
1

The Architecture of Transaction
Processing Systems

Chapter 23

2

Evolution of Transaction
Processing Systems

• The basic components of a transaction
processing system can be found in single
user systems.

• The evolution of these systems provides a
convenient framework for introducing their
various features.

3

Single-User System

• Presentation Services - displays forms, handles flow of
information to/from screen

• Application Services - implements user request,
interacts with DBMS

• ACID properties automatic (isolation is trivial) or not
required (this is not really an enterprise)

presentation application

services services
DBMS

user module

centralized system

4

Centralized Multi-User System

• Dumb terminals connected to mainframe
– Application and presentation services on

mainframe

• ACID properties required
– Isolation: DBMS sees an interleaved schedule

– Atomicity and durability: system supports a major
enterprise

• Transaction abstraction, implemented by
DBMS, provides ACID properties

5

Centralized Multi-User System

user module

central machine

presentation application
services services

presentation application
services services

•
•

•

communication

DBMS

dumb terminal
6

Transaction Processing in a
Distributed System

• Decreased cost of hardware and
communication make it possible to
distribute components of transaction
processing system
– Dumb terminal replaced by computers

• Client/server organization generally used

2

7

Two-Tiered Model of TPS

DBMS

database server
machine

presentation application
services services

presentation application
services services

•
•

•

client machines

communication

8

Use of Stored Procedures

• Advantages that result from having the database server export
a stored procedure interface instead of an SQL interface

– Security: procedures can be protected since they are
maintained at the enterprise site

– Network traffic reduced, response time reduced

– Maintenance easier since newer versions don’t have to be
distributed to client sites

– Authorization can be implemented at the procedure (rather
than the statement) level

– Procedures can be prepared in advance

– Application services sees a higher level of abstraction,
doesn’t interact directly with database

9

Three-Tiered Model of TPS

DBMS

database server
machine

presentation
server

•
•

•

client machines

communication

presentation
server

application
server

application server
machine

10

Application Server
• Sets transaction boundaries
• Acts as a workflow controller: implements user request

as a sequence of tasks
– e.g., registration = (check prerequisites, add student to

course, bill student)

• Acts as a router
– Distributed transactions involve multiple servers
– Server classes are used for load balancing

• Since workflows might be time consuming and
application server serves multiple clients, application
server is often multi-threaded

11

Transaction Server
• Stored procedures off-loaded to separate

(transaction) servers to reduce load on DBMS
• Transaction server located close to DBMS

– Application server located close to clients

• Transaction server does bulk of data processing.
– Transaction server might exist as a server class

• Application server uses any available transaction server
to execute a particular stored procedure; might do load
balancing

• Compare to application server which is multi-threaded

12

Three-Tiered Model of TPS

DBMS

database server
machine

present.
server

•
•

•

client machines

communication

present.
server

applic.
server

applic. server
machines

trans.
server

trans. server
machines

3

13

Levels of Abstraction

• Presentation server implements the abstraction of the
user interface

• Application server implements the abstraction of a user
request

• Stored procedures (or transaction server) implement
the abstraction of individual sub-tasks

• Database server implements the abstraction of the
relational model

14

Interconnection of Servers in
Three-Tiered Model

presentation
server

presentation
server

presentation
server

presentation
server

application
server

application
server

transaction
server

transaction
server

database
server

database
server

•
•

• • • •

• • •

15

Sessions and Context

• A session exists between two entities if they
exchange messages while cooperating to
perform some task
– Each maintains some information describing

the state of their participation in that task

– State information is referred to as context

16

Communication in TPSs
• Two-tiered model:

– Presentation/application server communicates with
database server

• Three-tiered model:
– Presentation server communicates with application server

– Application server communicates with
transaction/database server

• In each case, multiple messages have to be sent
– Efficient and reliable communication essential

• Sessions are used to achieve these goals
– Session set-up/take-down costly => session is long-term

17

Sessions

• Sessions established at different levels of
abstraction:
– Communication sessions (low level abstraction)

• Context describes state of communication channel

– Client/server sessions (high level abstraction)
• Context used by server describes the client

18

Communication Sessions
• Context: sequence number, addressing information,

encryption keys, …

• Overhead of session maintenance significant

– Hence the number of sessions has to be limited

• Two-tiered model:
– A client has a session with each database server it accesses

• Three-tiered model:
– Each client has a session with its application server

– Each application server multiplexes its connection to a
database server over all transactions it supports

4

19

Number of Sessions
• Let n1 be the number of clients, n2 the number

of application servers, and n3 the number of
transaction/db servers

• Sessions, two-tier (worst case) = n1*n3

• Sessions, three-tier (worst case) = n1+n2*n3

• Since n1 » n2, three-tiered model scales better

client

application

trans/db 20

Sessions in Three-Tiered Model

presentation
server

presentation
server

presentation
server

presentation
server

application
server

application
server

transaction
server

transaction
server

database
server

database
server

•
•

• • • •

• • •

21

Client/Server Sessions

• Server context (describing client) has to be
maintained by server in order to handle a
sequence of client requests:
– What has client bought so far?

– What row was accessed last?

– What is client authorized to do?

22

Client/Server Sessions

• Where is the server context stored?
– At the server - but this does not accommodate:

• Server classes: different server instances (e.g., transaction
servers) may participate in a single session

• Large number of clients maintaining long sessions: storage of
context is a problem

– In a central database - accessible to all servers in a
server class

– At the client - context passed back and forth with each
request.

• Context handle

23

Queued vs. Direct Transaction
Processing

• Direct: Client waits until request is serviced.
Service provided as quickly as possible and result is
returned. Client and server are synchronized.

• Queued: Request enqueued and client continues
execution. Server dequeues request at a later time
and enqueues result. Client dequeues result later.
Client and server unsynchronized.

24

Queued Transaction Processing

client server

recoverable
request queue

recoverable
reply queue

T1: enqueue
request

T2: dequeue
request

T2: enqueue
reply

T3: dequeue
reply

5

25

Queued Transaction Processing

• Three transactions on two recoverable queues

• Advantages:
– Client can enter requests even if server is

unavailable

– Server can return results even if client is
unavailable

– Request will ultimately be served even if T2
aborts (since queue is transactional)

26

Heterogeneous vs. Homogeneous
TPSs

• Homogeneous systems are composed of HW and SW
modules of a single vendor
– Modules communicate through proprietary (often

unpublished) interfaces
• Hence, other vendor products cannot be included

– Referred to as TP-Lite systems
• Heterogeneous systems are composed of HW and

SW modules of different vendors
– Modules communicate through standard,

published interfaces
– Referred to as TP-Heavy systems

27

Heterogeneous Systems
• Evolved from:

– Need to integrate legacy modules produced by different
vendors

– Need to take advantage of products of many vendors

• Middleware is the software that integrates the
components of a heterogeneous system and provides
utility services
– For example, supports communication (TCP/IP), security

(Kerberos), global ACID properties, translation (JDBC)

28

Transaction Manager

• Middleware to support global atomicity of
distributed transactions
– Application invokes manager when transaction

is initiated

– Manager is informed each time a new server
joins the transaction

– Application invokes manager when transaction
completes

– Manager coordinates atomic commit protocol
among servers to ensure global atomicity

29

Transaction Manager
(Two-Tiered Model)

DBMS

database server
machines (local

ACID properties)

present. applic.
services services

•
•

•

client machines

•
•

•

•
•

•

DBMS

Transaction
manager

begin /
commit

service
invocations

atomic commit
protocol

30

TP Monitor

• A TP Monitor is a collection of middleware
components that is useful in building
hetereogeneous transaction processing systems
– Includes transaction manager

– Application independent services not usually provided
by an operating system

• Layer of software between operating system and
application

• Produces the abstraction of a (global) transaction

6

31

Layered Structure of a
Transaction Processing System

Application level

TP Monitor

Operating System

Physical Computer System

transactional API

32

TP Monitor Services
• Communication services

– Built on message passing facility of OS
– Transactional peer-to-peer and/or remote procedure call

• ACID properties
– Local isolation for a (non-db) server might be provided by a

lock manager
• Implements locks that an application can explicitly associate with

instances of any resource

– Local atomicity for a (non-db) server might be provided by a
log manager

• Implements a log that can be explicitly used by an application to store
data that can be used to roll back changes to a resource

– Global isolation and atomicity are provided by transaction
manager

33

TP Monitor Services

• Routing and load balancing
– TP monitor can use load balancing to route a request

to the least loaded member of a server class

• Threading
– Threads can be thought of as low cost processes

– Useful in servers (e.g., application server) that might
be maintaining sessions for a large number of clients

– TP monitor provides threads if OS does not

34

TP Monitor Services

• Recoverable queues

• Security services
– Encryption, authentication, and authorization

• Miscellaneous servers
– File server

– Clock server

35

Communication Services
• Modules of a distributed transaction must communicate

• Message passing facility of underlying OS is
– inconvenient to use, lacks type checking.

– does not support transaction abstraction (atomicity)
• Distributed transactions spread via messages => message passing

facility can support mechanism to keep track of subtransactions

• TP monitor builds an enhanced communication facility
on top of message passing facility of OS
– Transactional remote procedure call

– Transactional peer-to-peer communication

– Event communication

36

Remote Procedure Call (RPC)
• Procedural interface

– Convenient to use

– Provides type checking

– Naturally supports client/server model

• RPC extends procedural communication to distributed
computations

• Deallocation of local variables limits ability to store
context (stateless)
– Context can be stored globally (e.g., in database) or …

– passed between caller and callee (context handle)

7

37

Remote Procedure Call

• Asymmetric : caller invokes, callee
responds

• Synchronous: caller waits for callee

• Location transparent: caller cannot tell
whether
– Callee is local or remote

– Callee has moved from one site to another

38

RPC Implementation: Stubs

client code
•

call p(…);
•
•
•

server code
p: •

•
•

client stub
p: •

•
send msg

•
•

server stub
•

receive msg;
•
•

call p(…);

distributed message
passing kernel

distributed message
passing kernel

Site A Site B

39

Stub Functions
• Client stub:

– Locates server - sends globally unique name
(character string) provided by application to
directory services

– Sets up connection to server
– Marshalls arguments and procedure name
– Sends invocation message (uses message passing)

• Server stub:
– Unmarshalls arguments
– Invokes procedure locally
– Returns results

40

Connection Set-Up: IDL

• Server publishes its interface as a file written in
Interface Definition Language (IDL). Specifies
procedure names, arguments, etc

• IDL compiler produces header file and server-
specific stubs

• Header file compiled with application code (type
checking possible)

• Client stub linked to application

41

Connection Set-Up: Directory
Services

• Interface does not specify the location of server that
supports it.
– Server might move

– Interface might be supported by server class

• Directory (Name) Services provides run-time
rendezvous.
– Server registers its globally unique name, net address,

interfaces it supports, protocols it uses, etc.

– Client stub sends server name or interface identity

– Directory service responds with address, protocol
42

RPC: Failures

• Component failures (communication lines,
computers) are expected

• Service can often be provided despite failures

• Example: no response to invocation message
– Possible reasons: communication slow, message lost,

server crashed, server slow

– Possible actions: resend message, contact different server,
abort client, continue to wait

– Problem: different actions appropriate to different failures

8

43

Transactional RPC and Global
Atomicity

• Client executes tx_begin to initiate transaction
– Client stub calls transaction manager (TM)
– TM returns transaction id (tid)

• Transactional RPC (TRPC):
– Client stub appends tid to each call to server
– Server stub informs TM when it is called for first time

• Server has joined the client’s transaction.

• Client commits by executing tx_commit
– Client stub calls TM
– TM coordinates atomic commit protocol among servers

to ensure global atomicity
44

Transaction Manager and TRPC
Application

tx_begin invoke TM
return

call p(..) pass tid with
request

return
Body Stub

Transaction Mgr, TM

generate tid
return tid

record new
subtransaction of tid

return

xa_reg (tid)
call p(..) p: ….

return
return

Stub Body
Resource Mgr, S

service
interface

xa interface

tx interface

45

Transaction Manager and Atomic
Commit Protocol

Application

tx_begin invoke TM
return

tx_commit invoke TM(tid)
return

Body Stub

Transaction Mgr, TM

generate tid
return tid

execute commit protocol
return

participate in
commit protocol

Stub Body
Resource Mgr, S

xa interface

tx interface

46

TRPC and Failure

• Stubs must guarantee exactly once semantics in
handling failures. Either:
– called procedure executed exactly once and transaction

can continue, or

– called procedure does not execute and transaction aborts

• Suppose called procedure makes a (nested) call to
another server and then crashes.
– Orphan is left in system when transaction aborted

– Orphan elimination algorithm required

47

Peer-To-Peer Communication

• Symmetric: Once a connection is established
communicants are equal (peers) - both can
execute send/receive. If requestor is part of a
transaction, requestee joins the transaction

• Asynchronous: Sender continues executing
after send; arbitrary patterns (streams) of
messages possible; communication more
flexible, complex, and error prone than RPC

• Not location transparent
48

Peer-To-Peer Communication

• Connection can be half duplex (only one
peer is in send mode at a time) or full
duplex (both can send simultaneously)

• Communication is stateful: each peer can
maintain context over duration of exchange.
– Each message received can be interpreted with

respect to that context

9

49

Peer-To-Peer Communication

• A module can have multiple connections concurrently

– Each connection associated with transaction that created it

– A new instance of called program is created when a
connection is established

– The connections associated with a particular transaction form
an acyclic graph

– All nodes of graph coequal (no root as in RPC)

A

CE

B

D

50

Peer-To-Peer and Commit

• Problems:
– Coequal status: Since there is no root (as in

RPC) who initiates the commit?

– Asynchronous: How can initiator of commit be
sure that all nodes have completed their
computations? (This is not a problem with
RPC.)

51

Solution: Syncpoints in Half
Duplex Systems

• One node, A, initiates commit. It does this
when
– it completes its computation and
– all its connections are in send mode.

• A declares a syncpoint and waits for protocol
to complete.

• TP monitor sends syncpoint message to all
neighbors, B.

52

Syncpoint Protocol (con’t)

• When B completes its computation and all
its connections (other than connection to A)
are in send mode, B declares syncpoint and
waits.

• TP monitor sends syncpoint message to all
B’s neighbors (other than A).

• When syncpoint message reaches all nodes,
all computation is complete and all have
agreed to commit.

53

Syncpoint Error

• Problem: Two nodes, all of whose connections
are in send mode, initiate commit concurrently

• Result: Protocol does not terminate. First node
to receive two syncpoint messages cannot
declare a syncpoint

B

E DC

A

54

Handling Exceptional Situations

• With TRPC and peer-to-peer
communication, a server services requests
and is idle when no request is pending.

• Problem: Sometimes a server needs an
interrupt mechanism to inform it of
exceptional events that require immediate
response even if it is busy.

10

55

Example

• M1 controls flow of chemicals into furnace
• M2 monitors temperature
• M1 must be informed when temperature

reaches limit
• Solution 1: M1 polls M2 periodically to check

temperature
– Wasteful if limit rarely reached, very wasteful if

M1 must respond fast (polling must be frequent)

• Solution 2: M2 interrupts M1 when limit
reached

56

Event Communication

• Event handling module registers address of its
event handling routine with TP monitor using
event API
– Handler operates as an interrupt routine

• Event generating module recognizes event and
notifies event handling module using event API

• TP monitor interrupts event handling module
and causes it to execute handling routine

57

Event Communication

• If event generating module recognizes event in the
context of a transaction, T, execution of handler is
part of T

• Problem: event generating module must know the
identity of event handling module

event generating
module

event handling
module, EHM addr:

callback

Notify(EHM)

Register(addr)

58

Event Broker

• Solution: Use broker as an intermediary:
– Events are named (E)

– Event handling module registers handler with
the TP monitor and subscribes to E by calling
the broker with E as a parameter

– Event generating module posts E to the broker
when it occurs.

– Broker notifies event handler

– If recognition of E in generating module is part
of a transaction, execution of handler is also

59

Event Broker

• Broker can cause alternate actions in addition to
notifying handler

event handling
module, EHM

event generating
module

server queue

broker

invoke enqueue

post(E)
subscribe(E)

register(addr)

addr:

notify(EHM)

60

Storage Architecture

• Much of this chapter deals with various
architectures for increasing performance

• One performance bottleneck we have not
yet discussed is disk I/0

• It is hard to get throughput of thousands of
transactions per second when each disk
access requires a time measured in
thousandths of a second

11

61

Disk Cache

• The DBMS maintains a disk cache in main
memory
– Recently accessed disk pages are kept in the cache and

if at some later time a transaction accesses that page, it
can access the cached version

– Many designers try to obtain over 90% hit rate in the
cache

– Many cache sizes are in the tens of gigabytes

– We discuss caches in detail in Chapter 9

62

RAID Systems

• A RAID (Redundant Array of Independent
Disks) consists of a set of disks configured
to look like a single disk with increased
throughput and reliability
– Increased throughput is obtained by striping or

partitioning each file over a number of disks,
thus decreasing the time to access that file

– Increased reliability is obtained by storing the
data redundantly, for example using parity bits

63

RAID Systems (continued)

• We discuss RAID systems in detail in Chapter 9

• Here we point out that a number of RAID levels
have been defined, depending on the type of
striping and redundancy used

• The levels usually recommended for transaction
processing systems are
– Level 5: Block-level striping of both data and parity

– Level 10: A striped array of mirrored disks

64

NAS and SAN

• In a NAS (Network Attached Storage) a file
server, sometimes called an appliance, is
directly connected to the same network as
the application server and other servers
– The files on the appliance can be shared by all

the servers

65

NAS and SAN (continued)

• In a SAN (Storage Attached Network) a
server connects to its storage devices over a
separate high speed network
– The network operates at about the same speed

as the bus on which a disk might connected to
the server

– The server accesses the storage devices using
the same commands and at the same speed as if
it were connected on a bus

66

NAS and SAN (continued)

• Both NAS and SAN can scale to more
storage devices than if those devices were
connected directly to the server

• SANs are usually considered preferable for
high performance transaction processing
systems because the DBMS can access the
storage devices directly instead of having to
go through a server.

12

67

Transaction Processing on the
Internet

• The growth of the Internet has stimulated
the development of many Internet services
involving transaction processing
– Often with throughput requirements of

thousands of transactions per second

68

C2B and B2B Services

• C2B (Customer-to-Business) services
– Usually involve people interacting with the

system through their browsers

• B2B (Business-to-Business) services
– Usually fully automated

– Programs on one business’s Web site
communicates with programs on another
business’s Web site

69

Front-End and Back-End
Services

• Front-end services refers to the interface a
service offers to customers and businesses
– How it is described to users

– How it is invoked

• Back-end services refers to how that service
is actually implemented

70

Front-End and Back-End
Services (continued)

• Next we discuss architectures for C2B systems in
which the front-end services are provided by a
browser and the back-end services can be
implemented as discussed earlier in the chapter

• Then we discuss how back-end services can be
implemented by commercial Web application
servers

• These same back-end implementations can be
used for B2B services using a different front-end
– We discuss B2B front-end services in Chapter 28

71

C2B Transaction Processing on
the Internet

• Common information interchange method
– Browser requests information from server

– Server sends to browser HTML page and possibly one
or more Java programs called applets

– User interacts with page and Java programs and sends
information back to server

– Java servlet on server reads information from user,
processes it, perhaps accesses a database, and sends
new page back to browser

72

C2B Transaction Processing on
the Internet (continued)

• Servlets have a lifetime that extends beyond one user
– When it is started, it creates a number of threads
– These threads are assigned dynamically to each request

• Servlets provide API for maintaining context
– Context information is stored in file on Web server that is

accessed through a session number
• Cookies: servlet places session number in a cookie file in

browser; subsequent servlets can access cookie
• Hidden fields in HTML: servlet places session number in

hidden field in HTML document it sends to browser; hidden
field is not displayed but is returned with HTML document

• Appended field to HTTP return address: session number is
appended to HTTP return address and can be accessed by next
servlet

13

73

Architectures for Transaction
Processing on the Internet

• Browser plays the role of presentation server and
application server
– Java applet on browser implements the

transaction and accesses database using JDBC
• Browser plays the role of presentation server, and

servlet program on server plays the role of
application server
– Servlet program implements the transaction and

accesses database using JDBC

74

Architectures for Transaction
Processing on the Internet

• Many high throughput applications require a three- or four-
tiered architecture

– After getting inputs from browser, the servlet program
initiates the transaction on the application server, which
is not connected to the Internet

• Application server might be separated from the Web server by
a firewall

– From the TP system’s viewpoint, the browser and
servlet program together are acting as the presentation
server

75

Architecture of a Web
Transaction Processing System

Web Server Application Server Database Server

Interacts with client Executes the application Hosts the database

The application might be
a transaction program that
implements the business
rules of the Web service

Java servlet receives
messages and calls
program on
application server 76

Web Server

• HTTP Interface to Web
– Java servlet on Web server interacts with

client’s browser using HTTP messages and
then initiates programs on the application server

77

Web Application Server
• A Web application server is a set of tools

and modules for building and executing
transaction processing systems for the Web
– Including the application server tier of the

system

• Name is confusing because application
server is the name usually given to the
middle tier in an transaction processing
system

78

Web Application Servers
(continued)

• Most Web application servers support the
J2EE (Java 2 Enterprise Edition) standards
– Or Microsoft .NET

• We discuss J2EE
– J2EE One language, many platforms

• A standard implemented by many vendors

– .NET One platform, many languages
• A set of products of Microsoft

14

79

J2EE

• J2EE defines a set of services and classes
particularly oriented toward transaction-
oriented Web services
– Java servlets

– Enterprise Java beans

80

Enterprise Java Beans

• Java classes that implement the business methods
of an enterprise

• Execute within an infrastructure of services
provided by the Web application server
– Supports transactions, persistence, concurrency,

authorization, etc.
– Implements declarative transaction semantics

• The bean programmer can just declare that a particular method
is to be a transaction and does not have to specify the begin
and commit commands

– Bean programmer can focus on business methods of the
enterprise rather on details of system implementation

81

Entity Beans

• An entity bean represents a persistent
business object whose state is stored in the
database
– Each entity bean corresponds to a database

table

– Each instance of that bean corresponds to a row
in that table.

82

Example of an Entity Bean

– An entity bean called Account, which corresponds to a
database table Account

• Each instance of that bean corresponds to a row in that table

– Account has fields that include AccountId and Balance
• AccountId is the primary key

• Every entity bean has a FindByPrimaryKey method that can be
used to find the bean based on its primary key

– Account has other methods that might include Deposit
and Withdraw

83

Persistence of Entity Beans

• Any changes to the bean are persistent in that
those changes are propagated to the corresponding
database items

• This persistence can be managed either manually
by the bean itself using standard JDBC statements
or automatically by the system (as described later)

• The system can also automatically manage the
authorization and transactional properties of the
bean (as described later)

84

Session Bean
• A session bean represents a client

performing interactions within a session
using the business methods of the enterprise
– A session is a sequence of interactions by a user

to accomplish some objective. For example, a
session might include selecting items from a
catalog and then purchasing them.

• The session bean retains its state during all
the interactions of the session
– Stateless session beans also exist

15

85

Example of a Session Bean

• ShoppingCart provides the services of
adding items to a “shopping cart” and then
purchasing the selected items
– Methods include AddItemToShoppingCart and

Checkout

– ShoppingCart maintains state during all the
interactions of a session

• It remembers what items are in the shopping cart

86

Session Beans and Entity Beans

• Session beans can call methods in entity
beans
– The Checkout method of the ShoppingCart

session bean calls appropriate methods in the
Customer, Order, and Shipping entity beans to
record the order in the database

87

Session Bean Transactions

• Session beans can be transactional
– The transaction can be managed manually by

the bean itself using standard JDBC or JTA
(Java Transaction API) calls or automatically
by the system (as described below)

88

Message-Driven Beans
• All of the communication so far is synchronous

– A session bean calls an entity bean and waits for a reply

• Sometimes the sender of a message does not need
to wait for a reply
– Communication can be asynchronous

• Thus increasing throughput

– Message-driven beans are provided for this purpose

• A message-driven bean is like a session bean in
that it implements the business methods of the
enterprise
– It is called when an asynchronous JMS message is

placed on the message queue to which it is associated
– Its onMessage method is called by the system to

process the message

89

Example of a Message-Driven
Bean

• When shopping cart Checkout method completes,
it sends an asynchronous message to the shipping
department to ship the purchased goods

• The shipping department maintains a message
queue, ShippingMessageQ, and a message driven
bean, ShippingMessageQListener, associated with
that queue

• When a message is placed on the queue, the
system selects an instance of the bean to process it
and calls that bean’s onMessage method

90

Structure of an Enterprise Bean

• The bean class
– Contains the implementations of the business methods

of the enterprise
• A remote interface (also optionally a local interface)

– Used by clients to access the bean class remotely, using
RMI (or locally with the local interface)

• Acts as a proxy for the bean class

– Includes declarations of all the business methods
• A home interface (also optionally a local home interface)

– Contains methods that control bean’s life cycle
• Create, remove

– Also finder methods(e.g. FindByPrimaryKey) methods

16

91

Structure of an Enterprise Bean
(continued)

• A deployment descriptor

– Declarative metadata for the bean

– Describes persistence, transactional, and authorization
properties

92

Example of Deployment
Descriptor

• The deployment descriptor for a banking
application might say that
– The Withdraw method of an Account entity bean

• Is to be executed as a transaction

• Can be executed either by the account owner or by a teller

– The Balance field of the Account Bean
• Has its persistence managed by the system

– Any changes are automatically propagated to the DB

• Deployment descriptors are written in XML

93

Portion of a Deployment
Descriptor Describing

Authorization

<method-permission>
<role-name> teller </role-name>
<method>

<ejb-name> Account </ejb-name>
<method-name> Withdraw </method-name>

</method>
</method-permission>

94

EJB Container

• Enterprise beans together with their
deployment descriptors are encapsulated
within an EJB container supplied by the
Web application server

• The EJB container provides system-level
support for the beans based on information
in their deployment descriptors

95

EJB Container (continued)

• The EJB container provides this support by
intervening before and after each bean method is
called and performing whatever actions are
necessary

– When a method is called, the call goes to the
similarly named interface method

– The interface method performs whatever
actions are necessary before and after calling
the bean method

96

EJB Container (continued)

• For example, if the deployment descriptor says the
method is to run as a transaction
– The interface method starts the transaction before

calling the method

– Commits the transaction when the method completes

• The EJB container supplies the code for the
interface methods.

17

97

Clientclient Shopping
Cart

Shopping
Cart Bean

Order
Bean

Local
Order

Database

Container

Remote
Interface

Session
Bean

Local
Interface

Entity
Bean

Remote and Local Interfaces Within a Container

Checkout

98

Persistence of Entity Beans

• Persistence of entity beans can be managed
– Manually by the bean itself (bean-managed

persistence) using standard JDBC statements

– Automatically by the container (container-
managed persistence, cmp)

99

Example of Deployment
Descriptor for Container Managed

Persistence

<persistence-type> container </persistence-type>

<cmp-field>

<field-name> balance </field-name>

</cmp-field>

100

Get and Set Methods
• The entity bean must contain declarations for get

and set methods. For example
public abstract float getBalance()
public abstract void setBalance (float balance)

• The container generates code for these methods
• A client of the bean, for example a session bean,

can use
– a finder method, for example, FindByPrimaryKey(), to

find an entity bean and then
– a get or set method to read or update specific fields of

that bean.

101

EJB QL Language

• The container will generate the code for the
FindByPrimaryKey() method

• The container will also generate code for other
finder methods described in the deployment
descriptor
– These methods are described in the deployment

descriptor using the EJB QL (EJB Query Language)

– EJB QL is used to find one or more entity beans based
on criteria other than their primary key

102

Example of EJB QL

<query>

<query-method>

<method-name>FindByName </method-name>

<method-params>

<method-param>string</method-param>

</method-params>

</query-method>

<ejb-ql>

SELECT OBJECT (A) FROM Account A WHERE A.Name = ?1

</ejb-ql>

</query>

18

103

Create and Remove Methods

• A client of an entity bean can use the create
and remove methods in its home interface to
create and remove instances of that entity
(rows in the database table).

104

Container-Managed
Relationships

• In addition to fields that represent data, entity
beans can have fields that represent relationships
– One-to-one, One-to-many, Many-to-many
– As with other database applications, these relationships

can be used to find entity beans based on their
relationships to other beans.

• Example: there might be a many-to-many
relationship, Signers, relating Account bean and
BankCustomer bean
– Signers specifies which customers can sign checks on

which accounts

105

Container-Managed
Relationships (continued)

• Relationships can be declared in the
deployment descriptor to be container-
managed
– For a many-to-many relationship such as

Signers, the container will automatically create
a new table to manage the relationship

– For a one-to-one relationship, the container will
automatically generate a foreign key

106

Portion of Deployment
Descriptor

<ejb-relation>
<ejb-relation-name>Signers</ejb-relation-name>
<ejb-relationship-role>

<ejb-relationship-role-name>account-has-signers
</ejb-relationship-role-name>

<multiplicity>many</multiplicity>
<relationship-role-source>

<ejb-name>Account</ejb-name>
</relationship-role-source>
<cmr-field>

<cmr-field-name>Signers</cmr-field-name>
<cmr-field-type>java.util.collection</cmr-field-type>

</cmr-field>
</ejb-relationship-role>

………… description of the other bean in the relation
</ejb-relation>

107

Get and Set Methods

• The entity bean must contain declarations
for get and set methods for these
relationship fields (as for other fields)

• For example
public abstract collection getSigners()

public abstract void setSigners (collection BankCustomers)

• The EJB container will generate code for
these methods

108

Transactions

• Transactions can be managed
– Manually by the bean itself (bean-managed

transactions) using standard JDBC or JTA calls
• Bean programmer must provide statements to start

and commit transactions

– Automatically by the container (container-
managed transactions)

• Deployment descriptor contains declarative
description of transaction attributes of each method

19

109

Transactions (continued)
• In container-managed transactions, the

deployment descriptor must specify the
transaction attributes of each method

• Attributes supported are
– Required
– RequiresNew
– Mandatory
– NotSupported
– Supports
– Never

• The semantics of these attributes are discussed in
Chapter 22 110

Restrictions on Attributes

• For message-driven beans, only the Required and
NotSupported attributes are allowed
– If the bean has the Required attribute and aborts, the

message is put back on the queue and the transaction
will be called again

• For stateless session beans only Requires,
RequiresNew, Supports, Never, and NotSupported
are allowed

• For entity beans with container-managed
persistence, only Requires, RequiresNew, and
Mandatory are allowed.

111

Example of Deployment
Descriptor

<container-transaction>
<method>

<ejb-name> ShoppingCart </ejbname>
<method-name> Checkout </method-name>

</method>
<trans-attribute> Required </trans-attribute>

</container-transaction>

112

Two-Phase Commit

• The container also contains a transaction
manager, which will manage a two-phase
commit procedure, for both container-
managed and bean-managed transactions.

113

Concurrency of Entity Beans
• A number of concurrently executing clients might request

access to the same entity bean and hence the same row of a
database table

• If that bean has been declared transactional, the
concurrency is controlled by the container
– If not, each client gets its own copy of the entity bean

and the concurrency is controlled by the DBMS
• For session beans and message-driven beans with bean-

managed concurrency the bean programmer can specify the
isolation level within the code for the bean

• The default J2EE implementation of container-managed
concurrency is that each client gets its own copy of the
entity bean and the underlying DBMS manages the
concurrency 114

Another Implementation of
Container-Managed Concurrency
• Some vendors of Web application servers offer other

alternatives, such as optimistic concurrency control
– DBMS executes at READ COMMITTED
– All writes are kept in the entity bean until the transaction requests

to commit
• The intentions list

– The validation check verifies that no entity the transaction read has
been updated since the read took place.

• Not the same validation check performed by the optimistic
control discussed earlier

– In that control, the validation check verifies that no entity the
transaction read has been updated anywhere in its read phase

• Both implementation provide serializability

20

115

Reusability of Enterprise Beans

• Part of the vision underlying enterprise beans is that they
would be reusable components
– Sam’s Software Company sells a set of beans for

shopping cart applications, including a
ShoppingCartBean session bean

– Joe’s Hardware Store buys the beans
• Instead of using the standard ShoppingCartBean,

Joe’s system uses a child of that bean,
JoesShoppingCartBean that had been changed
slightly to reflect Joe’s business rules

• Joe also changes the deployment descriptor a bit

116

Reusability of Enterprise Beans
continued

• The implementation of Joe’s system is
considerably simplified

• Joe’s programmers need be concerned mainly with
Joe’s business rules not with implementation
details

• Joe’s shopping cart application will run on any
system using any Web application server that
supports J2EE
– Provided it does not use any proprietary extensions to

J2EE

