm that may cause a small multiplicative deficit to
the planner’s budget. Beyond this, little is known about the computational complexity
of this problem.

In the technical part of this paper, we start with a simple theorem, Theorem 4.1,
showing that the optimal stable assignment is actually strongly NP-hard to com-
pute. As an immediate consequence, there is no Fully Polynomial-Time Approximation
Scheme (FPTAS) for the problem. Thus, it is natural to look for interesting and more
structured settings where the problem can be solved efficiently.

In this paper, we consider the common preference setting which has been widely
studied in the literature of resource allocation: that is, using the language of the
Provision-after-Wait problem, the patients have the same ranking over the hospitals.
In particular, this includes proportional preferences as special cases, where the pa-
tients perceive the hospitals’ values to them based on the same quality measurement.
More precisely, each patient has a value for receiving the medical service, each hospi-
tal has a quality factor that is publicly known, and a patient’s value for a hospital is
the product of the two. There have been many studies on proportional preferences in
other resource allocation problems. For instance, in auctions for advertisement slots
[Athey and Ellison 2009; Varian 2007], the quality of a slot is its view-through or click-
through rate. In [Devanur et al. 2013; Ha and Hartline 2013; Hartline and Yan 2011],
the quality of a resource represents the probability of obtaining the resource. [Alaei
et al. 2014] considers another economic setting with proportional values. As for hospi-
tals, the star rating is a particular example of quality factors, and patients can obtain
this and other quality measurements from, say, US News Best Hospitals 2015-162 or
Centers for Medicare and Medicaid Services of the US government3.

In fact, the class of patients’ preferences we study is much larger than proportional
preferences. Formally defined in Section 3, we consider preferences where the patients
are ordered according to the differences of their values between consecutive hospitals,
and refer to them as d-ordered preferences (with “d” for “difference”). For example, it
may be the case that patient 1’s value difference for the first two hospitals is larger

1That is, a patient’s value for a hospital is measured as “willingness to wait”. This is similar to auctions,
where a buyer’s value is measured as “willingness to pay”.
2http://health.usnews.com/best-hospitals.
3http://www.cms.gov/.
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than that of patient 2, which is larger than that of patient 3, etc; and this is true for
any two consecutive hospitals. It will become clear from the definition that proportional
preferences are special cases of this class.

Computing Optimal Stable Assignments. In Section 5, we characterize the structure
of optimal stable assignments and the corresponding social welfare. The characteri-
zation is a key tool for most of our results in Sections 5 and 6. Based on it, we first
show that the problem is still NP-hard even with proportional preferences (Theorem
5.10), and then provide an FPTAS for d-ordered preferences (Theorem 5.14). More
specifically, letting n and m respectively be the number of patients and the number of
hospitals, the FPTAS runs in time O((n+m)n3m/ε). Theorems 5.10 and 5.14 together
give us a good understanding about the Provision-after-Wait problem with d-ordered
preferences.

To construct the desired FPTAS, we introduce another problem, ordered Knapsack.
Roughly speaking, this is a bounded Knapsack problem4 where the items’ values de-
pend on the order under which the items are packed into the knapsack. We construct
an FPTAS for this problem and use it to approximate the optimal stable assignment.
We believe the ordered Knapsack problem itself is also worth further study.

Optimal Lottery Schemes. The optimal stable assignment is deterministic and ex-
post individually rational for the patients. However, waiting times are dead-loss to
patients and may burn a lot of social welfare. Another widely used rationing tool in
resource allocation such as school choice is lotteries [Cullen et al. 2006; Lavy 2010;
Ashlagi and Shi 2014; Deming et al. 2014], which allows the planner to randomly allo-
cate resources to people, rather than giving them free choices. The hope is that lotteries
can reduce waiting times and improve the (expected) social welfare, although they are
only required to be interim individually rational instead of ex-post. Interestingly, in
the real world, lotteries are widely used in school choice and waiting times are consid-
ered undesirable there; while in healthcare waiting times are widely used and, to our
best knowledge, so far there is no healthcare system that relies on lotteries. This moti-
vated the authors of [Braverman et al. 2016] to study the structure of optimal lottery
schemes in healthcare, which combines waiting time and randominess, although they
only considered the case of two hospitals.

Roughly speaking, a lottery is a distribution over hospitals together with a waiting
time, and a lottery scheme is a set of lotteries for the patients to choose from. A pa-
tient choosing a particular lottery gets a sample from the distribution and goes to the
specified hospital after the specified waiting time. Each patient chooses one lottery
to maximize his expected utility. The social welfare and the budget constraint for a
lottery scheme are also measured “in expectation.”

It is easy to see that stable assignments are special cases of lottery schemes: there
are m “lotteries” and lottery i assigns the patient to hospital i with probability 1 af-
ter the specified waiting time there. Another natural sub-class of lottery schemes are
randomized assignments, which consists of a single lottery with waiting time 0. Accord-
ingly, in a randomized assignment the patients do not have any choice and the planner
just randomly assigns them to hospitals according to the corresponding distribution.
We formally define these notions in Section 6. For now, it is worth pointing out that
stable assignments and randomized assignments are extreme cases of lottery schemes:
the former utilizes waiting times but not randomness, the latter utilizes randomness
but not waiting times, while a general lottery scheme utilizes both.

4Different from the Knapsack problem where each item has a single copy, the bounded Knapsack problem
allows each item to have multiple copies; see, e.g., [Martello and Toth 1990].
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In principle, randomized assignments generate less social welfare than the optimal
lottery scheme. However, they have the advantage of being efficiently computable, as
we will see in Section 6. Thus, we are interested in understanding the relationship
among optimal stable assignments, optimal randomized assignments, and optimal lot-
tery schemes in general. For arbitrary number of hospitals and d-ordered preferences,
we identify conditions under which optimal randomized assignments generate more
(expected) social welfare than optimal stable assignments (Theorem 6.3). Surprisingly,
for proportional preferences, the same condition implies that the optimal randomized
assignment is actually optimal among all lottery schemes (Theorem 6.7). Our results
significantly generalize that of [Braverman et al. 2016].

The optimal randomized assignment has many good properties, which we briefly
mention below and discuss more carefully in Section 6.3. First, besides being efficiently
computable, the randomized assignment can be implemented so that the budget con-
straint is satisfied with probability 1. Indeed, lotteries in general have the problem
that all guarantees are “in expectation” and, in the worst case, the social welfare may
be poor and the budget constraint may be violated. Accordingly, an important topic
in resource allocation is to find lotteries that can be implemented with ex-post per-
formance guarantees [Budish et al. 2013]. It remains an interesting open problem to
design such lottery schemes in our setting for the budget constraint and the social
welfare simultaneously.

Second and more interestingly, the conditions in Theorems 6.3 and 6.7 have a very
natural interpretation from a different aspect. Indeed, we consider the patients as a
continuous population over say, [0, 1], and consider the random variable for patients’
values for the hospitals induced by the uniform distribution over the patient popula-
tion. Then, the conditions in Theorems 6.3 and 6.7 are exactly that the corresponding
distributions of the value differences between consecutive hospitals have monotone
hazard rates (MHR). This brings up an interesting connection between our result and
lottery pricing schemes with a single buyer and multiple items [Chawla et al. 2007],
where optimal pricing schemes are studied when the distributions of the buyer’s values
have MHR.

2. ADDITIONAL RELATED WORKS
The role of waiting time in healthcare has been extensively studied in the literature.
Many works use it as a rationing tool to balance demand and supply for non-urgent
medical services; and many others consider its welfare-burning effect and try to reduce
waiting in healthcare. In particular, [Gravelle and Siciliani 2008b] uses both waiting
time and service quality as instruments to control the demand in health insurance,
while the instruments used in [Felder 2008] are waiting time and copayments. Their
models and objectives are quite different from ours though. [Gravelle and Siciliani
2008a, 2009] use waiting time prioritisation/discrimination to improve social welfare.
In particular, they consider setting different waiting times for different groups of pa-
tients requiring the same treatment, even when the patients are in the same waiting
list. Different from their work, in our model the patients going to the same hospital
all face the same waiting time. On the empirical front, [Dawson et al. 2007] provides
experimental studies on reducing waiting times by offering patients who face a long
wait at their desired hospital the choice of an alternative hospital with a guaranteed
shorter wait. Moreover, [Siciliani and Hurst 2005] gives a thorough comparative anal-
ysis on waiting times of existing elective-surgery policies in OECD countries. Finally,
it is worth pointing out that existing studies usually focus on a single healthcare sys-
tem: in particular, the public sector. However, having waiting times for a service in
one system do not necessarily mean hospitals or doctors are idle: in reality, they serve
patients from multiple healthcare systems.
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None of the above mentioned studies considers the budget constraint of the plan-
ner and, to our best knowledge, the effect of the planner’s budget on waiting times
was considered for the first time in [Braverman et al. 2016]. To help understanding
the emergence of waiting times under the existence of budget, the authors consider
the dynamic between patients and hospitals. Given how the planner’s budget is dis-
tributed among the hospitals, when the patients arrive continuously along time, the
dynamic starts with waiting time 0 everywhere. It lets patients choose hospitals freely
and adjusts waiting times according to the demand. The authors show that when the
patients are generic, the dynamic always converges to the optimal stable assignment
and, after the convergence, all patients going to the same hospital face the same wait-
ing time. Accordingly, the optimal stable assignment can be considered as the stable
state of the dynamic, rather than being enforced exogenously by the planner.

Since the authors of [Braverman et al. 2016] allow arbitrary values of the patients
for the hospitals, the NP-hardness for computing the optimal stable assignment there
is much easier than in our setting. When there is a small number of hospitals, they
provide an algorithm using budget (1 + ε)B to generate a stable assignment whose
social welfare is at least the optimal social welfare under budget B, but the technique
is different from ours. Moreover, the authors study optimal lottery schemes only for
two hospitals. In this paper, besides strengthening the hardness result for the gen-
eral Provision-after-Wait problem, we focus on patients with common preferences and
greatly improve the understanding on both stable assignments and lottery schemes.

Notice that in our model, after the planner has decided how to distribute the bud-
get among the hospitals, the allocation of affordable slots at different hospitals to pa-
tients becomes a unit-demand auction, with waiting times as prices. However, in unit-
demand envy-free pricing schemes the goal is usually to maximize revenue instead of
social welfare. In [Devanur et al. 2013] and [Hartline and Yan 2011], the authors study
pricing problems where the buyers have proportional values and characterize the op-
timal envy-free solutions for maximizing revenue and the total value of the players.
While most works on pricing schemes study deterministic optimal item-pricing [Briest
2008; Chawla et al. 2007; Chen et al. 2014; Guruswami et al. 2005; Hartline and Yan
2011], a few consider lotteries [Briest et al. 2010; Chawla et al. 2010; Manelli and Vin-
cent 2006; Thanassoulis 2004] and show that they can generate more revenue than
deterministic item-pricing in various cases. However, the structures of optimal lottery
pricing schemes are far from being well understood.

Finally, as pointed out by [Braverman et al. 2016], part of the difficulties using wait-
ing times as a rationing tool comes from the fact that the planner’s budget and the
patients’ waiting times are two unexchangeable “currencies”, as patients do not care
about the money paid to the hospitals. Thus, although the problem of assigning pa-
tients to hospitals looks like matching in labor markets between firms and workers,
the approaches are very different. For example, in a classic study about matching in
labor markets by [Kelso and Crawford 1982], the constraints include both the gross
product and the salary of workers, but the former is measured in the same unit as the
latter, thus there is only one “currency”.

3. THE MODEL
In this section, we first review the Provision-after-Wait problem introduced by [Braver-
man et al. 2016] and then define the classes of patients’ preferences considered in this
paper. More specifically, there are n patients, indexed by [n] = {1, 2, ..., n}, and m hospi-
tals, indexed by [m] = {1, 2, ...,m}. Each patient wants a single medical service, which
can be provided by any one of the hospitals. For each hospital j ∈ [m], there is a cost
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cj ≥ 0 for serving one patient.5 Each patient i ∈ [n] has a value vij ≥ 0 for receiv-
ing the service in hospital j ∈ [m]. As mentioned before, the patients do not pay for
the service. Instead, the planner such as the government pays for everybody’s service
through some funding program (e.g., the Patient Protection and Affordable Care Act
in United States—that is, Obamacare). The planner has a budget B ≥ 0 that limits the
total amount that he can spend, such that nminj∈[m] cj ≤ B < nmaxj∈[m] cj . That is,
the planner cannot afford to have all patients served at the most expensive hospital,
but he can at least afford to serve all patients at the cheapest hospital. The planner
thus decides a quota λj ∈ {0, 1, . . . , n} for each hospital j, indicating how much he
can spend there, and thus how many patients this hospital can serve. A quota vector
λ = (λ1, . . . , λm) is feasible if

∑
j∈[m] λj ≥ n and

∑
j∈[m] λjcj ≤ B. Given the quotas,

waiting times are used as a rationing tool to balance demand and supply. In particu-
lar, the problem becomes envy-free pricing, where each hospital j has λj “copies” for
sale and has a waiting time wj ≥ 0 as its “price”. For each patient i, her utility for
going to hospital j is vij − wj .

Given a quota vector λ, a solution to the Provision-after-Wait problem is called an
assignment, which consists of a waiting vector w = (w1, . . . , wm) and an assignment
function a : [n]→ [m]. For each patient i, a(i) is the hospital that i goes to; and for each
hospital j, |a−1(j)| ≤ λj . Given an assignment A = (a,w), the social welfare of A is
SW (A) =

∑
i∈[n] via(i) −wa(i), the total cost of A is C(A) =

∑
i∈[n] ca(i), and A is budget-

feasible if C(A) ≤ B. An assignment A is stable if for any patient i, (1) via(i) −wa(i) ≥ 0
and (2) for any hospital j, via(i) − wa(i) ≥ vij − wj . Note that we could have started
by allowing different patients to have different waiting times at the same hospital, but
envy-freeness automatically implies patients going to the same hospital have the same
waiting time anyway.

The planner’s goal is to find a feasible λ and a corresponding stable assignment A to
maximize the social welfare. It is worth pointing out that in the real world the patients
arrive along time and the waiting time at each hospital may change dynamically ac-
cording to the demand. However, it is without loss of generality to consider a one-shot
game with n patients and a fixed waiting time for each hospital. Indeed, as shown by
[Braverman et al. 2016], given any quota vector λ, when there are n continuous pa-
tient populations arriving along time and when the patients’ values are generic, the
dynamic that starts with waiting time 0 at every hospital and adjusts waiting times
according to the patients’ demand always converges to the optimal stable assignment
under λ. That is, waiting times derive endogenously from the budget constraint and
the dynamic between patients and hospitals, and the static solution we are interested
in here can be considered as the stable state of the dynamic. Note that before the dy-
namic converges, different patients arriving at different time points may face different
waiting times at the same hospital, but at the stable state all patients going to the
same hospital face the same waiting time. That is why in our solution we only specify
one waiting time for each hospital.6

Moreover, given any stable and budget-feasible assignment A = (a,w), the planner
can always define λ to be λj = |a−1(j)| for each hospital j and λ is feasible. Therefore
finding the optimal stable and budget-feasible assignment is the key problem and, in
the discussion below, we will not explicitly specify λ and will focus on the assignment.

5That is, one hospital provides the same service to all patients, while different hospitals may provide dif-
ferent services. For example, one “hospital” may actually represent X-ray services and another one may
represent MRI services.
6In particular, our study is different from waiting time discrimination [Gravelle and Siciliani 2008a, 2009],
which sets different waiting times for different patients at the same hospital on purpose, so as to improve
social welfare.
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Definition 3.1. A stable assignment A is optimal if

A ∈ argmax
A′ is stable and budget-feasible

SW (A′).

It is also useful to consider optimal stable assignments with respect to a particular
assignment function, as follows.

Definition 3.2. For any assignment function a, a stable assignment A = (a,w) is
optimal with respect to a if A ∈ argmaxA′=(a,w′) and A′ is stable SW (A′).

Note that budget-feasibility is not required in Definition 3.2: the cost of all assign-
ments A′ = (a,w′) is solely decided by a, thus either all of them are budget-feasible
or none is. Below we introduce two classes of patients’ preferences considered in this
paper.

Proportional Preferences. As mentioned in the introduction, after showing that the
general Provision-after-Wait problem is strongly NP-hard, we consider common pref-
erences where the patients have the same ranking for the hospitals: without loss of
generality, vi1 ≥ vi2 ≥ · · · ≥ vim for each patient i. A widely studied class of such pref-
erences are proportional preferences, as follows. For each hospital j there is a quality
factor qj ≥ 0 that is publicly known, and without loss of generality q1 ≥ q2 ≥ · · · ≥ qm.
For each patient i, there is a value vi ≥ 0 specifying i’s value for being served, and i’s
value for each hospital j is vij = viqj .

Note that vi1 ≥ vi2 ≥ ... ≥ vim for each patient i, thus the patients have common
preferences. By renaming the patients, v1 ≥ v2 ≥ · · · ≥ vn without loss of generality.
Accordingly, we also have v1j ≥ v2j ≥ · · · ≥ vnj for each hospital j, and the matrix
v = (vij)i∈[n],j∈[m] has all rows and columns to be non-increasing. For clarity, when
considering proportional preferences, we explicitly represent the value vij as viqj .

Preferences That Are Ordered By Differences. A sub-class of common preferences that
is much larger than proportional preferences are where the patients are ordered by
differences, referenced to as d-ordered preferences. For each patient i ∈ [n] and hospital
j ∈ {2, ...,m}, letting vdij , vi(j−1) − vij ≥ 0 be the difference of i’s values for hospitals
j − 1 and j, we have the following.

Definition 3.3. The patients are ordered by differences (or d-ordered for short) if for
each j ∈ {2, ...,m}, we have vd1j ≥ vd2j ≥ · · · ≥ vdnj .

That is, patient 1 is the most sensitive to the change from any hospital to the next
best one, and then patient 2, etc. It is straightforward to verify that patients with
proportional preferences are d-ordered, as vdij = (qj−1 − qj)vi for each patient i and
hospital j ≥ 2. However, in general d-ordered preferences v = (vij)i∈[n],j∈[m] may not
satisfy the additional property that v1j ≥ v2j ≥ · · · ≥ vnj for each hospital j.

Remark 3.4. For arbitrary d-ordered preferences v = (vij)i∈[n],j∈[m], v may not sat-
isfy the additional ordering property that v1j ≥ v2j ≥ · · · ≥ vnj for each hospital j
as in proportional preferences. However, note that vij = vdi(j+1) + · · · + vdim + vim for
any patient i and hospital j and, if we define v′ij = vij − vim, then the resulting pref-
erences v′ = (v′ij)i∈[n],j∈[m] keep the original differences while satisfies the additional
ordering property. Moreover, v′im = 0 for any patient i. After our characterization in
Section 5.1 for optimal stable assignments, it will become clear (see Section 5.3) that
an optimal stable assignment for v is also an optimal stable assignment for v′, and vice
versa. Thus for computing optimal stable assignments it will be sufficient to consider
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d-ordered preferences of the type of v′. But we do not need this condition to establish
the characterization.

4. THE COMPLEXITY OF THE GENERAL PROVISION-AFTER-WAIT PROBLEM
The following theorem holds from a simple reduction from Vertex Cover and motivates
us to consider the Provision-after-Wait problem with common preferences.

THEOREM 4.1. It is strongly NP-hard to compute an optimal stable assignment for
the general Provision-after-Wait problem.

PROOF. Consider the decision version of the general Provision-after-Wait problem:

DPaW = {(c = (cj)j∈[m], v = (vij)i∈[n],j∈[m], B, T ) : there exists a stable
budget-feasible assignment A such that SW (A) ≥ T}.

The Vertex Cover problem, which is well known to be strongly NP-hard, is defined as
follows:

V C = {(G = (V,E), k) : there exists V ′ ⊆ V with |V ′| = k

such that, for each edge {u, v} ∈ E, {u, v} ∩ V ′ 6= ∅},
where G is an undirected simple graph with vertex set V and edge set E. Given an
instance (G, k) of V C with t vertices and e edges, and letting V = {1, . . . , t} and E =
{{u1, v1}, ..., {ue, ve}}, we construct an instance (c, v,B, T ) of DPaW as follows.

— There are t+1 hospitals and e+t patients. Each hospital j ∈ [t] corresponds to a vertex
j ∈ V and hospital t + 1 corresponds to a dummy hospital. Each edge-type patient
i ∈ [e] corresponds to an edge {ui, vi} ∈ E and each vertex-type patient i ∈ [e + t] \ [e]
corresponds to a vertex i− e ∈ V .

— For each hospital j ∈ [t], cj = 1; and for hospital t+ 1, ct+1 = 0.
— For each edge-type patient i ∈ [e], viui = vivi = t2 and vij = 0 for any other hospital
j ∈ [t+ 1] \ {ui, vi}. That is, i only wants hospitals corresponding to the vertices of its
edge.

— For each vertex-type patient i ∈ [e + t] \ [e], vi(i−e) = 1 and vij = 0 for any other
hospital j ∈ [t+ 1]\{i− e}. That is, i only wants the hospital corresponding to its own
vertex.

— Finally, B = e+ k and T = et2 + k.

It is easy to see that the reduction takes polynomial time and produces an instance
of DPaW where all the parameters are polynomial in the size of (G, k). We have the
following two lemmas.

LEMMA 4.2. (G, k) ∈ V C ⇒ (c, v,B, T ) ∈ DPaW .

PROOF. Letting V ′ be a vertex cover of G with |V ′| = k, we construct an assignment
A = (a,w) as follows.

—wj = 0 for each hospital j ∈ V ′ ∪ {t+ 1} and wj = t2 for each hospital j ∈ V \ V ′.
— For each vertex-type patient i ∈ [e + t] \ [e], if i − e ∈ V ′ then a(i) = i − e, otherwise
a(i) = t+ 1.

— For each edge-type patient i ∈ [e], if ui ∈ V ′ then a(i) = ui; otherwise a(i) = vi (and
vi ∈ V ′).

It is easy to see that the construction of A takes polynomial time. To see why A is
budget-feasible, notice that there are exactly k vertex-type patients and e edge-type
patients served in hospitals {1, . . . , t}, with cost 1 each, thus the total cost is e+ k = B.
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Now we show that A is stable. For each edge-type patient i ∈ [e], by the definition
of a vertex cover we have a(i) ∈ V ′, thus wa(i) = 0 and via(i) − wa(i) = t2, which is the
maximum utility i can get from any hospital. For each vertex-type patient i ∈ [e+t]\ [e]
such that i − e ∈ V ′, we have via(i) − wa(i) = vi(i−e) − wi−e = 1 − 0 = 1, which is
again the maximum utility i can get from any hospital. Moreover, for each vertex-type
patient i such that i − e 6∈ V ′, we have wi−e = t2, vi(i−e) − wi−e = 1 − t2 < 0, and
via(i) − wa(i) = vi(t+1) − wt+1 = 0 ≥ vij − wj for each j ∈ [t + 1]. Accordingly, the
assignment A is stable.

Finally, the social welfare of A is

SW (A) =
∑

i∈[e+t]

via(i) − wa(i) =
∑
i∈[e]

via(i) − wa(i) +
∑

i∈[e+t]\[e]

via(i) − wa(i)

= et2 +
∑

i∈[e+t]\[e], i−e∈V ′
1 = et2 + |V ′| = et2 + k = T.

In sum, (c, v,B, T ) ∈ DPaW as desired.

LEMMA 4.3. (c, v, B, T ) ∈ DPaW ⇒ (G, k) ∈ V C.

PROOF. Letting A = (a,w) be the optimal stable budget-feasible assignment, we
have SW (A) ≥ T = et2 + k. Letting V ′ be the set of vertices whose corresponding
hospitals have waiting time 0 in A, we show that V ′ is a vertex cover of G with size k.

First of all, since A is budget-feasible and each hospital in [t] has cost 1, there can
be at most e+ k patients served at these hospitals. Second, notice that each edge-type
patient values a hospital for at most t2 and each vertex-type patient values a hospital
for at most 1. In order to achieve SW (A) ≥ et2 + k, it must be the case that all e edge-
type patients and exactly k vertex-type patients are served by hospitals in [t]: if there
are x < e edge-type patients and y vertex-type patients served by hospitals in [t], then
the social welfare can be at most xt2 + y ≤ xt2 + t ≤ (e − 1)t2 + t2 = et2 < et2 + k,
a contradiction. Moreover, each of the k vertex-type patient is served at a hospital he
values for 1, each edge-type patient is served at a hospital which he values for t2, and
all such hospitals have waiting time 0 in A. Accordingly, these hospitals are all in V ′.
By construction, each edge has a vertex in V ′ and V ′ is a vertex cover of G. Since each
vertex-type patient corresponds to a different vertex, |V ′| ≥ k.

Finally, it is easy to see that |V ′| cannot be larger than k: otherwise, since A is stable,
all the |V ′| corresponding vertex-type patients are served by hospitals in V ′ and the
total cost is e + |V ′| > e + k = B, a contradiction. Therefore we have |V ′| = k and
(G, k) ∈ V C as desired.

Theorem 4.1 follows directly from Lemmas 4.2 and 4.3.

5. OPTIMAL STABLE ASSIGNMENTS
From now on, we solely consider d-ordered preferences and may not explicitly mention
this fact anymore.

5.1. The Structure of Optimal Stable Assignments
We start by characterizing the structure of optimal stable assignments and their so-
cial welfare. This characterization gives us the key tools for analyzing optimal stable
assignments and is used in almost all of our main results. The following claims hold
trivially and clarify several properties of the problem in our setting.

CLAIM 5.1. When the patients are d-ordered, for any two patients i < i′ and two
hospitals j < j′, vij − vij′ ≥ vi′j − vi′j′ .
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PROOF. By Definition 3.3, vij − vij′ =
∑j′

l=j+1 v
d
il ≥

∑j′

l=j+1 v
d
i′l = vi′j − vi′j′ .

CLAIM 5.2. When the patients are d-ordered, for any stable assignment A = (a,w)
and any two hospitals j < j′ such that a−1(j′) 6= ∅, we have wj ≥ wj′ .

PROOF. Let i ∈ [n] be such that a(i) = j′. By definition, vij′ − wj′ ≥ vij − wj , that is,
wj −wj′ ≥ vij − vij′ . Since j < j′ and the patients have common preferences, vij ≥ vij′ .
Thus wj − wj′ ≥ 0 and Claim 5.2 holds.

Below is an important definition.

Definition 5.3. An assignment function a is ordered if a(1) ≤ a(2) ≤ · · · ≤ a(n).

The lemma below shows that it is sufficient to consider stable assignments A = (a,w)
where a is ordered.

LEMMA 5.4. When the patients are d-ordered, given any stable assignment A =
(a,w), in polynomial time it can be modified so that: a is ordered, A is still stable, and
the total cost and the utility of each patient remain the same.

PROOF. Assume a(i) > a(i′) for some patients i < i′. Since the patients are d-
ordered, vdij ≥ vdi′j for all j = 2, ...,m. By the definition of stable assignments, we have

via(i) − wa(i) ≥ via(i′) − wa(i′) and vi′a(i′) − wa(i′) ≥ vi′a(i) − wa(i). (1)

Adding the two inequalities side by side and rearranging the terms, we have

via(i) − wa(i) + vi′a(i′) − wa(i′) ≥ via(i′) − wa(i′) + vi′a(i) − wa(i)
⇐⇒ via(i) + vi′a(i′) ≥ via(i′) + vi′a(i)

⇐⇒ vi′a(i′) − vi′a(i) ≥ via(i′) − via(i).

From Claim 5.1, since i < i′ and a(i′) < a(i), we have via(i′) − via(i) ≥ vi′a(i′) − vi′a(i).
Together with the inequality above, we have via(i′) − via(i) = vi′a(i′) − vi′a(i). Using (1),
we have

wa(i′) − wa(i) ≥ via(i′) − via(i) = vi′a(i′) − vi′a(i) ≥ wa(i′) − wa(i).
Since the leftmost equation is the same as the rightmost, both inequalities must be
equalities. Accordingly,

via(i) − wa(i) = via(i′) − wa(i′) and vi′a(i′) − wa(i′) = vi′a(i) − wa(i).

That is, patient i has the same utility at a(i′) and a(i), so does patient i′. Thus, we
can switch their assigned hospitals while keeping the stability of the assignment, ob-
taining the same total cost and patients’ utilities as before, and having a(i) ≤ a(i′).
This immediately implies that n−1 switches suffice to make a ordered and Lemma 5.4
holds.

By Lemma 5.4, we can focus on stable assignments A = (a,w) where a is ordered.
Note that for any such A, by Claim 5.2 we have

wa(1) ≥ wa(2) ≥ · · · ≥ wa(n). (2)

Arbitrarily fixing an ordered assignment function a, we consider all the stable assign-
ments with respect to a. Below is another important definition.

Definition 5.5. For any ordered assignment function a, the tight assignment at a is
defined to be the assignment A = (a,w) where wa(n) = 0, wa(i) = v(i+1)a(i)−v(i+1)a(i+1)+
wa(i+1) for any i < n, and wj = +∞ for any j /∈ a([n]).
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If a stable assignment A′ = (a,w′) is such that w′(a(i)) = w(a(i)) for each patient i,
then we say that A′ is tight at a.

In the definition above, wj with j /∈ a([n]) can be any sufficiently large number such
that no patient wants to be served at hospital j. For example, it suffices to take wj =
maxi∈[n] vi1. In this sense, there are many tight assignments at a, but they can all
be considered as the same. Since a is ordered, a(i) ≤ a(i + 1) for each i < n. Since
the patients have common preferences, v(i+1)a(i) ≥ v(i+1)a(i+1) for each i < n. Thus
the wa(i)’s in Definition 5.5 are all non-negative and A is well defined. Moreover, note
that for any i < n, v(i+1)a(i+1) − wa(i+1) = v(i+1)a(i) − wa(i): that is, patient i + 1 is
indifferent between hospitals a(i + 1) and a(i). The following lemmas show that the
tight assignment at a is not only stable but also optimal with respect to a. Moreover, it
is essentially the only optimal stable assignment with respect to a.

LEMMA 5.6. For any ordered assignment function a, the tight assignment at a is
stable.

PROOF. Letting A = (a,w) be the tight assignment at a, we first compare i’s utility
at a(i) with his utility at a(i′) for all i′ 6= i.

For any i′ < i, by Definition 5.5 we have

v(i′+1)a(i′) − wa(i′) = v(i′+1)a(i′+1) − wa(i′+1). (3)

Since i′ + 1 ≤ i and a(i′) ≤ a(i′ + 1), by Claim 5.1 we have v(i′+1)a(i′) − v(i′+1)a(i′+1) ≥
via(i′) − via(i′+1), that is,

v(i′+1)a(i′) − via(i′) ≥ v(i′+1)a(i′+1) − via(i′+1). (4)

Subtracting corresponding sides of (4) from those of (3), we have

via(i′) − wa(i′) ≤ via(i′+1) − wa(i′+1).

Since this holds for all i′ < i, we have

via(1) − wa(1) ≤ via(2) − wa(2) ≤ · · · ≤ via(i−1) − wa(i−1) = via(i) − wa(i),

where the equality is by (3) with i′ = i− 1. Thus i’s utility at any a(i′) with i′ < i is no
larger than his utility at a(i).

Similarly, for any i′ > i, by Definition 5.5 we have

vi′a(i′−1) − wa(i′−1) = vi′a(i′) − wa(i′). (5)

Since i < i′ and a(i′−1) ≤ a(i′), by Claim 5.1 we have vi′a(i′−1)−vi′a(i′) ≤ via(i′−1)−via(i′),
that is,

vi′a(i′−1) − via(i′−1) ≤ vi′a(i′) − via(i′). (6)

Subtracting corresponding sides of (6) from those of (5), we have

via(i′−1) − wa(i′−1) ≥ via(i′) − wa(i′).

Since this holds for all i′ > i, we have

via(i) − wa(i) ≥ via(i+1) − wa(i+1) ≥ · · · ≥ via(n) − wa(n) ≥ 0, (7)

where the last inequality is further because wa(n) = 0. Thus i’s utility at any a(i′) with
i′ > i is no larger than his utility at a(i), and his utility at a(i) is non-negative.

It remains to show that for any hospital j 6∈ a([n]), via(i) − wa(i) ≥ vij − wj . This is
clearly true because via(i) − wa(i) ≥ 0 and vij − wj = vij −∞ < 0. Therefore A is stable
and Lemma 5.6 holds.
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Lemma 5.6 implies that, for any ordered assignment function a, the set of stable
assignments whose assignment function is a is non-empty. In the analysis below, for
S ⊆ [n], a(S) ⊆ [m] is the image set of S under the function a.

LEMMA 5.7. For any ordered assignment function a and any stable assignment
A = (a,w), A is optimal with respect to a if and only if it is tight at a.

PROOF. We start by proving the “only if” part and let A = (a,w) be a stable assign-
ment that is optimal with respect to a.

First, assuming wa(n) > 0, we define waiting vector w′ as follows. For j ∈ [m] such
that there exists i ∈ [n] with a(i) = j, let w′j = wj − wa(n). Note that w′j ≥ 0 by (2). For
any other j, let w′j = wj . It is easy to see that the assignment A′ = (a,w′) is still stable.
However,

SW (A′) =
∑
i∈[n]

via(i) − w′a(i) =
∑
i∈[n]

(
via(i) − wa(i) + wa(n)

)
= SW (A) + nwa(n) > SW (A),

contradicting the optimality of A. Thus wa(n) = 0.
Second, if wa(i) < v(i+1)a(i) − v(i+1)a(i+1) + wa(i+1) for some i < n, then

v(i+1)a(i+1) − wa(i+1) < v(i+1)a(i) − wa(i)
and a(i + 1) does not maximize the utility of patient i + 1, contradicting the stability
of A. Thus for any i < n,

wa(i) ≥ v(i+1)a(i) − v(i+1)a(i+1) + wa(i+1).

To prove that the two sides of the above inequality are actually equal, assume for
the sake of contradiction that for some i < n

wa(i) > v(i+1)a(i) − v(i+1)a(i+1) + wa(i+1).

Letting δ = wa(i)−(v(i+1)a(i)−v(i+1)a(i+1))−wa(i+1), we have δ > 0. Since a(i) ≤ a(i+1),
we have v(i+1)a(i) − v(i+1)a(i+1) ≥ 0 and thus δ ≤ wa(i). Construct waiting vector w′ as
follows. For any hospital j ∈ a({1, 2, . . . , i}), let w′j = wj − δ. Note that 0 ≤ w′j < wj . For
any other j, let w′j = wj . Letting A′ = (a,w′), we prove the following.

CLAIM 5.8. A′ is stable.

PROOF. To begin with, all patients’ utilities under A′ are non-negative, as the wait-
ing times only decrease from w. Next, we show that for any patient i′, his utility in A′

is still maximized at a(i′).
First of all, for any patient i′ ≤ i and hospital j,

vi′a(i′) − w′a(i′) = vi′a(i′) − wa(i′) + δ ≥ vi′j − wj + δ ≥ vi′j − w′j , (8)

where the second inequality is because w′j ≥ wj − δ. Accordingly, the utility of i′ is
maximized at a(i′) in A′.

Second of all, arbitrarily fix a patient i′ ≥ i+ 1. For any hospital j 6∈ a({1, . . . , i}), we
have

vi′a(i′) − w′a(i′) ≥ vi′a(i′) − wa(i′) ≥ vi′j − wj = vi′j − w′j , (9)

where the equality is because w′j = wj . It remains to consider the utility of patient i′

in A′ at an arbitrary hospital j ∈ a({1, . . . , i}).
Applying (8) to patient i and hospital j, we have

vij − w′j ≤ via(i) − w′a(i). (10)
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Since j = a(i′′) for some i′′ ≤ i and a is ordered, we have j ≤ a(i). Since i < i′, by
Claim 5.1 we have vij − via(i) ≥ vi′j − vi′a(i), that is,

vij − vi′j ≥ via(i) − vi′a(i). (11)

Subtracting corresponding sides of (11) from those of (10), we have

vi′j − w′j ≤ vi′a(i) − w′a(i), (12)

that is, the utility of patient i′ at j is no larger than his utility at a(i) in A′. Next, we
show that the utility of i′ at a(i) is no larger than his utility at a(i′) in A′.

To do so, by definition we have

w′a(i) = wa(i) − δ = v(i+1)a(i) − v(i+1)a(i+1) + wa(i+1),

namely,
v(i+1)a(i) − w′a(i) = v(i+1)a(i+1) − wa(i+1). (13)

By the hypothesis,

v(i+1)a(i+1) − wa(i+1) > v(i+1)a(i) − wa(i),

implying a(i + 1) 6= a(i). Since a is ordered, a(i + 1) > a(i) and a({1, . . . , i}) ⊆
{1, . . . , a(i)}. Thus

a(i+ 1) 6∈ a({1, . . . , i}) and w′a(i+1) = wa(i+1), (14)

where the second part together with (13) implies

v(i+1)a(i) − w′a(i) = v(i+1)a(i+1) − w′a(i+1). (15)

Since i′ ≥ i+ 1, and a(i) ≤ a(i+ 1), again by Claim 5.1 we have

v(i+1)a(i) − vi′a(i) ≥ v(i+1)a(i+1) − vi′a(i+1). (16)

Subtracting corresponding sides of (16) from those of (15), we have

vi′a(i) − w′a(i) ≤ vi′a(i+1) − w′a(i+1).

Since a(i+ 1) 6∈ a({1, . . . , i}) by the first part of (14), applying (9) to hospital a(i+ 1) we
have

vi′a(i′) − w′a(i′) ≥ vi′a(i+1) − w′a(i+1).

Combining the two inequalities above, we have

vi′a(i′) − w′a(i′) ≥ vi′a(i) − w
′
a(i), (17)

that is, the utility of i′ at a(i) is no larger than his utility at a(i′) in A′, as desired.
Combining (12) and (17), we have that for any j ∈ a({1, . . . , i}),

vi′a(i′) − w′a(i′) ≥ vi′j − w
′
j . (18)

Combining (8), (9) and (18), A′ is stable and Claim 5.8 holds.

However,

SW (A′) =
∑
i′∈[n]

vi′a(i′) − w′a(i′)

=
∑
i′≤i

[
vi′a(i′) − wa(i′) + δ

]
+
∑
i′≥i+1

[
vi′a(i′) − wa(i′)

]
≥ SW (A) + δ > SW (A),
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contradicting the fact that A is optimal with respect to a. Therefore the hypothesis is
false and wa(i) = v(i+1)a(i) − v(i+1)a(i+1) + wa(i+1) for any i < n, concluding the proof of
the “only if” part.

Finally, to prove the “if” part, note that for any patient i, the tightness of A at a has
uniquely pinned downwa(i) and thus the utility of i at a(i). Accordingly, all assignments
(whether stable or not) that have assignment function a and are tight at a have the
same social welfare. Thus any such assignment that is stable must be optimal with
respect to a, as desired. In sum, Lemma 5.7 holds.

The following lemma shows that the social welfare of any stable assignment optimal
with respect to a can be explicitly calculated from the patients’ values.

LEMMA 5.9. For any ordered assignment function a and any stable assignment
A = (a,w) optimal with respect to a, SW (A) =

∑
i<n i(via(i) − v(i+1)a(i)) + nvna(n).

PROOF. For any k < n, let Uk =
∑n−1
i=k

[
via(i) − wa(i)

]
. By Lemma 5.7, A is tight at a.

Thus by Definition 5.5 we have

Un−1 = v(n−1)a(n−1) − wa(n−1) = v(n−1)a(n−1) − (vna(n−1) − vna(n))− wa(n)
= vna(n) + v(n−1)a(n−1) − vna(n−1),

and for any k < n− 1,

Uk =

n−1∑
i=k

via(i) −
n−1∑
i=k

wa(i) =

n−1∑
i=k

via(i) −
n−1∑
i=k

[
v(i+1)a(i) − v(i+1)a(i+1) + wa(i+1)

]
=

n−1∑
i=k

[
via(i) − v(i+1)a(i)

]
+

n∑
i=k+1

via(i) −
n∑

i=k+1

wa(i)

= vna(n) +

n−1∑
i=k

[
via(i) − v(i+1)a(i)

]
+

n−1∑
i=k+1

via(i) −
n−1∑
i=k+1

wa(i)

= vna(n) +

n−1∑
i=k

[
via(i) − v(i+1)a(i)

]
+ Uk+1.

Thus

SW (A) =
∑
i∈[n]

[
via(i) − wa(i)

]
= vna(n) + U1 = · · ·

= nvna(n) +

n−1∑
k=1

n−1∑
i=k

[
via(i) − v(i+1)a(i)

]
= nvna(n) +

n−1∑
i=1

i∑
k=1

[
via(i) − v(i+1)a(i)

]
=

n−1∑
i=1

i(via(i) − v(i+1)a(i)) + nvna(n),

and Lemma 5.9 holds.

The above lemmas are the key tools for computing the optimal stable assignment
and analyzing its complexity; see the discussion below.

5.2. The Complexity of Computing Optimal Stable Assignments
THEOREM 5.10. It is NP-hard to compute an optimal stable assignment when the

patients have proportional preferences.
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We prove Theorem 5.10 by applying the lemmas from Section 5.1 to proportional
preferences. As mentioned in Section 3, for clarity, when the patients have propor-
tional preferences, we explicitly represent the value vij as viqj . Moreover, recall that
we rename the patients and the hospitals so that

v1 ≥ v2 ≥ · · · ≥ vn and q1 ≥ q2 ≥ · · · ≥ qm. (19)

PROOF OF THEOREM 5.10. Consider the decision version of the Provision-after-
Wait problem:

DPaW = {(q1, . . . , qm, c1, . . . , cm, v1, . . . , vn, B, V ) :

there exists a stable budget-feasible assignment A s.t. SW (A) ≥ V }.
We show that DPaW is NP-complete by a reduction from the Subset Sum problem:

SubsetSum = {(s1, . . . , sn, T ) : there exists S ⊆ [n] such that
∑
i∈S

si = T}.

Given an instance α = (s1, . . . , sn, T ) of SubsetSum, we assume without loss of
generality that s1 ≥ s2 ≥ · · · ≥ sn, and construct an instance γ = (q1, . . . , qm,
c1, . . . , cm, v1, . . . , vn, B, V ) of DPaW as follows. Notice that we use the same symbol
for both a variable and its binary representation, and the 1st bit refers to the right-
most bit.

— There are m = 2n hospitals and n patients.
— For each i ∈ [n], qi = ci = si · 2n(dlogne+1) + 2(n−i)(dlogne+1): qi and ci are obtained by

appending n(dlog ne+ 1) bits of 0’s to the right of the binary representation of si, and
then setting the (n− i)(dlog ne+ 1) + 1st bit to 1.

— For each i ∈ [n], qn+i = cn+i = 2(n−i)(dlogne+1). That is, qn+i and cn+i consist of one bit
of 1 followed by (n − i)(dlog ne + 1) bits of 0’s. Notice that the unique bit of 1 in qn+i
and cn+i is aligned with the unique bit of 1 after si in qi and ci.

—B = V = T · 2n(dlogne+1) +
∑
i∈[n] 2(n−i)(dlogne+1). That is, B and V are obtained by

appending n(dlog ne+ 1) bits of 0’s to the right of the binary representation of T , and
then set the (n− i)(dlog ne+ 1) + 1st bit to 1 for each i ∈ [n].

— For each i ∈ [n], vi =
∑n
k=i

1
k .

It is easy to see that the construction takes polynomial time and that γ satisfies (19).
We have the following two lemmas.

LEMMA 5.11. γ ∈ DPaW ⇒ α ∈ SubsetSum.

PROOF. Let A = (a,w) be an optimal stable assignment of γ. By definition, A is
optimal with respect to a. By Lemma 5.4 we assume without loss of generality that a is
ordered. Thus by Lemma 5.9 we have SW (A) =

∑
i<n i · qa(i) · (vi− vi+1) +n · qa(n) · vn =∑

i<n i · qa(i) ·
1
i + n · qa(n) · 1

n =
∑
i∈[n] qa(i). Since qj = cj for any j ∈ [m] and since A

is budget feasible, SW (A) =
∑
i∈[n] ca(i) = C(A) ≤ B = V. Since γ ∈ DPaW , we have

SW (A) ≥ V and thus SW (A) = V. In particular, for any j ∈ [n], SW (A) has a 1 at the
(n − j)(dlog ne + 1) + 1st bit preceded by dlog ne bits of 0’s. We now show that for any
j ∈ [n],

|{i ∈ [n] : a(i) ∈ {j, n+ j}}| = 1, (20)

that is, there is exactly one patient assigned to either hospital j or hospital n+ j.
To see why (20) is true, notice that for any k ∈ [n] there are dlog ne bits of 0’s between

the (n − k + 1)(dlog ne + 1) + 1st bit and the (n − k)(dlog ne + 1) + 1st bit in the binary
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representation of any qj . Since there are n patients, there is no carry to the (n − k +
1)(dlog ne+ 1) + 1st bit when computing SW (A). Further notice that the only hospitals
whose qualities contribute a 1 to the (n−j)(dlog ne+1)+1st bit of SW (A) are hospitals
j and n+ j.

If more than one patients are assigned to either j or n + j, then the dlog ne bits
preceding the (n− j)(dlog ne+ 1) + 1st bit of SW (A) cannot be all 0’s, and SW (A) 6= V .
If no patient is assigned to either j or n + j, then the (n − j)(dlog ne + 1) + 1st bit of
SW (A) cannot be a 1, and again SW (A) 6= V . Thus there must be exactly one patient
assigned to either hospital j or hospital n+ j, and (20) holds.

By (20), the two sets S = {j ∈ [n] : j ∈ a({1, . . . , n})} and S′ = {j ∈ [n] :
n + j ∈ a({1, . . . , n})} form a partition of [n], and SW (A) =

∑
i∈[n] qa(i) =

∑
j∈S qj +∑

j∈S′ qn+j =
∑
j∈S sj · 2n(dlogne+1) +

∑
j∈[n] 2(n−j)(dlogne+1). Since SW (A) = V =

T · 2n(dlogne+1) +
∑
i∈[n] 2(n−i)(dlogne+1), we have

∑
j∈S sj = T . Thus α ∈ SubsetSum

and Lemma 5.11 holds.

LEMMA 5.12. α ∈ SubsetSum⇒ γ ∈ DPaW .

PROOF. Since α ∈ SubsetSum, there exists S ⊆ [n] such that
∑
i∈S si = T. Let k = |S|

and S = {j1, . . . , jk}, with j1 ≤ j2 ≤ · · · ≤ jk. Further, let S′ = [n] \ S = {jk+1, . . . , jn},
with jk+1 ≤ jk+2 ≤ · · · ≤ jn. We construct an assignment A = (a,w) as follows.

— a(i) = ji for any i ≤ k, and a(i) = n+ ji for any i ≥ k + 1.
—wa(n) = 0, wa(i) = (qa(i) − qa(i+1))vi+1 + wa(i+1) for any i < n, and wj = v1q1 for any
j 6∈ a({1, . . . , n}).

Notice that a(1) ≤ a(2) ≤ · · · ≤ a(n) = n + jn ≤ m. Thus a is a well defined function
from [n] to [m] and is ordered. Also notice that A is tight at a.

The cost of A is C(A) =
∑
i∈[n] ca(i) =

∑
i≤k cji

+
∑
i≥k+1 cn+ji = T ·2n(dlogne+1)+

∑
j∈[n] 2(n−j)(dlogne+1) = B. Thus A is budget feasible.

Since A is tight at a, by Lemma 5.6, A is stable. By Lemma 5.7, A is optimal with
respect to a. Thus SW (A) =

∑n−1
i=1 i · qa(i) · (vi − vi+1) + n · qa(n) · vn =

∑n−1
i=1 i · qa(i) ·

1
i + n · qa(n) · 1

n =
∑
i∈[n] qa(i) =

∑
i∈[n] ca(i) = C(A) = B = V. Therefore A is a stable

budget feasible assignment with SW (A) ≥ V . Accordingly, γ ∈ DPaW and Lemma
5.12 holds.

By Lemmas 5.11 and 5.12, α ∈ SubsetSum if and only if γ ∈ DPaW . Thus, DPaW is
NP-complete and Theorem 5.10 holds.

COROLLARY 5.13. It is NP-hard to compute an optimal stable assignment when the
patients are d-ordered.

5.3. An FPTAS for the Optimal Stable Assignments
Next, we show that there is an efficient algorithm that produces a stable assignment
with social welfare arbitrarily close to the optimum for d-ordered preferences. Letting
Aopt be an optimal stable assignment, we have the following.

THEOREM 5.14. When the patients are d-ordered, there exists a fully polynomial-
time approximation scheme (FPTAS) for the optimal stable assignments. Given any
ε > 0, the FPTAS runs in time O((n + m)n3m/ε) and outputs a stable budget-feasible
assignment A = (a,w) with SW (A) ≥ (1− ε)SW (Aopt).

We prove Theorem 5.14 in Section 5.4. Below we introduce the key ideas and ingre-
dients of the proof. By Lemma 5.9, for any ordered assignment function a we can define
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the social welfare of a, SW (a), to be the social welfare of stable assignments optimal
with respect to a. That is,

SW (a) =
∑
i<n

i(via(i) − v(i+1)a(i)) + nvna(n). (21)

An assignment function a is budget-feasible if C(a) =
∑
i∈[n] ca(i) ≤ B.

Definition 5.15. An ordered assignment function a is optimal if

a ∈ argmax
a′is ordered and budget-feasible

SW (a′).

Given an ordered assignment function a, by Lemmas 5.6 and 5.7 we can construct,
in time O(m + n), a stable assignment A optimal with respect to a: that is, the tight
assignment in Definition 5.5. If a is optimal, then A is an optimal stable assignment.
Thus, to prove Theorem 5.14 it suffices to approximate the optimal ordered assignment
function.

If there exists a hospital j such that cj < cj+1, then for any ordered assignment
function a and for all patients assigned to hospital j + 1, by reassigning them to j
we get another ordered assignment function a′ such that C(a′) ≤ C(a) and SW (a′) ≥
SW (a). Accordingly, we can focus on ordered assignment functions that do not assign
any patient to j + 1. That is, we can assume without loss of generality that

c1 ≥ c2 ≥ · · · ≥ cm.

Moreover, as mentioned in Remark 3.4, for arbitrary d-ordered preferences v =
(vij)i∈[n],j∈[m], v may not satisfy the additional ordering property that v1j ≥ v2j ≥
· · · ≥ vnj for each hospital j. However, since vij = vdi(j+1) + · · · + vdim + vim for any
patient i and hospital j, if we define v′ij = vij − vim, then the resulting preferences
v′ = (v′ij)i∈[n],j∈[m] keep the original differences and do satisfy the additional ordering
property. Also, v′im = 0 for any patient i. Note that an optimal stable assignment for
v is also an optimal stable assignment for v′, and vice versa. Indeed, given a waiting
vector and an assignment, whether a patient wants to deviate or not only depends on
the differences of his values for different hospitals, not the actual values; and the social
welfare under v and that under v′ always differ by

∑
i∈[n] vim. We also need to argue

that the optimal stable assignment A = (a,w) for v gives a non-negative utility for
every patient i under v′: indeed, wa(n) = 0 by Definition 5.5 and Lemmas 5.6 and 5.7,
thus via(i)−wa(i) ≥ via(n)−wa(n) = via(n) ≥ vim and v′ia(i)−wa(i) = via(i)−vim−wa(i) ≥ 0.
By approximating the optimal ordered assignment function for v′, we immediately get
an approximation to the optimal ordered assignment function for v. That is, without
loss of generality, we focus on d-ordered preferences where vim = 0 for any patient i
and

v1j ≥ v2j ≥ · · · ≥ vnj (22)

for any hospital j, Note that this class still contains proportional preferences as special
cases.

Below we define a new combinatorial optimization problem and construct an FPTAS
for it, which will give us an FPTAS for the optimal ordered assignment function.

Definition 5.16. The ordered Knapsack problem has m items, n players, and a bud-
get B. Each item j has n copies, with cost cj ≥ 0 each. Each player i has value
uij ≥ 0 for item j. We have c1 ≥ c2 ≥ · · · ≥ cm, ui1 ≥ ui2 ≥ · · · ≥ uim for each
i ∈ [n], and ncm ≤ B < nc1. An assignment is a function a : [n] → [m] such that
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a(1) ≤ a(2) ≤ · · · ≤ a(n). The social welfare of a is SW (a) =
∑
i∈[n] uia(i), and the cost

is C(a) =
∑
i∈[n] ca(i). The goal is to find an assignment with cost no larger than B and

the maximum social welfare.

Intuitively, the ordered-Knapsack problem has a knapsack where the order of the
items packed in it affects their values —the “players” can be considered as ordered
slots in the knapsack.7 By (21) and (22), we can reduce the problem of finding the
optimal ordered assignment function to the ordered Knapsack problem by taking, for
any j ∈ [m],

uij = i(vij − v(i+1)j) ≥ 0

for any i < n, and unj = nvnj . Since the patients are d-ordered, it is easy to verify
that ui1 ≥ ui2 ≥ · · · ≥ uim for each i ∈ [n]. Any assignment of the resulting ordered
Knapsack problem is an ordered assignment function of the original Provision-after-
Wait problem, with the same cost and social welfare. Thus, letting aopt be the optimal
assignment for the ordered Knapsack problem, to prove Theorem 5.14 it suffices to
construct an FPTAS for aopt.

THEOREM 5.17. There exists a fully polynomial-time approximation scheme (FP-
TAS) for the ordered Knapsack problem such that, given any ε > 0, it runs in
time O((n + m)n3m/ε) and outputs an assignment a with C(a) ≤ B and SW (a) ≥
(1− ε)SW (aopt).

5.4. Proving Theorems 5.14 and 5.17
According to the discussion above, Theorem 5.14 depends on Theorem 5.17 and we
prove Theorem 5.17 first. To do so, we first derive some lower/upper-bounds for
SW (aopt). For any player i, letting ji be the smallest item that i can be assigned to
in any budget feasible assignment, we have

ji = min{j ∈ [m] : icj + (n− i)cm ≤ B}.
Indeed, if i is assigned to some item j′ < ji, then by definition the minimum cost of
such assignments is achieved by assigning players 1, . . . , i to item j′ and all others to
itemm, leading to cost icj′+(n−i)cm > B by the definition of ji. Notice that ji is always
well defined, as assigning all players to item m is budget feasible. For each i ∈ [n], let
ai be the assignment which assigns players 1, . . . , i to item ji and all others to item
m. We have that all the ai’s are budget feasible and ai(1) ≤ · · · ≤ ai(n). Thus for each
i ∈ [n], by definition we have

SW (aopt) ≥ SW (ai) ≥ uiji .
Also, by the definition of the ji’s we have aopt(i) ≥ ji, and thus for any i,

uiaopt(i) ≤ uiji .
Accordingly, letting V = maxi∈[n] uiji , we have

nV ≥
∑
i

uiji ≥
∑
i

uiaopt(i) = SW (aopt) ≥ V. (23)

7Such a scenario widely exists in real life. For example, in school choices the order may represent the pri-
ority of being admitted to different schools. Indeed, priority list has been widely studied in the Economics
literature (see, e.g., [Bogomolnaia and Moulin 2001; Abdulkadiroğlu et al. 2005; Budish et al. 2013]). But
the model and the concerns there are different from ours, e.g., the optimization goal is usually not utilitar-
ian, and there is no budget constraints. Thus we do not elaborate on this line of research. Also notice that
the ordered Knapsack problem is quite different from the partially ordered Knapsack problem studied in
[Kolliopoulos and Steiner 2007]. In the latter each item has a fixed value and the outcome is a set instead of
a function from players to items.
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The following lemma shows the existence of a pseudo-polynomial time algorithm for
ordered Knapsack.

LEMMA 5.18. There exists a dynamic program that runs in time O((n + m)n2mV )
and computes an optimal assignment for the ordered Knapsack problem.

PROOF. For any assignment a and player i, let

SW (a, i) =

n∑
i′=i

ui′a(i′)

be the contribution of players i, . . . , n to SW (a). For any i ∈ [n], j ∈ [m], and s ∈
{0, 1, . . . , nV }, we are interested in the minimum cost, denoted by C(i)(j)(s), needed for
players i, . . . , n to make contribution s to the social welfare, when player i is assigned
to item j. More precisely, letting

SW (i, j) =

n∑
i′=i

ui′j

be the contribution of players i, . . . , n when they are all assigned to j,

C(i)(j)(s) =


cj + min

a:j=a(i)≤a(i+1)≤···≤a(n),
SW (a,i)≥s

∑
i′>i ca(i′) if SW (i, j) ≥ s,

+∞ otherwise.
(24)

Notice that C(i)(j)(s) = +∞ means it is impossible for players i, . . . , n to make contri-
bution s to the social welfare even if all of them are assigned to j, and thus impossible
to make such contribution at j and items after j. In practice, +∞ can be replaced by
B + 1 (or any number larger than B and of polynomial length).

Also notice that, for any s ≤ nV , minj∈[m] C(1)(j)(s) is the minimum cost of any
assignment whose social welfare is at least s. Thus we immediately have the following
claim, of which the proof is omitted.

CLAIM 5.19. For any optimal assignment a,

SW (a) = max{s : min
j∈[m]

C(1)(j)(s) ≤ B}.

In order to compute the C(i)(j)(s)’s, we prove the following.

CLAIM 5.20. C(n)(j)(s) = cj for any j ∈ [m] and s ≤ unj ; C(i)(j)(0) = cj + (n− i)cm
for any i < n and j ∈ [m]; and for any i < n, j ∈ [m] and 0 < s ≤ SW (i, j),

C(i)(j)(s) = cj + min
j′≥j

C(i+ 1)(j′)(max{s− uij , 0}). (25)

Finally, C(i)(j)(s) = +∞ in all other cases.

PROOF. We only prove (refequ:C-1), since other equalities follow directly from the
definition of the C(i)(j)(s)’s. Notice that for any assignment a with a(i) = j, SW (a, i) ≥
s if and only if SW (a, i+ 1) ≥ max{s− uij , 0}. For any j′ ≥ j, let

Sj′ = {a : j = a(i), j′ = a(i+ 1) ≤ · · · ≤ a(n), SW (a, i+ 1) ≥ max{s− uij , 0}} .

We have

{a : j = a(i) ≤ a(i+ 1) ≤ · · · ≤ a(n), SW (a, i) ≥ s} = ∪j′≥jSj′
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and

C(i)(j)(s) = cj + min
a:j=a(i)≤a(i+1)≤···≤a(n),
SW (a,i)≥s

∑
i′>i

ca(i′) = cj + min
j′≥j

min
a∈Sj′

(
cj′ +

∑
i′>i+1

ca(i′)

)
,

(26)
where min

a∈Sj′

(
cj′ +

∑
i′>i+1 ca(i′)

)
is defined to be +∞ whenever Sj′ = ∅. Notice that

Sj′ = ∅ implies SW (i+ 1, j′) < max{s− uij , 0}, and thus by (24) we have

C(i+ 1)(j′)(max{s− uij , 0}) = +∞ = min
a∈Sj′

(
cj′ +

∑
i′>i+1

ca(i′)

)
. (27)

Also notice that Sj′ 6= ∅ for some j′. In fact, s ≤ SW (i, j) implies SW (i + 1, j) ≥
max{s−uij , 0}, and thus Sj 6= ∅. For any Sj′ 6= ∅, we have SW (i+1, j′) ≥ max{s−uij , 0},
and

C(i+ 1)(j′)(max{s− uij , 0}) = cj′ + min
a:j′=a(i+1)≤···≤a(n),
SW (a,i+1)≥max{s−uij ,0}

∑
i′>i+1

ca(i′)

= min
a∈Sj′

(
cj′ +

∑
i′>i+1

ca(i′)

)
, (28)

where the second equality is because that, given a(i + 1) = j′ ≥ j = a(i), neither
SW (a, i+ 1) nor

∑
i′>i+1 ca(i′) depends on a(i).

Combining (26), (27) and (28), we have

C(i)(j)(s) = cj + min
j′≥j

C(i+ 1)(j′)(max{s− uij , 0}),

and Claim 5.20 holds.

Equation (25) immediately leads to a dynamic program computing all C(i)(j)(s)’s,
with other equations in Claim 5.20 as initialization conditions. Since it takes O(n)
time to compute each SW (i, j), by Claim 5.20 it takes O(n + m) time to compute each
C(i)(j)(s) given the C(i+ 1)(j′)(s′)’s. Thus the dynamic program takes space O(n2mV )
and runs in time O((n + m)n2mV ). By Claim 5.19, given the C(i)(j)(s)’s, the social
welfare of the optimal assignment can be computed in time O(mnV ).

Moreover, the dynamic program can keep track of the optimal j′’s when computing
the C(i)(j)(s)’s according to (25). Once the C(1)(j)(s) corresponding to the optimal so-
cial welfare is found, the dynamic program can trace back the stored j′’s and recover
the assigned item for each player, and thus compute the corresponding optimal assign-
ment. The total space is still O(n2mV ) and the running time is still O((n + m)n2mV ).
Therefore Lemma 5.18 holds.

For completeness, we provide the dynamic program in Algorithm 1, where for each
i < n, j ∈ [m] and s ≤ nV , â(i)(j)(s) represents the item to which player i+1 is assigned
to, in order for players i, . . . , n to make contribution s at cost C(i)(j)(s). By scaling the
players’ values and running the dynamic program on the scaled input, we obtain an
FPTAS for the ordered Knapsack problem, see below.

PROOF OF THEOREM 5.17.. Given c1, . . . , cm, u11, . . . , unm, B and ε > 0, our al-
gorithm OKNAPSACK works as follows. Let the ji’s and V be defined as before,
K = εV

n , and u′ij = buij

K c for any i ∈ [n] and j ∈ [m]. Run Algorithm 2 with input
(c1, . . . , cm, u

′
11, . . . , u

′
nm, B) and return its output a.
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ALGORITHM 1: A Dynamic Program for Ordered Knapsack
Input : cost cj for each j ∈ [m], value uij for each i ∈ [n] and j ∈ [m], and budget B.
Output: an optimal assignment a.

1 Initialization:
2 for i from 1 to n do
3 ji = min{j ∈ [m] : icj + (n− i)cm ≤ B};
4 end for
5 V = maxi∈[n] uiji ;
6 for j from 1 to m and s from 0 to nV do
7 if s ≤ unj then
8 C(n)(j)(s) = cj ;
9 else

10 C(n)(j)(s) = B + 1;
11 end if
12 end for
13 for i from 1 to n− 1 and j from 1 to m do
14 C(i)(j)(0) = cj + (n− i)cm; â(i)(j)(0) = m;
15 end for
16 Compute C(i)(j)(s) and â(i)(j)(s):
17 for i from n− 1 to 1 do
18 for j from 1 to m do
19 SW (i, j) =

∑n
i′=i ui′j ;

20 for s from 1 to nV do
21 if s ≤ SW (i, j) then
22 ĵ = argminj′≥j C(i+ 1)(j′)(max{s− uij , 0}), with ties broken

lexicographically;
23 C(i)(j)(s) = cj + C(i+ 1)(ĵ)(max{s− uij , 0});
24 â(i)(j)(s) = ĵ;
25 else
26 C(i)(j)(s) = B + 1; (It doesn’t matter what â(i)(j)(s) is in this case.)
27 end if
28 end for
29 end for
30 end for
31 Compute a:
32 for s from nV to 0 do
33 ĵ = argminj∈[m] C(1)(j)(s), with ties broken lexicographically;
34 if C(1)(ĵ)(s) ≤ B then
35 a(1) = ĵ; break;
36 end if
37 end for
38 for i from 1 to n− 1 do
39 a(i+ 1) = â(i)(ĵ)(s); s = max{s− uiĵ , 0}; ĵ = a(i+ 1);
40 end for
41 return a
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Since ui1 ≥ · · · ≥ uim for any i ∈ [n], we have u′i1 ≥ · · · ≥ u′im for any i, and thus
the input to the dynamic program is a valid instance of ordered Knapsack. Since the
budget and the costs do not change, the ji’s computed on the scaled input are still the
same as before. Let V ′ = maxi∈[n] u

′
iji

be the counterpart of V for the scaled input. We
have V ′ ≤ maxi∈[n]

uiji

K = V
K = n

ε . Thus the dynamic program runs in time O((n +

m)n2mV ′) = O((n+m)n3m/ε), and so does the algorithm OKNAPSACK.
Below we analyze the approximation ratio. For any assignment a′, let SW (a′) and

SW ′(a′) respectively be the social welfare of a′ in the original ordered Knapsack prob-
lem and in the scaled input to the dynamic program. We have

SW (a) =
∑
i∈[n]

uia(i) ≥ K
∑
i∈[n]

u′ia(i) = K · SW ′(a) ≥ K · SW ′(aopt) = K
∑
i∈[n]

u′iaopt(i)

≥ K
∑
i∈[n]

(uiaopt(i)
K

− 1
)

=
∑
i∈[n]

uiaopt(i) − nK = SW (aopt)− εV

≥ SW (aopt)− εSW (aopt) = (1− ε)SW (aopt),

where the first and the third inequalities are by the definition of u′ij ’s, the second is
because a is optimal under the scaled input, and the last is by (23).

In sum, Theorem 5.17 holds.

Finally we prove Theorem 5.14.

PROOF OF THEOREM 5.14. It is easy to see that algorithm OKNAPSACK con-
structed in the proof of Theorem 5.17 can be applied to the Provision-after-Wait prob-
lem. Indeed, given an instance γ = ((vij)i∈[n],j∈[m], (cj)j∈[m], B) of the Provision-after-
Wait problem with d-ordered preferences, for any j ∈ [m], we can take

uij = i(vij − v(i+1)j) for any i < n and unj = nvnj .

Then κ = (c1, . . . , cm, u11, . . . , unm, B) is a valid instance of ordered Knapsack. More-
over, any assignment a of κ is an ordered assignment function of γ with the same
cost and the same social welfare, and vice versa. Thus aopt is an optimal assignment
function for γ and SW (Aopt) = SW (aopt). By Theorem 5.17, the assignment a output
by OKNAPSACK with input κ is budget-feasible and SW (a) ≥ (1 − ε)SW (aopt). Let-
ting A = (a,w) be the tight assignment at a as in Definition 5.5, we have that A is
stable, budget-feasible, and optimal with respect to a, by Lemmas 5.6 and 5.7. Thus
SW (A) = SW (a) ≥ (1− ε)SW (aopt) = (1− ε)SW (Aopt).

It takes O(mn) time to construct κ from γ, and O(n+m) time to construct A from a.
Thus in total A can be computed in time O(mn + (n + m)n3m/ε + n + m) = O((n +
m)n3m/ε), and Theorem 5.14 holds.

6. ASSIGNMENTS USING LOTTERIES
Lotteries have been widely used in school choices, but so far we are not aware of any
use of lotteries in healthcare. Given the welfare-burning effect of waiting times, it is
interesting and important to understand the performances of different rationing tools.
If the planner is allowed to ask the patients to enter lotteries, the space of possible
assignment schemes is much larger and presumably better social welfare can be ob-
tained. In this section, we consider optimal lottery schemes for d-ordered and propor-
tional preferences respectively.

Different from results in previous sections where the set of patients is discrete, the
results in this section are provided for a continuous population of patients. We will also
reverse the orders of the hospitals and the patients. As will become clear later, these
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changes in the model not only make the statement and the analysis more succinct, but
also let us discover an alternative interpretation of our results from a different but
very natural aspect. For completeness, in Section 6.3 we also discuss the counterparts
of our results for discrete patients.

The Continuous Model. Formally speaking, the patients are indexed by the interval
[0, 1] and, for each hospital j ∈ [m], the valuation function vj : [0, 1]→ R+ specifies the
value of each patient x ∈ [0, 1] for hospital j. For patients with common preferences,
we reverse the order of the hospitals so that v1(x) ≤ v2(x) ≤ · · · ≤ vm(x) for each
patient x and c1 ≤ c2 ≤ · · · ≤ cm. For d-ordered preferences, we also reverse the order
of the patients so that vj(x)− vj−1(x) ≥ vj(x′)− vj−1(x′) for any hospital j ∈ {2, . . . ,m}
and patients x′ < x. By Remark 3.4, we assume without loss of generality that each
function vj is non-decreasing. Also, by adding a dummy patient, we assume vj(0) = 0
for each hospital j.

Since the key factors affecting the patients’ choices are not the actual values but the
differences of each patient’s values at different hospitals, we can redefine the valuation
functions starting with the differences. More precisely, for each hospital j, let fj :
[0, 1]→ R+ be a function that is non-decreasing and fj(0) = 0. We consider the patients’
values as vj(x) =

∑j
k=1 fk(x) for any x ∈ [0, 1] —note that the resulting patients are

indeed d-ordered. The fj ’s are referred to as the difference functions. For proportional
preferences with q1 ≤ q2 ≤ · · · ≤ qm, only one valuation function v(x) is needed and
vj(x) = qjv(x) for each hospital j. Moreover, f1(x) = q1v(x) and fj(x) = (qj − qj−1)v(x)
for any j ∈ {2, . . . ,m}.

For simplicity, we assume that each fj (and thus v(x) for proportional preferences)
is strictly increasing and twice differentiable. Our approach works as long as each fj
is non-decreasing and piecewise twice differentiable, but in this more general model
the analysis is unnecessarily complicated without bringing in new insights.

Lottery Schemes. Below we define lotteries and lottery schemes for the Provision-
after-Wait problem.

Definition 6.1. A lottery λ is a tuple of non-negative reals, λ = (p1, . . . , pm, w), such
that

∑
j∈[m] pj ≤ 1. A lottery scheme L is a set of lotteries such that there exists λ =

(p1, . . . , pm, w) ∈ L with w = 0.

Given a lottery scheme L, a patient x choosing a lottery λ = (p1, . . . , pm, w) ∈ L waits
for time w and then gets assigned to each hospital j with probability pj . Patient x’s
(expected) utility under λ is u(x, λ) = (

∑
j∈[m] pjvj(x)) − w.8 Each patient chooses a

lottery to maximize his utility. That is, denoting by λL(x) = (pL1 (x), . . . , pLm(x), wL(x)) ∈
L the choice of patient x given a lottery scheme L, we have that for any λ ∈ L,

u(x, λL(x)) ≥ u(x, λ). (29)

Since a lottery scheme includes a lottery with waiting time 0, we have u(0, λL(0)) = 0
and u(x, λL(x)) ≥ 0 for any x.

In reality, a lottery scheme represents a set of healthcare options the patients can
choose from: some lotteries may have short waiting times but the probability of going
to the more preferred hospitals is low; while others may have long waiting times but
then with high probability the patient will be assigned to a top hospital.

Note that for any two lotteries λ1, λ2 ∈ L, any convex combination αλ1 + (1 − α)λ2
can be realized by a patient choosing λ1 with probability α and λ2 with probability

8If
∑

j pj < 1 then with probability 1 −
∑

j pj the patient does not get served. If each patient has to be
served, then we simply require

∑
j pj = 1 and our results still hold.
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1− α. Thus, if the patients randomize perfectly then without loss of generality we can
assume L is convex. But we do not need the convexity condition in our analysis.

Since the patients are infinitesimal, each hospital j’s cost cj denotes the cost for serv-
ing 1 unit of the population at j. The (expected) cost of L is C(L) =

∫ 1

0

∑
j∈[m] p

L
j (x)cjdx

and L is budget-feasible if C(L) ≤ B. Similar to the discrete case, we assume the bud-
get is not enough to serve the whole population at the most expensive hospital, but is
enough at the cheapest hospital: that is, minj∈[m] cj ≤ B < maxj∈[m] cj . Thus there al-
ways exists a budget-feasible lottery scheme: sending all patients to the cheapest hos-
pital with probability 1. The (expected) social welfare of L is SW (L) =

∫ 1

0
u(x, λL(x))dx.

We denote by Lopt the optimal lottery scheme:

Lopt ∈ argmax
L is budget-feasible

SW (L).

For each x ∈ [0, 1], we denote by λopt(x) = (popt1 (x), . . . , poptm (x), wopt(x)) the choice of
patient x under Lopt.

A stable assignment in the continuous model, A = (a,w), is defined as before, except
that a is a function from [0, 1] to [m]. It is easy to see thatA is equivalent to the following
lottery scheme L = {λ1, . . . , λm}: for each j ∈ [m], λj = (pj1, . . . , pjm, wj), where pjj = 1
and pjj′ = 0 for any j′ 6= j. Given L, each patient x chooses λa(x), which corresponds to
being assigned to a(x) with probability 1 after waiting wa(x). Thus we have

SW (Lopt) ≥ SW (Aopt),

where Aopt is the optimal stable assignment.
Note that a lottery scheme in general is “stable in expectation” but not “ex-post sta-

ble”: that is, a patient’s chosen lottery maximizes his expected utility, but the sampled
hospital may not be the one he values the most.

Randomized Assignments. Besides stable assignments, another class of lottery
schemes is of particular interest: that consists of a single lottery with waiting time 0.
Such a lottery scheme does not give the patients any choice and randomly assigns each
one of them to hospitals based on pre-specified probabilities. See the definition below.

Definition 6.2. A randomized assignment R is a tuple of non-negative reals, R =
(p1, . . . , pm), such that

∑
j∈[m] pj ≤ 1.

According to R, each patient is assigned to each hospital j with probability pj and
without waiting. The (expected) social welfare of R is SW (R) =

∫ 1

0

∑
j∈[m] pjvj(x)dx,

and the (expected) cost is C(R) =
∑
j∈[m] pjcj . Note that sending all patients to the

cheapest hospital with probability 1 is a budget-feasible randomized assignment. We
denote by Ropt the optimal randomized assignment, that is,

Ropt ∈ argmax
R is budget-feasible

SW (R).

As a randomized assignment is a special lottery scheme, SW (Lopt) ≥ SW (Ropt).

6.1. Randomized v.s. Stable Assignments for d-Ordered Preferences
Next, we compare the optimal randomized assignments and the optimal stable as-
signments when the patients are d-ordered. Note that the former does not have any
waiting time but does not give the patients any choice; while the latter allows the pa-
tients to freely choose hospitals but burns some social welfare by using waiting times
to balance supply and demand. These two types of assignment schemes separate ran-
domness from waiting time and allow us to compare their individual performances.
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Roughly speaking, the advantage of randomized assignments comes when the pa-
tients are d-ordered but not “super d-ordered”: in other words, the difference functions
f1, . . . , fm are increasing but do not increase too fast. In particular, if the difference
functions increase extremely fast, then the patients close to 1 have values so high
that, by assigning them deterministically to the best hospital and all the others to the
cheapest hospital to meet the budget constraint, the planner generates a lot of social
welfare in a stable assignment solely from patients with high values. On the other
hand, randomized assignments cannot assign all patients to the best hospital with
probability 1 due to the budget constraint, and any randomized assignment that do
not assign patients with high values to the best hospital with probability 1 lose a lot of
social welfare from them.

To properly formalize the intuition above, we say that a non-decreasing function
f : [0, 1]→ R+ is almost concave if the function

g(x) , (1− x)f ′(x)

is non-increasing. Note that (1) f is almost concave if and only if g′(x) ≤ 0, that is,
f ′′(x) ≤ f ′(x)

1−x ; and (2) if f is concave then it is almost concave. Indeed, g′(x) = −f ′(x) +

(1 − x)f ′′(x) and, if f(x) is concave then f ′′(x) ≤ 0 ≤ f ′(x)
1−x , as f ′(x) ≥ 0 and x ∈

[0, 1]. Non-decreasing concave functions are natural examples for functions that do
not increase too fast: that is why we choose the term “almost concave”. We have the
following.

THEOREM 6.3. For d-ordered preferences, if fj(x) is almost concave for every j ∈
[m], then SW (Ropt) ≥ SW (Aopt).

In Section 6.3 we provide a simple example where the fj ’s are not almost concave
and the optimal stable assignment does better. To prove Theorem 6.3, we start with
the following claim.

CLAIM 6.4. For any stable assignment A = (a,w) and x, x′ ∈ [0, 1] with x < x′, we
have a(x) ≤ a(x′) and wa(x) ≤ wa(x′).

PROOF. By the definition of stable assignments, we have

va(x)(x)− wa(x) ≥ va(x′)(x)− wa(x′) and va(x′)(x
′)− wa(x′) ≥ va(x)(x′)− wa(x).

Summing up the two inequalities side by side and rearranging terms, we have

va(x′)(x
′)− va(x′)(x) ≥ va(x)(x′)− va(x)(x),

that is
a(x′)∑
k=1

[fk(x′)− fk(x)] ≥
a(x)∑
k=1

[fk(x′)− fk(x)] .

Notice that fk(x′)− fk(x) > 0 for any k ∈ [m], since fk is strictly increasing and x < x′.
Thus a(x) ≤ a(x′) as desired. By definition, this further implies va(x)(x) ≤ va(x′)(x).
Thus wa(x) ≤ wa(x′), otherwise patient x has better utility at a(x′) than at a(x), contra-
dicting the stability of A. Therefore Claim 6.4 holds.

Claim 6.4 shows that a is an ordered assignment function for any stable assignment
A = (a,w). Thus we immediately have the following claim.

CLAIM 6.5. For any stable assignment A = (a,w), there exists x0, · · · , xm with 0 =
x0 ≤ x1 ≤ · · · ≤ xm−1 ≤ xm = 1, such that for any j ∈ [m] and x ∈ (xj−1, xj), a(x) = j.
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Moreover, if A is optimal with respect to a, then w1 = 0 and, for any j ∈ {2, . . . ,m},

wj = vj(xj−1)− vj−1(xj−1) + wj−1 = fj(xj−1) + wj−1 = · · · =
j∑

k=1

fk(xk−1).

Claim 6.5 shows that, when A is stable and optimal with respect to a, for any j > 1,
patient xj−1 is indifferent between hospitals j − 1 and j. This claim is the counterpart
of Lemmas 5.4, 5.6, and 5.7: to find the optimal stable assignment it suffices to focus on
the choices of x0, . . . , xm and consider assignments that are tight with respect to them.
The first part of Claim 6.5 follows directly from Claim 6.4, the first equality of the
second part is similar to the analysis of Lemma 5.7, and the remaining of the second
part is by induction. Thus we omit the detailed proof here. Now we are ready to prove
Theorem 6.3.

PROOF OF THEOREM 6.3. Let A = (a,w) be a stable assignment that is budget-
feasible and optimal with respect to a, and x0, . . . , xm as specified in Claim 6.5: that
is, for each j ∈ [m], patients in (xj−1, xj) are assigned to hospital j. Since there is a
continuous population of patients, it does not matter where patients x0, x1, . . . , xm are
assigned to. Moreover, the cost of A is

C(A) =
∑
j∈[m]

cj(xj − xj−1) ≤ B.

Consider the randomized assignment R = (p1, . . . , pm) where pj = xj − xj−1 for each
j ∈ [m]. Note that pj ≥ 0 for each j and

∑
j∈[m] pj =

∑
j∈[m] xj − xj−1 = xm − x0 = 1.

Thus R is well defined. Moreover, the cost of R is

C(R) =
∑
j∈[m]

pjcj =
∑
j∈[m]

cj(xj − xj−1) = C(A) ≤ B,

and R is budget-feasible.
Given this, we now show

SW (R) ≥ SW (A). (30)

When applied to A = Aopt, it implies Theorem 6.3.
To prove (30), notice that

SW (A) =

∫ 1

0

[va(x)(x)− wa(x)]dx =

m∑
j=1

∫ xj

xj−1

[vj(x)− wj ]dx

=

m∑
j=1

∫ xj

xj−1

[
j∑

k=1

fk(x)−
j∑

k=1

fk(xk−1)

]
dx =

m∑
j=1

∫ xj

xj−1

j∑
k=1

[fk(x)− fk(xk−1)]dx

=

m∑
k=1

m∑
j=k

∫ xj

xj−1

[fk(x)− fk(xk−1)]dx =

m∑
k=1

∫ 1

xk−1

[fk(x)− fk(xk−1)]dx, (31)

where the third equality is by the definition of vj(x) and Claim 6.5.
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Moreover, by definition the social welfare of R is

SW (R) =

∫ 1

0

m∑
j=1

pjvj(x)dx =

∫ 1

0

m∑
j=1

(xj − xj−1)

j∑
k=1

fk(x)dx =

m∑
k=1

∫ 1

0

 m∑
j=k

(xj − xj−1)

 fk(x)dx

=

m∑
k=1

∫ 1

0

(1− xk−1)fk(x)dx. (32)

We shall show ∫ 1

0

(1− xk−1)fk(x)dx ≥
∫ 1

xk−1

[fk(x)− fk(xk−1)]dx (33)

for every k ∈ [m], which together with (31) and (32) implies (30). To do so, for any
k ∈ [m], consider the following function

gk(y) =

∫ 1

0

(1−y)fk(x)dx−
∫ 1

y

[fk(x)−fk(y)]dx =

∫ 1

0

(1−y)fk(x)dx−
∫ 1

y

fk(x)dx+(1−y)fk(y)

for y ∈ [0, 1]. It suffices to show that gk(xk−1) ≥ 0.
First, notice that

gk(0) =

∫ 1

0

fk(x)dx−
∫ 1

0

[fk(x)− fk(0)]dx = 0,

as fk(0) = 0 by definition. Also,

gk(1) =

∫ 1

0

0dx−
∫ 1

1

[fk(x)− fk(1)]dx = 0.

Moreover,

g′k(y) = −
∫ 1

0

fk(x)dx+ fk(y)− fk(y) + (1− y)f ′k(y) = (1− y)f ′k(y)−
∫ 1

0

fk(x)dx.

Because (1 − y)f ′k(y) is non-increasing as required by Theorem 6.3, and because∫ 1

0
fk(x)dx is a constant, we have that g′k(y) is non-increasing, that is, gk(y) is con-

cave on [0, 1]. Since gk(0) = gk(1) = 0, we have gk(y) ≥ 0 for all y ∈ [0, 1]. Accordingly,
gk(xk−1) ≥ 0 and (33) holds. Thus (30) holds, and so does Theorem 6.3.

COROLLARY 6.6. If fj(x) is concave for every j ∈ [m], then SW (Ropt) ≥ SW (Aopt).

Theorem 6.3 applies to many valuation functions that are not concave. For example,
when the patients have proportional preferences, letting v(x) = ex − 1, we have (1 −
x)v′(x) = (1− x)ex, which is non-increasing on [0, 1].

6.2. Optimal Lottery Schemes for Proportional Preferences
The structure of the optimal lottery schemes remains unknown for d-ordered prefer-
ences and is an important problem for future studies. Surprisingly, when the patients
have proportional preferences, under the same condition as in Theorem 6.3, the opti-
mal randomized assignment is in fact optimal among all lottery schemes. Recall that
v(x) is strictly increasing and q1 ≤ · · · ≤ qm. We have the following.

THEOREM 6.7. For proportional preferences, if v(x) is almost concave then
SW (Ropt) = SW (Lopt).
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To prove Theorem 6.7, we start by showing several properties of lottery schemes.
Recall that given a lottery scheme L, for any patient x ∈ [0, 1], λL(x) =
(pL1 (x), . . . , pLm(x), wL(x)) denotes the lottery chosen by x.

LEMMA 6.8. For any lottery scheme L, the function
∑
j∈[m] p

L
j (x)qj is non-

decreasing.

PROOF. Let x, x′ ∈ [0, 1] be such that x < x′. By (29),

u(x, λL(x)) ≥ u(x, λL(x′)) and u(x′, λL(x′)) ≥ u(x′, λL(x)).

That is, ∑
j∈[m]

pLj (x)qjv(x)

− wL(x) ≥

∑
j∈[m]

pLj (x′)qjv(x)

− wL(x′) (34)

and ∑
j∈[m]

pLj (x′)qjv(x′)

− wL(x′) ≥

∑
j∈[m]

pLj (x)qjv(x′)

− wL(x). (35)

Adding the two inequalities side by side and rearranging the terms, we have∑
j∈[m]

pLj (x)qj −
∑
j∈[m]

pLj (x′)qj

 (v(x′)− v(x)) ≤ 0.

Since v(x) is strictly increasing, we have v(x) < v(x′) and thus
∑
j∈[m] p

L
j (x)qj ≤∑

j∈[m] p
L
j (x′)qj . That is, the function

∑
j∈[m] p

L
j (x)qj is non-decreasing and Lemma 6.8

holds.

Notice that the utility of patient x depends on x only indirectly through
v(x), thus λL(x) can be written as a vector of functions on v(x): λL(v(x)) =
(pL1 (v(x)), . . . , pLm(v(x)), wL(v(x))). We have the following.

LEMMA 6.9. For any lottery scheme L and any patient x ∈ [0, 1],

u(x, λL(x)) =

∫ v(x)

0

∑
j∈[m]

qjp
L
j (v̂)dv̂.

PROOF. Similar to the proof of Lemma 6.8, by (29) and letting x′ = x+ ∆, we have

u(x, λL(x)) ≥ u(x, λL(x′)) and u(x′, λL(x′)) ≥ u(x′, λL(x)).

That is,

v(x)

∑
j∈[m]

qj
(
pLj (x+ ∆)− pLj (x)

) ≤ wL(x+ ∆)− wL(x)

and

v(x+ ∆)

∑
j∈[m]

qj
(
pLj (x+ ∆)− pLj (x)

) ≥ wL(x+ ∆)− wL(x).
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Combining the two inequalities and dividing each term by ∆, we have

v(x+ ∆)

∑
j∈[m]

qj

(
pLj (x+ ∆)− pLj (x)

)
∆

 ≥ wL(x+ ∆)− wL(x)

∆

≥ v(x)

∑
j∈[m]

qj

(
pLj (x+ ∆)− pLj (x)

)
∆

 .
Taking the limit as ∆ → 0 and applying the definition of derivative on continuous
functions, we have

v(x)
∑
j∈[m]

qj · dpLj (x) = dwL(x).

Accordingly,

du(x, λL(x)) =

∑
j∈[m]

qj · d
(
pLj (x)v(x)

)− dwL(x)

=
∑
j∈[m]

qjp
L
j (x) · dv(x) + v(x)

∑
j∈[m]

qj · dpLj (x)− v(x)
∑
j∈[m]

qj · dpLj (x)

=
∑
j∈[m]

qjp
L
j (x) · dv(x) =

∑
j∈[m]

qjp
L
j (v(x))v′(x)dx.

Integrating the first and the last terms with respect to x and changing variables, we
have

u(x, λL(x)) =

∫ x

0

du(x̂, λL(x̂)) =

∫ x

0

∑
j∈[m]

qjp
L
j (v(x̂))v′(x̂)dx̂ =

∫ v(x)

0

∑
j∈[m]

qjp
L
j (v̂)dv̂.

Thus Lemma 6.9 holds.

Now we are ready to prove Theorem 6.7.

PROOF OF THEOREM 6.7. Since SW (Lopt) ≥ SW (Ropt) by definition, it suffices to
show

SW (Ropt) ≥ SW (Lopt). (36)

To do so, for any budget-feasible lottery scheme L, let R = (p1, . . . , pm) be the ran-
domized assignment where for any j ∈ [m],

pj =

∫ 1

0

pLj (x)dx.

That is, each pj is the average of pLj (x) over [0, 1]. It is easy to see
∑
j∈[m] pj =∫ 1

0

∑
j∈[m] p

L
j (x)dx ≤ 1, thus R is well defined. Also we have C(R) =

∑
j∈[m] pjcj =∫ 1

0

∑
j∈[m] p

L
j (x)cjdx = C(L) ≤ B, thus R is budget-feasible. Below we show

SW (R) ≥ SW (L). (37)

When applied to L = Lopt, it implies (36).
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Since v(x) is strictly increasing and twice differentiable, v−1(v̂) is well defined for
any v̂ ∈ [0, v(1)]. Thus we have

SW (L) =

∫ 1

0

u(x, λL(x))dx =

∫ 1

0

∫ v(x)

0

∑
j∈[m]

qjp
L
j (v̂)dv̂dx =

∫ v(1)

0

∑
j∈[m]

qjp
L
j (v̂)

∫ 1

v−1(v̂)

dx

 dv̂

=

∫ v(1)

0

∑
j∈[m]

qjp
L
j (v̂)(1− v−1(v̂))dv̂ =

∫ 1

0

∑
j∈[m]

qjp
L
j (x)(1− x)v′(x)dx, (38)

where the second equality is by Lemma 6.9, the last is by taking v̂ = v(x), and all
others are by definition or basic calculus. Moreover, letting p =

∑
j∈[m] qjpj , we have

SW (R) =

∫ 1

0

pv(x)dx =

∫ 1

0

∫ v(x)

0

pdv̂dx =

∫ v(1)

0

∫ 1

v−1(v̂)

pdxdv̂ =

∫ v(1)

0

p(1− v−1(v̂))dv̂

=

∫ 1

0

p(1− x)v′(x)dx. (39)

By Lemma 6.8,
∑
j∈[m] qjp

L
j (x) is non-decreasing. Thus

∑
j∈[m]

qjp
L
j (0) =

∫ 1

0

∑
j∈[m]

qjp
L
j (0)dx ≤

∫ 1

0

∑
j∈[m]

qjp
L
j (x)dx

= p ≤
∫ 1

0

∑
j∈[m]

qjp
L
j (1)dx =

∑
j∈[m]

qjp
L
j (1),

and there exists xp ∈ [0, 1] such that∑
j∈[m]

qjp
L
j (x) ≤ p ∀x ∈ [0, xp) and

∑
j∈[m]

qjp
L
j (x) ≥ p ∀x ∈ [xp, 1].

Following (38) and (39) we have

SW (R)− SW (L) =

∫ 1

0

p− ∑
j∈[m]

qjp
L
j (x)

 (1− x)v′(x)dx

=

∫ xp

0

p− ∑
j∈[m]

qjp
L
j (x)

 (1− x)v′(x)dx

+

∫ 1

xp

p− ∑
j∈[m]

qjp
L
j (x)

 (1− x)v′(x)dx. (40)

The value of
∑
j∈[m] qjp

L
j (xp) does not affect the value of the integration, and without

loss of generality we assume it equals p.
For any x ∈ [0, xp], since (1− x)v′(x) is non-increasing and v′(x) > 0, we have

(1− x)v′(x) ≥ (1− xp)v′(xp) ≥ 0.
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Moreover, for any such x, since p−
∑
j∈[m] qjp

L
j (x) ≥ 0, we havep− ∑

j∈[m]

qjp
L
j (x)

 (1− x)v′(x) ≥

p− ∑
j∈[m]

qjp
L
j (x)

 (1− xp)v′(xp). (41)

Similarly, for any x ∈ [xp, 1] we have 0 ≤ (1 − x)v′(x) ≤ (1 − xp)v
′(xp) and

p−
∑
j∈[m] qjp

L
j (x) ≤ 0, and thusp− ∑
j∈[m]

qjp
L
j (x)

 (1− x)v′(x) ≥

p− ∑
j∈[m]

qjp
L
j (x)

 (1− xp)v′(xp). (42)

Combining (40) with (41) and (42), we have

SW (R)− SW (L)

≥
∫ xp

0

p− ∑
j∈[m]

qjp
L
j (x)

 (1− xp)v′(xp)dx+

∫ 1

xp

p− ∑
j∈[m]

qjp
L
j (x)

 (1− xp)v′(xp)dx

= (1− xp)v′(xp)
∫ 1

0

p− ∑
j∈[m]

qjp
L
j (x)

 dx = (1− xp)v′(xp)

p− ∫ 1

0

∑
j∈[m]

qjp
L
j (x)dx


= (1− xp)v′(xp)(p− p) = 0,

implying (37). Thus Theorem 6.7 holds.

COROLLARY 6.10. For any concave valuation function v(x), SW (Ropt) = SW (Lopt).

Theorem 6.7 also applies to many valuation functions that are not concave, such as
v(x) = ex − 1 as we have seen.

6.3. Discussions and Important Properties of the Optimal Randomized Assignment
From the Continuous Model to the Discrete Model. When the set of patients is not

[0, 1] but {1, . . . , n} as in Sections 4 and 5, the valuation functions vj and difference
functions fj with j ∈ [m] are defined in the same way over [n] for d-ordered preferences,
so is the valuation function v for proportional preferences. Given a discrete function f
over a domainD ⊆ Z+, for any x ∈ D, the difference of f at x is ∆xf(x) , f(x+1)−f(x).
Again, we add a dummy patient 0 such that vj(0) = 0 for any j ∈ [m]. Replacing
derivatives by differences, the condition in Theorem 6.3 becomes that, for each hospital
j ∈ [m], the sequence (n− i)∆ifj(i) with i ∈ {0, 1, . . . , n− 1} is non-increasing; and that
in Theorem 6.7 becomes that the sequence (n− i)∆iv(i) with i ∈ {0, 1, . . . , n−1} is non-
increasing. Further replacing integrations by sums in the analysis, it is easy to see
that the discrete versions of Theorems 6.3 and 6.7 hold —details have been omitted.

Theorems 6.3 and 6.7 in Terms of Monotone Hazard Rate. Interestingly, although
we approached our results solely from the aspect of lottery schemes, we have discov-
ered afterward that the condition of almost concavity in Theorems 6.3 and 6.7 have
a natural interpretation from another aspect. Consider an assignment problem where
there is a single patient and [m] hospitals. The planner’s budget is lower than the most
expensive hospital, thus the patient cannot simply be assigned to his favorite hospital
with probability 1. There is a distribution D from which his values for the hospitals
are drawn: first draw his type x uniformly at random from [0, 1], then compute fj(x) for
each j ∈ [m] and set his value for hospital j to be vj(x) =

∑j
k=1 fj(x). Arbitrarily fix a
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hospital j and consider the random variable Yj = fj(X), with X distributed according
to U [0, 1]. It is easy to see that for any y0 ∈ fj([0, 1]) and x0 = f−1j (y0), the cumulative
distribution function of Yj at y0 is

Fj(y0) = Pr[Yj ≤ y0] = Pr[f−1j (Yj) ≤ x0] = Pr[X ≤ x0] = x0 = f−1j (y0),

and the probability density function at y0 is

dj(y0) = F ′j(y0) =
1

f ′j(x0)
.

Accordingly, the formula in Theorem 6.3 becomes

(1− x0)f ′j(x0) =
1− Fj(y0)

dj(y0)
=

1

hj(y0)
,

where hj(y) , dj(y)
1−Fj(y)

is the hazard rate of Yj . Since fj(x) is strictly increasing, (1 −
x)f ′j(x) is non-increasing if and only if hj(y) is non-decreasing: that is, Yj has monotone
hazard rate (MHR). Thus we immediately have the following.

COROLLARY 6.11. For d-ordered preferences, if Yj has MHR for each j ∈ [m] then
SW (Ropt) ≥ SW (Aopt).

Similarly, for proportional preferences, consider the distribution D induced by the
valuation function v(x) and we have the following.

COROLLARY 6.12. For proportional preferences, if D has MHR then SW (Ropt) =
SW (Lopt).

Computation of the Optimal Randomized Assignment. In general Provision-after-
Wait problems, there may not be an efficient algorithm for computing an optimal lot-
tery scheme. However, the optimal randomized assignment Ropt = (p1, . . . , pm) is sim-
ply defined by the following linear program.

max
p1,...,pm

∑
j∈[m]

pj

∫ 1

0

vj(x)dx

s.t. pj ≥ 0 ∀j ∈ [m],∑
j∈[m]

pj ≤ 1,

∑
j∈[m]

pjcj ≤ B.

Note the computability of Ropt and SW (Ropt) depends completely on the descrip-
tion of vj ’s. If for every j ∈ [m],

∫ 1

0
vj(x)dx has a closed form and can be computed in

polynomial time, then Ropt and SW (Ropt) can be computed in polynomial time, since
each

∫ 1

0
vj(x)dx is a constant in the linear program. Otherwise, by computing each∫ 1

0
vj(x)dx numerically, Ropt and SW (Ropt) can also be computed numerically.

Ex-Post Budget-Feasibility. How to implement lotteries so that the desired con-
straints are satisfied ex-post is an important research topic in the Economics liter-
ature; see, e.g., [Budish et al. 2013]. In the Provision-after-Wait problem, a lottery
scheme in general only satisfies the budget constraint in expectation, and it is possible
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that under some realization of the lotteries the total cost is much higher than the bud-
get. However, given a randomized assignment R = (p1, . . . , pm), the planner can first
choose a permutation of the patients uniformly at random, and then assign the first p1
fraction of them to hospital 1, the next p2 fraction to hospital 2, etc. By doing so, each
patient is assigned to the hospitals according to the correct distribution (p1, . . . , pm),
thus the expected social welfare equals SW (R). While in any realized assignment the
total cost is

∑
j∈[m] pjcj , exactly the expected cost of the randomized assignment, and

thus the budget constraint is satisfied with probability 1.

Advantage in Generating Social Welfare. When Theorem 6.3 or 6.7 applies, not only
the social welfare of the optimal randomized assignment is no less that of the optimal
stable assignment, but the ratio between the two can be arbitrarily large, since in the
latter a lot of social welfare may be burnt by letting the patients wait. As an example,
consider the case of proportional preferences where v(x) = v0 is a positive constant,
q1 = ε� 1, 1� q2 < · · · < qm, B � 1, c1 = 1, c2 = · · · = cm = B−ε

1−ε . It is easy to see that
one particular optimal stable assignment is to assign all patients to hospital 1 with
waiting time 0, where the social welfare is q1

∫ 1

0
v(x)dx = εv0: assigning some patients

to better hospitals won’t help, since v(x) is a constant and all patients must have the
same utility. However, there is a randomized assignment that assigns each patient to
hospital m with probability 1− ε and to hospital 1 with probability ε, resulting in total
cost (1−ε)cm+εc1 = B and social welfare ((1−ε)qm+εq1)

∫ 1

0
v(x)dx = ((1−ε)qm+ε2)v0 ≥

(1 − ε)v0 � εv0. To make v(x) strictly increasing, just take v(x) = v0 + αx with some
arbitrarily small α > 0: the analysis is essentially the same as when v(x) is a constant.

An Example Where Stable Assignments Can Do Better. Finally, we provide a simple
example with proportional preferences where the valuation function v is not almost
concave and stable assignments are better than randomized assignments. Consider
two hospitals 0 and 1, with c0 = q0 = 0, c1 > 0 and q1 = 1. The patients have propor-
tional preferences with v(x) = e2x − 1 and the budget is B ∈ [0, c1].

Note that (1−x)v′(x) = 2(1−x)e2x, which is increasing when x ≤ 1/2 and decreasing
otherwise, so Theorem 6.3 or 6.7 does not apply here. It is easy to see that the optimal
randomized assignment is Ropt = (p0, p1) where p1 = B

c1
and p0 = 1 − p1. We have

C(Ropt) = B and

SW (Ropt) =
B

c1

∫ 1

0

(e2x − 1)dx =
B(e2 − 3)

2c1
.

By Claim 6.5, for any stable assignment A = (a,w) that is budget-feasible with a
ordered, there exists x1 ∈ [0, 1] such that patients in (0, x1) are assigned to hospital 0,
patients in (x1, 1) are assigned to hospital 1, w0 = 0 and w1 = e2x1 − 1. Accordingly,
C(A) = c1(1− x1) ≤ B and

SW (A) =

∫ 1

x1

v(x)− w1dx =

∫ 1

x1

e2x − e2x1dx =
e2 + e2x1(2x1 − 3)

2
.

Therefore the optimal stable assignment Aopt is such that x1 = 1− B
c1

. Letting r = B
c1

,
we have

SW (Ropt) =
(e2 − 3)r

2
and SW (Aopt) =

e2 − e2(1−r)(1 + 2r)

2
.

Thus there exists r0 ≈ 0.8 such that SW (Ropt) ≥ SW (Aopt) if r ≤ r0 and SW (Ropt) <
SW (Aopt) otherwise. That is, if the budget is enough to serve 80 percent of the patients
at hospital 1 then the optimal stable assignment has better social welfare, otherwise
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the optimal randomized assignment does better. Figure 1 shows the difference between
the two for r ∈ [0, 1]. In this example, the optimal stable assignment only has a small
advantage when r > r0: maxr SW (Aopt)/SW (Ropt) ≈ 1.005, which occurs at r ≈ 0.9.

0.2 0.4 0.6 0.8 1.0

0.05

0.10

0.15

0.20

Computed by WolframÈAlpha

Fig. 1. SW (Ropt)− SW (Aopt) as a function of r = B
c1

.

7. EXTENSIONS AND OPEN PROBLEMS
Our results naturally extends to the more general setting where there are multiple
medical services and each hospital may have a different cost for each service.9 In this
case, rather than deciding how much each hospital gets paid out of the total budget,
the planner decides how much each hospital gets paid for each service. Different pa-
tients may require different services and one patient only wants one of them. The pa-
tients may still have common preferences with respect to each service, but the ranks
of the hospitals may be different for different services. Indeed, in real life hospitals
may have service-dependent reputations. Also, in reality patients requiring different
services may face different waiting times at the same hospital. Thus we allow each
hospital to have a waiting time for each service. When the patients are d-ordered with
respect to each service, our characterization for optimal stable assignments applies
to each service separately and we can construct an FPTAS for computing a globally
budget-feasible stable assignment that approximately maximizes the social welfare.
Moreover, a lottery scheme can also be decomposed into separate lottery schemes
for different services. For each service, fixing the budget given to this service, Theo-
rems 6.3 and 6.7 continue to hold. However, the globally budget-feasible randomized
assignment with maximum social welfare is computed by a linear program with an
additional constraint: that is, the sum of the budget for each service is no more than
the total budget B.

The structure of the optimal stable assignment when the patients are not d-ordered
remains unknown, and an important open problem for future studies is to understand
the general class of common preferences. That is, when the patients are not d-ordered
but still have the same ranking for the hospitals, is the problem strongly NP-hard
or is there an FPTAS? A good starting point would be patients’ preferences that are
“piece-wise d-ordered”: for example, there exists a hospital j such that the patients are
d-ordered both on hospitals {1, . . . , j} and on hospitals {j, . . . ,m}, but the orders are
different for the two pieces. Although the two pieces in the example can be considered
as two different services, here each patient may receive either service and the problem
cannot be decomposed with respect to the services. Our conjecture is that the problem
is still hard even in this setting and it would be interesting to see a clear answer.

When lottery is used as a rationing tool, our results show that even lottery schemes
as simple as randomized assignments can effectively avoid welfare-burning. If the
planner is allowed to ask the patients to enter lotteries, then it is a good idea to com-
bine randomness with waiting times so as to improve social welfare. In particular, it

9We thank an anonymous reviewer for motivating us to consider this extension.

ACM Transactions on Economics and Computation, Vol. X, No. X, Article X, Publication date: February 2015.



Provision-After-Wait with Common Preferences X:35

would be great to characterize the structure of optimal lottery schemes for both d-
ordered preferences and proportional preferences, although the problem may be much
easier for the latter than for the former.

On a related but different front, note that part of the difficulties in using waiting
times as a rationing tool comes from the fact that the planner’s budget and the pa-
tients’ waiting times are two unexchangeable “currencies”. We would be interested in
healthcare provision problems where the planner can distribute subsidies to the pa-
tients and where the subsidies may be a bridge connecting the budget and the waiting
times. Finally, problems with prioritized waiting times and problems when each pa-
tient wants a set of medical services are all interesting extensions of our model.
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