
1

1

Implementing Isolation

Chapter 20

2

The Issue

• Maintaining database correctness when
many transactions are accessing the
database concurrently
– Assuming each transaction maintains database

correctness when executed in isolation

3

Isolation
• Serial execution:

– Since each transaction is consistent and isolated from all
others, schedule is guaranteed to be correct for all
applications

– Inadequate performance
• Since system has multiple asynchronous resources and

transaction uses only one at a time

• Concurrent execution:
– Improved performance (multiprogramming)
– Some interleavings produce correct result, others do not
– We are interested in concurrent schedules that are

equivalent to serial schedules. These are referred to as
serializable schedules. 4

Transaction Schedule

• Consistent - performs correctly when executed in
isolation starting in a consistent database state

– Preserves database consistency

– Moves database to a new state that corresponds to
new real-world state

T1: begin_transaction();
….
p1,1;

….
p1,2;

….
p1,3;

commit();
local

variables

Transaction schedule
(commit applies to this)

p1,1 p1,2 p1,3

To db
server

5

Schedule

T1

T2

T3
transaction
schedules

Concurrency
Control

Arriving schedule
(merge of transaction
schedules)

Schedule in which
requests are serviced
(to preserve isolation)

database

Database server

6

Schedule

• Representation 1:

• Representation 2:

T1: p1 p2 p3 p4

T2: p1 p2

p1,1 p1,2 p2,1 p1,3 p2,2 p1,4

time →

time →

2

7

Concurrency Control

• Transforms arriving interleaved schedule into a
correct interleaved schedule to be submitted to the
DBMS
– Delays servicing a request (reordering) - causes a

transaction to wait
– Refuses to service a request - causes transaction to

abort

• Actions taken by concurrency control have
performance costs
– Goal is to avoid delaying or refusing to service a

request
8

Correct Schedules

• Interleaved schedules equivalent to serial
schedules are the only ones guaranteed to be
correct for all applications

• Equivalence based on commutativity of operations
• Definition: Database operations p1 and p2

commute if, for all initial database states, they
(1) return the same results and
(2) leave the database in the same final state

when executed in either order.

p1 p2 p2 p1

9

Conventional Operations

• Read
– r(x, X) - copy the value of database variable x to

local variable X

• Write
– w(x, X) - copy the value of local variable X to

database variable x

• We use r1(x) and w1(x) to mean a read or
write of x by transaction T1

10

Commutativity of Read and
Write Operations

• p1 commutes with p2 if
– They operate on different data items

• w1(x) commutes with w2(y) and r2(y)

– Both are reads
• r1(x) commutes with r2(x)

• Operations that do not commute conflict
• w1(x) conflicts with w2(x)

• w1(x) conflicts with r2(x)

11

Equivalence of Schedules

• An interchange of adjacent operations of different
transactions in a schedule creates an equivalent
schedule if the operations commute

S1: S1,1 pi,j pk,l S1,2 where i ≠ k
S2: S1,1 pk,l pi,j S1,2

– Each transaction computes the same results (since operations
return the same values in both schedules) and hence writes
the same values to the database.

– The database is left in the same final state (since the state
seen by S1,2 is the same in both schedules).

12

Equivalence of Schedules

• Equivalence is transitive: If S1 can be derived
from S2 by a series of such interchanges, S1 is
equivalent to S2

3

13

Example of Equivalence

S1: r1(x) r2(x) w2(x) r1(y) w1(y)

S2: r1(x) r2(x) r1(y) w2(x) w1(y)

S3: r1(x) r1(y) r2(x) w2(x) w1(y)

S4: r1(x) r1(y) r2(x) w1(y) w2(x)

S5: r1(x) r1(y) w1(y) r2(x) w2(x)

S1 is equivalent to S5

S5 is the serial schedule T1, T2

S1 is serializable
S1 is not equivalent to the serial schedule T2, T1

conflict

conflicting operations
ordered in same way

14

Example of Equivalence
T1: begin transaction

read (x, X);
X = X+4;
write (x, X);

commit;

T2: begin transaction
read (x,Y);
write (y,Y);

commit;

initial state final state

x=1, y=3 r1(x) r2(x) w2(y) w1(x) x=5, y=1

x=1, y=3 r2(x) w2(y) r1(x) w1(x) x=5, y=1
T2 T1

x=1, y=3 r1(x) w1(x) r2(x) w2(y) x=5, y=5

T1 T2

Interchange
commuting operations

Interchange
conflicting operations

15

Serializable Schedules

• S is serializable if it is equivalent to a serial
schedule

• Transactions are totally isolated in a serializable
schedule

• A schedule is correct for any application if it is a
serializable schedule of consistent transactions

• The schedule :
r1(x) r2(y) w2(x) w1(y)

is not serializable

16

Isolation Levels

• Serializability provides a conservative definition of
correctness

– For a particular application there might be many
acceptable non-serializable schedules

– Requiring serializability might degrade performance

• DBMSs offer a variety of isolation levels:
�
������� �	�
� ������
�

is the most stringent

– Lower levels of isolation give better performance
• Might allow incorrect schedules

• Might be adequate for some applications

17

Serializable

• Theorem - Schedule S1 can be derived from S2

by a sequence of commutative interchanges if
and only if conflicting operations in S1 and S2

are ordered in the same way
Only If: Commutative interchanges do not reorder

conflicting operations

If: A sequence of commutative interchanges can be
determined that takes S1 to S2 since conflicting
operations do not have to be reordered (see text)

18

Conflict Equivalence

• Definition- Two schedules, S1 and S2, of the
same set of operations are conflict equivalent if
conflicting operations are ordered in the same
way in both
– Or (using theorem) if one can be obtained from the

other by a series of commutative interchanges

4

19

Conflict Equivalence

• Result- A schedule is serializable if it is conflict
equivalent to a serial schedule

• If in S transactions T1 and T2 have several pairs of
conflicting operations (p1,1 conflicts with p2,1 and
p1,2 conflicts with p2,2) then p1,1 must precede p2,1
and p1,2 must precede p2,2 (or vice versa) in order
for S to be serializable.

r1(x) w2(x) w1(y) r2(y) ≡ r1(x) w1(y) w2(x) r2(y)

conflict conflict

20

View Equivalence

• Two schedules of the same set of operations
are view equivalent if:
– Corresponding read operations in each return the

same values (hence computations are the same)

– Both schedules yield the same final database state

• Conflict equivalence implies view equivalence.

• View equivalence does not imply conflict
equivalence.

21

View Equivalence

• Schedule is not conflict equivalent to a serial
schedule

• Schedule has same effect as serial schedule
T2 T1 T3. It is view equivalent to a serial
schedule and hence serializable

T1: w(y) w(x)
T2: r(y) w(x)
T3: w(x)

22

Conflict vs View Equivalence

• A concurrency control based on view equivalence
should provide better performance than one based
on conflict equivalence since less reordering is done
but …

• It is difficult to implement a view equivalence
concurrency control

set of schedules
that are view
equivalent to
serial schedules

set of schedules
that are conflict
equivalent to
serial schedules

23

Conflict Equivalence and
Serializability

• Serializability is a conservative notion of
correctness and conflict equivalence
provides a conservative technique for
determining serializability

• However, a concurrency control that
guarantees conflict equivalence to serial
schedules ensures correctness and is easily
implemented

24

Serialization Graph of a
Schedule, S

• Nodes represent transactions

• There is a directed edge from node Ti to node
Tj if Ti has an operation pi,k that conflicts with
an operation pj,r of Tj and pi,k precedes pj,r in S

• Theorem - A schedule is conflict serializable
if and only if its serialization graph has no
cycles

5

25

Example

T1

T2

T3

T4

T5 T6 T7

T1

T2

T3

T4

T5 T6 T7

S is serializable in order
T1 T2 T3 T4 T5 T6 T7

S is not serializable due
to cycle T2 T6 T7 T2

S: … p1,i, …, p2,j, ...

Conflict (*)

*

26

Intuition: Serializability and
Nonserializability

• Consider the nonserializable schedule
r1(x) w2(x) r2(y) w1(y)

• Two ways to think about it:
– Because of the conflicts, the operations of T1 and T2

cannot be interchanged to make an equivalent serial
schedule

– Because T1 read x before T2 wrote it, T1 must precede
T2 in any ordering, and because T1 wrote y after T2 read
it, T1 must follow T2 in any ordering --- clearly an
impossibility

T1 T2

27

Recoverability: Schedules with
Aborted Transactions

• T2 has aborted but has had an indirect effect on the
database – schedule is unrecoverable

• Problem: T1 read uncommitted data - dirty read
• Solution: A concurrency control is recoverable if it

does not allow T1 to commit until all other
transactions that wrote values T1 read have committed

T1 : r (x) w(y) commit
T2: w(x) abort

T1 : r (x) w(y) abort
T2: w(x) abort

request
commit

28

Cascaded Abort

• Recoverable schedules solve abort problem
but allow cascaded abort: abort of one
transaction forces abort of another

• Better solution: prohibit dirty reads

T1: r (y) w(z) abort
T2: r (x) w(y) abort
T3: w(x) abort

29

Dirty Write

• Dirty write: A transaction writes a data item
written by an active transaction

• Dirty write complicates rollback:

T1: w(x) abort
T2 : w(x) abort

no rollback necessary

what value of x
should be restored?

30

Strict Schedules

• Strict schedule: Dirty writes and dirty reads
are prohibited

• Strict and serializable are two different
properties
– Strict, non-serializable schedule:

r1(x) w2(x) r2(y) w1(y) c1 c2

– Serializable, non-strict schedule:
w2(x) r1(x) w2(y) r1(y) c1 c2

6

31

Concurrency Control

• Concurrency control cannot see entire schedule:

– It sees one request at a time and must decide
whether to allow it to be serviced

• Strategy: Do not service a request if:

– It violates strictness or serializability, or

– There is a possibility that a subsequent arrival
might cause a violation of serializability

Concurrency Control
Arriving schedule

(from transactions)

Strict and
serializable schedule

(to processing engine)

32

Models of Concurrency Controls
• Immediate Update – (the model we have discussed)

– A write updates a database item

– A read copies value from a database item

– Commit makes updates durable

– Abort undoes updates

• Deferred Update – (we will discuss this later)
– A write stores new value in the transaction’s intentions list

(does not update the database)

– A read copies value from the database or the transaction’s
intentions list

– Commit uses intentions list to durably update database

– Abort discards intentions list

33

Immediate vs. Deferred Update

database

Transaction
T

database

Transaction
T

T’s
intentions

list

read/write

read/write
read

commit

Deferred UpdateImmediate Update
34

Models of Concurrency Controls

• Pessimistic –

– A transaction requests permission for each database
(read/write) operation

– Concurrency control can:
• Grant the operation (submit it for execution)

• Delay it until a subsequent event occurs (commit or abort of another
transaction), or

• Abort the transaction

– Decisions are made conservatively so that a commit request
can always be granted

• Takes precautions even if conflicts do not occur

35

Models of Concurrency Controls

• Optimistic -
– Request for database operations (read/write) are

always granted

– Request to commit might be denied
• Transaction is aborted if it performed a non-serializable

operation

– Assumes that conflicts are not likely

36

Immediate-Update Pessimistic
Control

• The most commonly used control

• Consider first a simple case
– Suppose such a control allowed a transaction, T1 , to

perform some operation and then, while T1 was still
active ,it allowed another transaction, T2 , to perform a
conflicting operation

– The schedule would not be strict and so this situation
cannot be allowed

• But consider a bit further what might happen …

7

37

Immediate-Update Pessimistic
Control

• If T1 executes op1(x) and then T2 executes a
conflicting operation, op2(x), T2 must follow T1 in any
equivalent serial schedule.

• Problem: If T1 and T2 later make conflicting accesses
to y, control cannot allow ordering op′2(y), op′1(y)
– control has to use transitive closure of transaction ordering to

prevent loop in serialization graph (too complicated)

• Worse problem:
w1(x) r2(x) w2(y) commit2 request_r1(y)

looks good disaster
38

Immediate-Update Pessimistic
Control

• Rule:
– Do not grant a request that imposes an ordering among active

transactions (delay the requesting transaction)

– Grant a request that does not conflict with previously granted
requests of active transactions

• Rule can be used as each request arrives

• If a transaction’s request is delayed, it is forced to wait
(but the transaction is still considered active)
– Delayed requests are reconsidered when a transaction

completes (aborts or commits) since it becomes inactive

39

Immediate-Update Pessimistic
Control

• Result: Each schedule, S, is equivalent to a serial
schedule in which transactions are ordered in the
order in which they commit in S (and possibly other
serial schedules as well)
– Reason: When a transaction commits, none of its

operations conflict with those of other active transactions.
Therefore it can be ordered before all active transactions.

– Example: The following (non-serializable) schedule is
not permitted because T1 was active at the time w2(x)
(which conflicts with r1(x)) was requested

r1(x) w2(x) r2(y) w1(y)
40

Immediate-Update Pessimistic
Control

• S and S′ are conflict equivalent
– The argument can be repeated at subsequent commits

S: op1 op2 … opn c1

no conflicting
operations

first commit

S′: T1 op′1 op′2 … op′n
all operations

of T1

remaining
operations of S

41

Immediate-Update Pessimistic
Control

• Commit order is useful since transactions
might perform external actions visible to
users
– After a deposit transaction commits, you expect a

subsequent transaction to see the new account
balance

42

Deadlock

• Problem: Controls that cause transactions to
wait can cause deadlocks

w1(x) w2(y)

• Solution: Abort one transaction in the cycle
– Use wait-for graph to detect cycle when a request is

delayed or

– Assume a deadlock when a transaction waits longer
than some time-out period

request
r1(y)

request
r2(x)

8

43

Locking Implementation of an
Immediate-Update Pessimistic Control

• A transaction can read a database item if it
holds a read (shared) lock on the item

• It can read or update the item if it holds a
write (exclusive) lock

• If the transaction does not already hold the
required lock, a lock request is automatically
made as part of the (read or write) request

44

Locking

• Request for read lock on an item is granted if no
transaction currently holds write lock on the item
– Cannot read an item written by an active transaction

• Request for write lock granted if no transaction holds
any lock on item
– Cannot write an item read/written by an active transaction

• Transaction is delayed if request cannot be granted

Granted mode
Requested mode read write

read x
write x x

45

Locking

• All locks held by a transaction are released
when the transaction completes (commits or
aborts)
– Delayed requests are re-examined at this time

46

Locking

• Result: A lock is not granted if the requested
access conflicts with a prior access of an active
transaction; instead the transaction waits. This
enforces the rule:
– Do not grant a request that imposes an ordering

among active transactions (delay the requesting
transaction)

• Resulting schedules are serializable and strict

47

Locking

concurrency
control

r1(x) w1(x) c1

w2(x)

r1(x) w2(x)w1(x) c1
r1(x) w1(x) c1 w2(x)

w2(x) forced
to wait since T1

holds read lock
on x

w2(x) can be
scheduled since
T1 releases its locks

48

Locking Implementation
• Associate a lock set, L(x), and a wait set, W(x), with

each active database item, x
– L(x) contains an entry for each granted lock on x
– W(x) contains an entry for each pending request on x
– When an entry is removed from L(x) (due to

transaction termination), promote (non-conflicting)
entries from W(x) using some scheduling policy
(e.g., FCFS)

• Associate a lock list, � i , with each transaction, Ti.
� � i links Ti’s elements in all lock and wait sets

– Used to release locks on termination

9

49

Locking Implementation

r r

w

w

r w

x

y

� i

L

W

L

W Ti holds an r lock on
x and waits for a w
lock on y

50

Manual Locking

• Better performance possible if transactions are
allowed to release locks before commit
– Ex: release lock on item when finished accessing the item

• However, early lock release can lead to non-
serializable schedules

T1: l(x) r(x) u(x) l(y) r(y) u(y)
T2: l(x) l(y) w(x) w(y) u(x) u(y)

commit

T1: l(x) r(x) l(y) r(y) u(x) w(y) u(y)
T2: l(x) l(z) w(x) w(z) u(x) u(z)

51

Two-Phase Locking

• Transaction does not release a lock until it has all
the locks it will ever require.

• Transaction has a locking phase followed by an
unlocking phase

• Guarantees serializability when locking is done
manually

time

Number
of locks
held by T

T′s first unlock

T commits

52

Two-Phase Locking
• Theorem: A concurrency control that uses two phase

locking produces only serializable schedules.
– Proof (sketch): Consider two transactions T1 and T2 in

schedule S produced by a two-phase locking control and
assume T1’s first unlock, t1, precedes T2’s first unlock, t2.

• If they do not access common data items, then all operations
commute.

• Suppose they do. All of T1’s accesses to common items precede all of
T2’s. If this were not so, T2’s first unlock must precede a lock request
of T1. Since both transactions are two-phase, this implies that T2’s
first unlock precedes T1’s first unlock, contradicting the assumption.
Hence, all conflicts between T1 and T2 are in the same direction.

– It follows that the serialization graph is cycle-free since if
there is a cycle T1, T2, …Tn then it must be the case that
t1 < t2 < … < tn < t1

53

Two-Phase Locking

• A schedule produced by a two-phase locking control
is:
– Equivalent to a serial schedule in which

transactions are ordered by the time of their first
unlock operation

– Not necessarily recoverable (dirty reads and
writes are possible)

T1: l(x) r(x) l(y) w(y) u(y) abort
T2: l(y) r(y) l(z) w(z) u(z) u(y) commit

54

Two-Phase Locking

• A two-phase locking control that holds write locks
until commit produces strict, serializable schedules

• A strict two-phase locking control holds all locks until
commit and produces strict serializable schedules

– This is automatic locking

– Equivalent to a serial schedule in which transactions
are ordered by their commit time

• “Strict” is used in two different ways: a control that
releases read locks early guarantees strictness, but is
not strict two-phase locking control

10

55

Lock Granularity

• Data item: variable, record, row, table, file
• When an item is accessed, the DBMS locks an entity

that contains the item. The size of that entity
determines the granularity of the lock
– Coarse granularity (large entities locked)

• Advantage: If transactions tend to access multiple items
in the same entity, fewer lock requests need to be
processed and less lock storage space required

• Disadvantage: Concurrency is reduced since some
items are unnecessarily locked

– Fine granularity (small entities locked)
• Advantages and disadvantages are reversed

56

Lock Granularity

• Table locking (coarse)
– Lock entire table when a row is accessed.

• Row (tuple) locking (fine)
– Lock only the row that is accessed.

• Page locking (compromise)
– When a row is accessed, lock the containing

page

57

Objects and Semantic
Commutativity

• Read/write operations have little associated
semantics and hence little associated
commutativity.
– Among operations on the same item, only reads

commute.

• Abstract operations (for example operations on
objects) have more semantics, allowing
– More commutativity to be recognized
– More concurrency to be achieved

58

Abstract Operations and
Commutativity

• A concurrency control that deals with operations at an
abstract level can recognize more commutativity and
achieve more concurrency

• Example: operations deposit(acct,n), withdraw(acct,n)
on an account object (where n is the dollar amount)

Granted Mode
Requested Mode deposit() withdraw()

deposit() X
withdraw() X X

59

A Concurrency Control Based on
Abstract Operations

• Concurrency control grants deposit and
withdraw locks based on this table

• If one transaction has a deposit lock on an
account object, another transaction can also
obtain a deposit lock on the object

• Would not be possible if control viewed
deposit as a read followed by a write and
attempted to get read and write locks

60

A Concurrency Control Based on
Abstract Operations

• Since T1 and T2 can both hold a deposit lock on the
same account object their deposit operations do not
delay each other
– As a result, the schedule can contain:

… deposit1(acct,n) … deposit2(acct,m) … commit1
or

… deposit2(acct,m) … deposit1(acct,n) … commit2
– But the two deposit operations must be isolated from each

other. Assuming bal is the account balance, the schedule
r1(bal) r2(bal) w1(bal) w2(bal)

cannot be allowed

11

61

Partial vs. Total Operations

• deposit(), withdraw() are total operations: they are
defined in all database states.

• withdraw() has two possible outcomes: OK, NO
• Partial operations are operations that are not defined

in all database states
• withdraw() can be decomposed into two partial

operations, which cover all database states:
• withdrawOK()
• withdrawNO()

62

Partial Operations

• Example: account object
– deposit(): defined in all initial states (total)

– withdrawOK(acct,x): defined in all states in which
bal ≥ x (partial)

– withdrawNO(acct,x): defined in all states in which
bal < x (partial)

• When a transaction submits withdraw(), control
checks balance and converts to either withdrawOK()
or withdrawNO() and acquires appropriate lock

63

Partial Operations

• Partial operations allow even more
semantics to be introduced

• Insight: while deposit() does not commute
with withdraw(), it does (backward)
commute with withdrawOK()

withdrawOK(a,n) deposit(a,m) → deposit(a,m) withdrawOK(a.n)

64

Backward Commutativity
• p backward commutes through q iff in all states in

which the sequence q, p is defined, the sequence
p, q is defined and
– p and q return the same information in both and
– The database is left in the same final state

• Example:
– deposit(a,m) backward commutes through

withdrawOK(a,n)
• In all database states in which withdrawOK(a,n), deposit(a,m)

is defined, deposit(a,m), withdrawOK(a,n) is also defined.

– withdrawOK(a,n) does not backward commute through
deposit(a,m)

– Backward commute is not symmetric

65

A Concurrency Control Based on
Partial Abstract Operations

• Control grants deposit, withdrawOK, and withdrawNO locks
– Conflict relation is

• not symmetric
• based on backward commutativity

Granted Mode
Requested Mode deposit() withdrawOK() withdrawNO()

deposit() X
withdrawOK() X
withdrawNO() X

66

A Concurrency Control Based on
Partial Abstract Operations

• Advantage: Increased concurrency and hence
increased transaction throughput

• Disadvantage: Concurrency control has to access
the database to determine the return value (hence
the operation requested) before consulting table

• Hence (with an immediate update system) if T
writes x and later aborts, physical restoration can
be used.

12

67

Atomicity and Abstract Operations

• A write operation (the only conventional
operation that modifies items) conflicts with all
other operations on the same data

• Physical restoration (restore original value)
does not work with abstract operations since
two operations that modify a data item might
commute
– How do you handle the schedule: …p1(x) q2(x)

abort1 … if both operations modify x?

• Logical restoration (with compensating
operations) must be used
– e.g., increment(x) compensates for decrement(x) 68

A Closer Look at Compensation

• We have discussed compensation before,
but now we want to use it in combination
with locking to guarantee serializability and
atomicity

• We must define compensation more
carefully

69

Requirements for an Operation to
Have a Compensating Operation

• For an operation to have a compensating
operation, it must be one-to-one
– For each input there is a unique output

– The parameters of the compensating operation
are the same as the parameters of the operation
being compensated

• increment(x) compensate decrement(x)

70

Logical Restoration
(Compensation)

• Consider schedule: p1(x) q2(x) abort1

• q2(x) must (backward) commute through
p1(x), since the concurrency control scheduled
the operation

• This is equivalent to q2(x) p1(x) abort1

• Then abort1 can be implemented with a
compensating operation: q2(x) p1(x) p1

-1(x)
– This is equivalent to q2(x)

• Thus p1(x) q2(x) p1
-1(x) is equivalent to q2(x)

71

Logical Restoration
(Compensation)

• Example:
p1(x) = decrement(x)
p1

-1(x) = increment(x)

decrement1(x) increment2(x) increment1(x) ≡
increment2(x)

compensating operation

72

Undo Operations

• Not all operations have compensating
operations
– For example, reset(x), which sets x to 0, is not

one-to-one and has no compensating operation

– It does have an undo operation, set(x, X), which
sets the value of x to what it was right before
reset(x) was executed.

13

73

The Previous Approach Does
Not Work

reset1(x) reset2(x) set1(x, X1)

• Since the two resets commute, we can
rewrite the schedule as

reset2(x) reset1(x) set1(x, X1)

• But this schedule does not undo the result of
reset1(x), because the value when reset1(x)
starts is different in the second schedule

74

What to Do with Undo
Operations

• One approach is to require that the
operation get an exclusive lock, so that no
other operation can come between an
operation and its undo operation

75

Another Approach

• Suppose pundo commutes with q. Then

p q pundo ≡ p pundo q

• Now p has the same initial value in both
schedules, and thus the undo operation
works correctly.

76

Another Approach

• Theorem
– Serializability and recoverability is guaranteed

if the condition under which an operation q
does not conflict with a previously granted
operation p is

• q backward commutes through p, and

• Either p has a compensating operation, or when a p
lock is held, pundo backward commutes through q

77

Still Another Approach

• Sometimes we can decompose an operation that
does not have a compensating operation into two
partial operations, each of which does have a
compensating operation
– withdraw(x) does not have a compensating operation

• Depending on the initial value of the account, it might perform
the withdrawal and decrement that value by x or it might just
return no

• It has an undo operation, conditionalDeposit(x,y)

– The two partial operations, withdrawOK(x) and
withdrawNO(x) are one-to-one and hence do have
compensating operations.

78

Locking Implementation of
Savepoints

• When Ti creates a savepoint, s, insert a
marker for s in Ti’s lock list, � i , that
separates lock entries acquired before
creation from those acquired after creation

• When Ti rolls back to s, release all locks
preceding marker for s in � i (in addition to
undoing all updates made since savepoint
creation)

14

79

Locking Implementation

r r

w

w

r w

x

y

� iL

W

L

W

undo Ti’s update to y and
release its write lock
when Ti rolls back to s

s

80

Locking Implementation of...

• Chaining: nothing new
• Recoverable queue: Since queue is implemented by a

separate server (different from DBMS), the locking
discipline need not be two-phase; discipline can be
designed to suit the semantics of (the abstract
operations) enqueue and dequeue
– Lock on head (tail) pointer released when dequeue

(enqueue) operations complete
• Hence not strict or isolated

– Lock on entry that is enqueued or dequeued held to commit
time

81

Recoverable Queue

begin transaction
….
enqueue(x)
….

commit

acquire L1, L2

release L1

release L2

x

headtail
L1

L2

82

Locking Implementation of
Nested Transactions

• Nested transactions satisfy:
– Nested transactions are isolated with respect to

one another

– A parent does not execute concurrently with its
children

– A child (and its descendants) is isolated from its
siblings (and their descendants)

83

Locking Implementation of
Nested Transactions

• A request to read x by subtransaction T ′ of nested
transaction T is granted if:

– No other nested transaction holds a write lock on x

– All other subtransactions of T holding write locks
on x are ancestors of T ′ (hence are not executing)

T

T ’’T ’

could hold
read or write
lock

could hold
read lock

84

Intuition
• A request to read x by subtransaction T' of

nested transaction T is granted even though an
ancestor of T' holds a write lock on x

T: begin transaction T: begin transaction
… …
w(x) w(x)

T’: begin transaction
… …
r(x) r(x)
… …

commit
commit commit

without nesting with nesting

r(x) does
not conflict
with w(x)

15

85

Locking Implementation of
Nested Transactions

• A request to write x by subtransaction T ' of nested
transaction T is granted if:
– No other nested transaction holds a read or write lock on x

– All other subtransactions of T holding read or write locks
on x are ancestors of T ' (and hence are not executing)

could hold
read or write
lock

T

T ' T ''

cannot hold
any locks

86

Locking Implementation of
Nested Transactions

• All locks obtained by T' are held until it
completes
– If it aborts, all locks are discarded

– If it commits, any locks it holds that are not
held by its parent are inherited by its parent

• When top-level transaction (and hence
entire nested transaction) commits, all locks
are discarded

87

Locking Implementation of
Multilevel Transactions

• Generalization of strict two-phase locking
concurrency control
– Uses semantics of operations at each level to

determine commutativity

– Uses different concurrency control at each level

88

Example - Switch Sections

Move(s1, s2)

L2 TestInc(s2) Dec(s1)

L1 Sel(t2) Upd(t2) Upd(t1)

L0 Rd(p2) Rd(p2) Wr(p2) Rd(p1) Wr(p1)

time

transaction (sequential),
moves student from one
section to another,
uses TestInc, Dec

Section abstr.

Tuple abstr.

Page abstr.

89

Multilevel Transactions

• Example:
– Move(s1,s2) produces TestInc(s2), Dec(s1)

– Move1(s1,s2), Move2(s1, s3) might produce
TestInc1(s2), TestInc2(s3), Dec2(s1), Dec1(s1)

– Since two Dec operations on the same object commute
(they do not impose an ordering among transactions), this
schedule is equivalent to

TestInc1(s2), Dec1(s1), TestInc2(s3), Dec2(s1)
and hence could be allowed by a multilevel control, but ...

90

Multilevel Control

• Problem: A control assumes that the execution of
operations it schedules is isolated: If op1 and op2 do
not conflict, they can be executed concurrently and
the result will be either op1, op2 or op2, op1

– Not true in a multilevel control where an operation is
implemented as a program at the next lower level that
might invoke multiple operations at the level below.
Hence, concurrent operations at one level might not be
totally ordered at the next

16

91

Multilevel Transactions

L2 Dec1(s1) Dec2(s1)

L1 Upd1(t1) Upd2(t1)

L0 Rd1(p1) Rd2(p1) Wr1(p1) Wr2(p1)

Dec1(s1) and Dec2(s1)
commute at L2 and
hence can execute
concurrently, but
their implementation
at L0 is interleaved

92

Guaranteeing Operation Isolation

• Solution: Use a concurrency control at each
level
– Li receives a request from Li+1to execute op
– Concurrency control at Li, CCi, schedules op to be

executed; it assumes execution is isolated
– op is implemented as a program, P, in Li

– P is executed as a subtransaction so that it is
serializable with respect to other operations
scheduled by CCi

– Serializability guaranteed by CCi-1

93

Guaranteeing Operation Isolation

Li+1 request op1 request op2

Li grants op1, op2

locks

subtransactions at Li should
be serializable (if op1 commutes
with op2 then execution of sub-
transactions equivalent to
op1, op2 or op2, op1)

CCi

CCi-1

subtransaction at Li

implementing op1

(executed if op1

lock granted)

Li-1 guarantees serializability
of subtransactions at Li

94

A Multilevel Concurrency
Control for the Example

• The control at L2 uses TestInc and Dec
locks

• The control at L1 uses Sel and Upd locks

• The control at L0 uses Rd and Wr locks

95

Timestamp-Ordered Concurrency
Control

• Each transaction given a (unique) timestamp
(current clock value) when initiated

• Uses the immediate update model

• Guarantees equivalent serial order based on
timestamps (initiation order)
– Control is static (as opposed to dynamic, in which

the equivalent serial order is determined as the
schedule progresses)

96

Timestamp-Ordered Concurrency
Control

• Associated with each database item, x, are
two timestamps:
– wt(x), the largest timestamp of any transaction

that has written x,

– rt(x), the largest timestamp of any transaction
that has read x,

– and an indication of whether or not the last write
to that item is from a committed transaction

17

97

Timestamp-Ordered Concurrency
Control

• If T requests to read x:
– R1: if TS(T) < wt(x), then T is too old; abort T

– R2: if TS(T) > wt(x), then
• if the value of x is committed, grant T’s read and if

TS(T) > rt(x) assign TS(T) to rt(x)

• if the value of x is not committed, T waits (to avoid
a dirty read)

98

Timestamp-Ordered Concurrency
Control

• If T requests to write x :
– W1: If TS(T) < rt(x), then T is too old; abort T

– W2: If rt(x) < TS(T) < wt(x), then no transaction that
read x should have read the value T is attempting to write
and no transaction will read that value (See R1)

• If x is committed, grant the request but do not do the write
– This is called the Thomas Write Rule

• If x is not committed, T waits to see if newer value will commit.
If it does, discard T’s write, else perform it

– W3: If wt(x), rt(x) < TS(T), then if x is committed, grant
the request and assign TS(T) to wt(x), else T waits

99

Example
• Assume TS(T1) < TS(T2), at t0 x and y are committed,

and x’s and y’s read and write timestamps are less
than TS(T1)

t1: (R2) TS(T1) > wt(y); assign TS(T1) to rt(y)
t2: (W3) TS(T2) > rt(y), wt(y); assign TS(T2) to wt(y)
t3: (W3) TS(T2) > rt(x), wt(x); assign TS(T2) to wt(x)
t4: (W2) rt(x) < TS(T1) < wt(x); grant request, but do not

do the write

T1 : r(y) w(x) commit
T2: w(y) w(x) commit

t0 t1 t2 t3 t4

100

Timestamp-Ordered Concurrency
Control

• Control accepts schedules that are not conflict
equivalent to any serial schedule and would not
be accepted by a two-phase locking control
– Previous example equivalent to T1, T2

• But additional space required in database for
storing timestamps and time for managing
timestamps
– Reading a data item now implies writing back a new

value of its timestamp

101

Optimistic Algorithms

• Do task under simplifying (optimistic) assumption
– Example: Operations rarely conflict

• Check afterwards if assumption was true.
– Example: Did a conflict occur?

• Redo task if assumption was false
– Example: If a conflict has occurred rollback, else commit

• Performance benefit if assumption is generally true
and check can be done efficiently

102

Optimistic Concurrency Control

• Under the optimistic assumption that conflicts do not
occur, read and write requests are always granted
(no locking, no overhead!)

• Since conflicts might occur:
– Database might be corrupted if writes were immediate,

hence a deferred-update model is used
– Transaction has to be “validated” when it completes

• If a conflict has occurred abort (but no rollback is necessary) and
redo transaction

• Approach contrasts with pessimistic control which
assumes conflicts are likely, takes preventative
measures (locking), and does no validation

18

103

Optimistic Concurrency Control
• Transaction has three phases:

– Begin transaction
• Read Phase - transaction executes: reads from database, writes to

intentions list (deferred-update, no changes to database)

– Request commit
• Validation Phase - check whether conflicts occurred during read

phase; if yes abort (discard intentions list)

– Commit
• Write Phase - write intentions list to database (deferred update) if

validation successful

– For simplicity, we assume here that validation and write
phases form a single critical section (only one transaction is
in its validation/write phase at a time)

104

Optimistic Concurrency Control
• Guarantees an equivalent serial schedule in which the

order of transactions is the order in which they enter
validation (dynamic)

• For simplicity, we will assume that validation and
write phases form a single critical section (only one
transaction is in its validation/write phase at a time)

T1 enters T2 enters T3 enters
validation validation validation

validation/
write phase equivalent serial order = T1, T2, T3

105

Validation

• When T1 enters validation, a check is made to
see if T1 conflicted with any transaction, T2,
that entered validation at an earlier time

• Check uses two sets constructed during read
phase:

– R(T1): identity of all database items T1 read

– W(T1): identity of all database items T1 wrote

106

Validation

• Case 1: T1’s read phase started after T2 finished
its validation/write phase
– T1 follows T2 in all conflicts, hence commit T1 (T1

follows T2 in equivalent serial order)

validation/write
phase T2

read validation/write
phase T1 phase T1

T2 ends

T1 starts

time

107

Validation
• Case 2: T1’s read phase overlaps T2’s validation/write

phase
– If WS(T2) ∩ RS(T1) ≠ Φ, then abort T1

• A read of T1 might have preceded a write of T2 – a possible violation
of equivalent serial order

– Else commit T1 (T1 follows T2 in equivalent serial order)

read validation/write
phase T1 phase T1

read validation/write

phase T2 phase T2

T2 ends

T1 starts

time

108

Validation

• Case 3: T1’s validation/write phase overlaps
T2’s validation/write phase
– Cannot happen since we have assumed that

validation/write phases do not overlap

• Hence, all possible overlaps of T1 and T2 have
been considered

19

109

Validation
• A more practical optimistic control allows case 3 and

avoids the bottleneck implied by only allowing only
one transaction at a time in the validation/write phase.

• Case 3: T1’s validation/write phase overlaps T2’s
validation/write phase
– If WS(T2) ∩ (WS(T1) ∪ RS(T1)) ≠ Φ, then abort T1

• A read or write of T1 might have preceded a write of T2 – a violation
of equivalent serial order

– Else commit T1 (T1 follows T2 in equivalent serial order)
read phase T1 valid/write phase T1

read phase T2 valid/write phase T2

T1 starts

T2 ends 110

Optimistic Concurrency Control

• No locking (and hence no waiting) means
deadlocks are not possible

• Rollback is a problem if optimistic
assumption is not valid: work of entire
transaction is lost
– With two-phase locking, rollback occurs only

with deadlock
– With timestamp-ordered control, rollback is

detected before transaction completes

