
1

1

Implementing Distributed 
Transactions

Chapter 24

2

Distributed Transaction

• A distributed transaction accesses resource managers 
distributed across a network

• When resource managers are DBMSs we refer to the 
system as a distributed database system

Application 
Program

DBMS 
at Site 1

DBMS 
at Site 2

3

Distributed Database Systems

• Each local DBMS might export 
– stored procedures, or 
– an SQL interface.  

• In either case, operations at each site are grouped 
together as a subtransaction and the site is referred 
to as a cohort of the distributed transaction
– Each subtransaction is treated as a transaction at its site

• Coordinator module (part of TP monitor) supports 
ACID properties of distributed transaction
– Transaction manager acts as coordinator

4

ACID Properties

• Each local DBMS
– supports ACID properties locally for each subtransaction

• Just like any other transaction that executes there

– eliminates local deadlocks

• The additional issues are:
– Global atomicity: all cohorts must abort or all commit
– Global deadlocks:  there must be no deadlocks involving 

multiple sites
– Global serialization: distributed transaction must be globally 

serializable

5

Global Atomicity
• All subtransactions of a distributed transaction 

must commit or all must abort
• An atomic commit protocol, initiated by a 

coordinator (e.g., the transaction manager), 
ensures this. 
– Coordinator polls cohorts to determine if they are all 

willing to commit

• Protocol is supported in the xa interface 
between a transaction manager and a resource 
manager

6

Atomic Commit Protocol

Application
program

Transaction
Manager

(coordinator)
Resource
Manager

(cohort)

Resource
Manager

(cohort)

Resource
Manager

(cohort)

(3) xa_reg

(3) xa_reg

(3) xa_reg

(5) atomic
commit
protocol

(1) tx_begin
(4) tx_commit

(2) access
resources



2

7

Cohort Abort

• Why might a cohort abort?
– Deferred evaluation of integrity constraints

– Validation failure (optimistic control)

– Deadlock

– Crash of cohort site

– Failure prevents communication with cohort 
site

8

Atomic Commit Protocol

• Most commonly used atomic commit 
protocol is the two-phase commit protocol

• Implemented as an exchange of messages 
between the coordinator and the cohorts

• Guarantees global atomicity of the 
transaction even if failures should occur 
while the protocol is executing

9

Two-Phase Commit – The 
Transaction Record

• During the execution of the transaction, before the 
two-phase commit protocol begins: 
– When the application calls tx_begin to start the 

transaction, the coordinator creates a transaction record
for the transaction in volatile memory 

– Each time a resource manager calls xa_reg to join the 
transaction as a cohort, the coordinator appends the 
cohort’s identity to the transaction record

10

Two-Phase Commit -- Phase 1
• When application invokes tx_commit, coordinator 

sends prepare message to all cohorts
• prepare message (coordinator to cohort) :

– If cohort wants to abort at any time prior to or on receipt of 
the message, it aborts and releases locks

– If cohort wants to commit, it moves all update records to 
mass store by forcing a prepare record to its log

• Guarantees that cohort will be able to commit (despite crashes) if 
coordinator decides commit (since update records are durable)

• Cohort enters prepared state

– Cohort sends a vote message (“ready” or “aborting”).  It
• cannot change its mind
• retains all locks if vote is “ready”
• enters uncertain period (it cannot foretell final outcome)

11

Two-Phase Commit -- Phase 1

• vote message (cohort to coordinator): Cohort indicates it 
is “ready” to commit or is “aborting”
– Coordinator records vote in transaction record
– If any votes are “aborting”, coordinator decides abort and 

deletes transaction record
– If all are “ready”, coordinator decides commit, forces commit 

record (containing transaction record) to its log (end of phase 1)
• Transaction  committed when commit record is durable
• Since all cohorts are in prepared state, transaction can be 

committed despite any failures
– Coordinator sends commit or abort message to all cohorts

12

Two-Phase Commit -- Phase 2

• Commit or abort message (coordinator to cohort):
– If commit message

• cohort commits locally by forcing a commit record to its log

• cohort sends done message to coordinator

– If abort message, it aborts

– In either case, locks are released and uncertain period ends

• done message (cohort to coordinator):
– When coordinator receives a done message from each 

cohort, it writes a complete record to its log and deletes 
transaction record from volatile store



3

13

Two-Phase Commit (commit case)
Application Coordinator Cohort

tx_commit

resume

- send prepare msg to
cohorts in trans. rec.

- record vote in trans. rec.
- if all vote ready, force

commit rec. to coord. log
- send commit msg

- when all done msgs rec’d,
write complete rec. to log

- delete trans. rec.
- return status

- force prepare
rec. to cohort log

- send vote msg

-force commit
rec. to cohort log

- release locks
- send done msg

phase 1

phase 2

uncertain
period

xa interface
14

Two-Phase Commit (abort case)
Application Coordinator Cohort

tx_commit

resume

- send prepare msg to
cohorts in trans. rec.

- record vote in trans.rec.
- if any vote abort,

delete transaction rec.
- send abort msg
- return status

- force prepare
rec. to cohort log

- send vote msg

- local abort
- release locks

phase 1

uncertain
period

xa interface

15

Distributing the Coordinator

• A transaction manager controls resource 
managers in its domain

• When a cohort in domain A invokes a resource 
manager, RMB, in domain B, the local 
transaction manager, TMA, and remote 
transaction manager, TMB, are notified

– TMB is a cohort of TMA and a coordinator of 
RMB

• A coordinator/cohort tree results

16

Coordinator/Cohort Tree

TMA
Applic.

RM1 RM2

RM3

TMCTMB

RM5RM4

Domain A

Domain B Domain C

invocations
protocol msgs

17

Distributing the Coordinator

• The two-phase commit protocol progresses 
down and up the tree in each phase
– When TMB gets a prepare msg from TMA it 

sends a prepare msg to each child and waits

– If each child votes ready, TMB sends a ready 
msg to TMA

• if not it sends an abort msg

18

Failures and Two-Phase Commit

• A participant recognizes two failure situations.
– Timeout : No response to a message.  Execute a 

timeout protocol

– Crash : On recovery, execute a restart protocol

• If a cohort cannot complete the protocol until 
some failure is repaired, it is said to be blocked
– Blocking can impact performance at the cohort site 

since locks cannot be released



4

19

Timeout Protocol

• Cohort times out waiting for prepare message
– Abort the subtransaction

• Since the (distributed) transaction cannot commit unless 
cohort votes to commit, atomicity is preserved

• Coordinator times out waiting for vote message
– Abort the transaction

• Since coordinator controls decision, it can force all 
cohorts to abort, preserving atomicity

20

Timeout Protocol

• Cohort (in prepared state) times out waiting for 
commit/abort message
– Cohort is blocked since it does not know coordinator’s 

decision  
• Coordinator might have decided commit or abort
• Cohort cannot unilaterally decide since its decision 

might be contrary to coordinator’s decision, violating 
atomicity

• Locks cannot be released
– Cohort requests status from coordinator; remains blocked

• Coordinator times out waiting for done message
– Requests done message from delinquent cohort

21

Restart Protocol - Cohort

• On restart cohort finds in its log
– begin_transaction record, but no prepare record:  

• Abort  (transaction cannot have committed because cohort has not
voted)

– prepare record, but no commit record (cohort crashed in its 
uncertain period)

• Does not know if transaction committed or aborted
• Locks items mentioned in update records before restarting system
• Requests status from coordinator and blocks until it receives an 

answer 

– commit record
• Recover transaction to committed state using log

22

Restart Protocol - Coordinator

• On restart: 
– Search log and restore to volatile memory the transaction 

record of each transaction for which there is a commit record, 
but no complete record

• Commit record contains transaction record

• On receiving a request from a cohort for transaction 
status:  
– If transaction record exists in volatile memory, reply based

on information in transaction record

– If no transaction record exists in volatile memory, reply abort
• Referred to as presumed abort property

23

Presumed Abort Property

• If, when a cohort asks for the status of a 
transaction, there is no transaction record in 
coordinator’s volatile storage, either
– The coordinator had aborted the transaction and deleted 

the transaction record
– The coordinator had crashed and restarted and did not 

find the commit record in its log because 
• It was in Phase 1 of the protocol and had not yet made a 

decision, or
• It had previously aborted the transaction

– or …

24

Presumed Abort Property

– The coordinator had crashed and restarted and found a 
complete record for the transaction in its log

– The coordinator had committed the transaction, 
received done messages from all cohorts and hence 
deleted the transaction record from volatile memory

• The last two possibilities cannot occur
– In both cases, the cohort has sent a done message and 

hence would not request status

• Therefore,  coordinator can respond abort



5

25

Heuristic Commit

• What does a cohort do when in the blocked state 
and the coordinator does not respond to a request 
for status?
– Wait until the coordinator is restarted
– Give up, make a unilateral decision, and attach a fancy 

name to the situation.
• Always abort
• Always commit
• Always commit certain types of transactions and always abort 

others

– Resolve the potential loss of atomicity outside the 
system 

• Call on the phone or send email
26

Variants/Optimizations

• Read/only subtransactions need not 
participate in the protocol as cohorts
– As soon as such a transaction receives the 

prepare message, it can give up its locks and 
exit the protocol.

• Transfer of coordination

27

Transfer of Coordination

• Sometimes it is not appropriate for the 
coordinator (in the initiator’s domain) to 
coordinate the commit
– Perhaps the initiator’s domain is a convenience 

store and the bank does not trust it to perform 
the commit

• Ability to coordinate the commit can be 
transferred to another domain

• Linear commit
• Two-phase commit without a prepared state

28

Linear  Commit

• Variation of two-phase commit that 
involves transfer of coordination

• Used in a number of Internet commerce 
protocols

• Cohorts are assumed to be connected in a 
linear chain

29

Linear Commit Protocol

• When leftmost cohort,  A, is ready to commit, it 
goes into a prepared state and sends a vote 
message (“ready”) to the cohort to its right, B
(requesting B to act as coordinator).

• After receiving the vote message, if B is ready to 
commit, it also goes into a prepared state and 
sends a vote message (“ready”) to the cohort to its 
right, C (requesting C to act as coordinator)

• And so on ...

30

Linear Commit Protocol

• When vote message reaches the rightmost cohort, 
R, if R is ready to commit, it commits the entire 
transaction (acting as coordinator) and sends a 
commit message to the cohort on its left

• The commit message propagates down the chain 
until it reaches A

• When A receives the commit message it sends a 
done message to B, and that also propagates



6

31

Linear Commit

A B R

ready ready ready

commitcommitcommit

done done done

• • •

32

Linear Commit Protocol

• Requires fewer messages than conventional 
two-phase commit.  For n cohorts,
– Linear commit requires 3(n - 1)

– Two-phase commit requires 4n messages

• But two-phase commit requires only 4 
message times (messages are sent in 
parallel) while linear commit requires      
3(n - 1) times (messages are sent serially)

33

Two-Phase Commit Without a 
Prepared State

• Assume exactly one cohort, C, does not support a 
prepared state.

• Coordinator performs Phase 1 of two-phase 
commit protocol with all other cohorts

• If they all agree to commit, coordinator requests 
that C commit its subtransaction (in effect, 
requesting C to decide the transaction’s outcome)

• C responds commit/abort, and the coordinator 
sends a commit/abort message to all other sites

34

Two-Phase Commit Without a 
Prepared State

coordinator

C

C1

C2

C3

two-phase commit

commit request 
at end of phase 1

35

Global Deadlock
• With distributed transaction:

– A deadlock might not be detectable at any one 
site

• Subtransaction T1A of T1 at site A might wait for 
subtransaction T2A of T2, while at site B, T2B waits 
for T1B

– Since concurrent execution within a transaction 
is possible, a transaction might progress at 
some site even though deadlocked

• T2A and T1B can continue to execute for a period of 
time

36

Global Deadlock

• Global deadlock cannot always be resolved by 
aborting and restarting a single subtransaction,
since data might have been communicated 
between cohorts 
– T2A’s computation might depend on data received 

from T2B. Restarting T2B without restarting T2A
will not in general work.



7

37

Global Deadlock Detection

• Global deadlock detection is generally a simple 
extension of local deadlock detection
– Check for a cycle when a cohort waits

• If a cohort of T1 is waiting for a cohort of T2, coordinator of T1

sends probe  message to coordinator of T2

• If a cohort of  T2 is waiting for a cohort of T3, coordinator of T2

relays the probe to coordinator of T3

• If probe returns to coordinator of T1 a deadlock exists

– Abort a distributed transaction if the wait time of one of its 
cohorts exceeds some threshold

38

Global Deadlock Prevention

• Global deadlock prevention - use timestamps
– For example an older transaction never waits for a 

younger one.  The younger one is aborted.

39

Global Isolation

• If subtransactions at different sites run at different 
isolation levels, the isolation between concurrent 
distributed transactions cannot easily be characterized.

• Suppose all subtransactions run at 
������� �	�
� ���	����

.
Are distributed transactions as a whole serializable?
– Not necessarily

• T1A and T2A might conflict at site A, with T1A preceding T2A

• T1B and T2B might conflict at site B, with T2B preceding T1B.

40

Two-Phase Locking and Two-
Phase Commit

• Theorem:  If all sites use a strict two-phase locking protocol and 
the transaction manager uses a two-phase commit protocol, 
transactions are globally serializable in commit order.
– Argument:  Suppose previous situation occurred.

• At site A
– T2A cannot commit until T1A releases locks (2Φ locking)
– T1A does not release locks until T1 commits (2Φ commit)
– Hence (if both commit) T1 commits before T2

• At site B
– Similarly (if both commit) T2 commits before T1 ,

• => Contradiction (transactions deadlock in this case)

41

When Global Atomicity Cannot 
Always be Guaranteed

• A site might refuse to participate
– Concerned about blocking
– Charges for its services

• A site might not be able to participate
– Does not support prepared state

• Middleware used by client might not support two-
phase commit
– For example, ODBC

• Heuristic commit

42

Spectrum of Commit Protocols

• Two-phase commit
• One-phase commit

– When all subtransactions have completed, coordinator 
sends a commit message to each one

– Some might commit and some might abort

• Zero-phase commit
– When each subtransaction has completed, it 

immediately commits or aborts and informs coordinator

• Autocommit
– When each database operation completes, it commits



8

43

Data Replication
• Advantages

– Improves availability: data can be accessed even 
though some site has failed

– Can improve performance: a transaction can access 
the closest (perhaps local) replica

• Disadvantages
– More storage

– Increases system complexity
• Mutual consistency of replicas must be maintained

• Access by concurrent transactions to different replicas can 
lead to incorrect results

44

Application Supported Replication

• Application creates replicas  
– If X1 and X2 are replicas of the same item, each 

transaction enforces the global constraint X1 = X2

– Distributed DBMS is unaware that X1 and X2 are 
replicas

– When accessing an item, a transaction must 
specify which replica it wants

45

System Supported Replication

Transaction

Replica control

Concurrency control

Local database

Request access to x

Request access to local replica of x

Access local replica of x

Request access to 
remote replica of x

Receive requests for
access to local replicas

46

Replica Control

• Hides replication from transaction

• Knows location of all replicas

• Translates transaction’s request to access an item into 
request to access a particular replica(s)

• Maintains some form of mutual consistency:
– Strong: all replicas always have the same value

• In every committed version of the database

– Weak: all replicas eventually have the same value

– Quorum: a quorum of replicas have the same value

47

Read One/Write All Replica 
Control 

• Satisfies a transaction’s read request using the 
nearest replica

• Causes a transaction’s write request to  update all 
replicas 
– Synchronous case: immediately (before transaction 

commits)

– Asynchronous case: eventually

• Performance benefits result if reads occur 
substantially more often the writes

48

Synchronous-Update Read One/ 
Write All Replica Control

• Read request locks and reads the most local replica
• Write request locks and updates all replicas 

– Maintains strong mutual consistency

• Atomic commit protocol guarantees that all sites 
commit and makes new values durable

• Schedules are serializable
• Problems: Writing:

– Has poor performance
– Is prone to deadlock
– Requires 100% availability



9

49

Generalizing Read One/Write All

• Problem: With read one/write all, availability is 
worse for writers since all replicas have to be 
accessible

• Goal: A replica control in which an item is available 
for all operations even though some replicas are
inaccessible

• This implies:

– Mutual consistency is not maintained

– Value of an item must be reconstructed by replica 
control when it is accessed

50

Quorum Consensus Replica Control
• Replica control dynamically selects and locks a read 

(or write) quorum of replicas when a read (or write) 
request is made
– Read operation reads only replicas in the read quorum
– Write operation writes only replicas in the write quorum
– If p = |read quorum|,  q = |write quorum| and  

n = |replica set| then algorithm requires
p+q > n (read/write conflict)
q > n/2 (write/write conflict)

• Guarantees that all conflicts between operations of 
concurrent transactions will be detected at some site 
and one transaction will be forced to wait.
– Serializability is maintained

51

Quorum Consensus Replica 
Control

read
quorum (p)

write
quorum (q)

Set of all 
replicas of
an item (n)

- p+q > n (read/write conflict)

- An intersection between any read and 

any write quorum is guaranteed
52

Quorum Consensus Replica 
Control

write
quorum (q)

write
quorum (q)

Set of all 
replicas of
an item (n)

- q > n/2 (read/write conflict)

- An intersection between any two

write quorums is guaranteed

53

Mutual Consistency
• Problem: Algorithm does not maintain mutual 

consistency; thus reads of replicas in a read quorum 
might return different values

• Solution: Assign a timestamp to each transaction, T,
when it commits; clocks are synchronized between 
sites so that timestamps correspond to commit order 
– T writes: replica control associates T’s timestamp with all 

replicas in its write quorum

– T reads: replica control returns value of replica in read 
quorum with largest timestamp.  Since read and write 
quorums overlap, T gets most recent write

– Schedules are serializable
54

Quorum Consensus Replica 
Control

• Allows a tradeoff among operations on 
availability and cost
– A small quorum implies the corresponding 

operation is more available and can be 
performed more efficiently  but ...

– The smaller one quorum is, the larger the other



10

55

Failures

• Algorithm can continue to function even 
though some sites are inaccessible

• No special steps required to recover a site 
after a failure occurs
– Replica will have an old timestamp and hence 

its value will not be used

– Replica’s value will be made current the next 
time the site is included in a write quorum

56

Asynchronous-Update                      
Read One/Write All Replica Control

• Problem: Synchronous-update is slow since all 
replicas (or a quorum of replicas) must be updated 
before transaction commits

• Solution: With asynchronous-update only some 
(usually one) replica is updated as part of 
transaction.  Updates propagate after transaction 
commits but…
– only weak mutual consistency is maintained

– serializability is not guaranteed 

57

Asynchronous-Update
Read One/Write All Replica Control

• Weak mutual consistency can result in non-
serializable schedules

• Alternate forms of asynchronous-update replication 
vary the degree of synchronization between replicas; 
none support serializability

T1:  w(xA)  w(yB)  commit
T2:                            r(xC)   r(yB)   commit
Trep_upd:                                                      w(xC) w(xB) . . . 

new

old

58

Primary Copy Replica Control

• One copy of each item is designated primary; 
the other copies are secondary
– A transaction (locks and) reads the nearest copy

– A transaction (locks and) writes the primary copy

– After a transaction commits, updates it has made to 
primary copies are propagated to secondary copies 
(asynchronous)

• Writes of all transactions are serializable, reads 
are not

59

Primary Copy Replica Control

• The schedule is not serializable

T1:  w(xpri)  w(ypri)  commit
T2:                                r(xpri)  r(yB) commit
Trep_upd:                                                       w(xC) w(xB) w(yC) w(yB)

new

old

60

Primary Copy Mutual Consistency

• Updates of an item are propagated by
– A single (distributed) propagation transaction
– Multiple propagation transactions
– Periodic broadcast

• Weak mutual consistency is guaranteed if 
the sequence of updates made to the 
primary copy of an item (by all 
transactions) is applied to each secondary
copy of the item (in the same order).



11

61

Example Where Asynchronous 
Update is OK

• Internet Grocer keeps replicated information about 
customers at two sites
– Central (primary) site where customers place orders
– Warehouse (secondary) site from which deliveries are made

• With synchronous update, order transactions are 
distributed and become a bottleneck

• With asynchronous update, order transaction updates 
the central site immediately; update is propagated to 
the warehouse site later.
– Provides faster response time to customer
– Warehouse site does not need data immediately

62

Variations on Propagation

• A secondary site might declare a view of the 
primary, so that only the relevant part of the 
item is transmitted
– Good for low bandwidth connections

• With a pull strategy (in contrast to a push 
strategy) a secondary site requests that its 
view be updated
– Good for sites that are not continuously 

connected, e.g. laptops of business travelers

63

Group Replication (asynchronous)

• A transaction can (lock and) update any replica.
• Problem: Does not support weak mutual 

consistency.

Site A      Site B     Site C     Site D

T1:  x := 5

propagation

T2:  x := 7

propagation

time

xA=7 xB=7 xC=5 xD=5final value:
64

Group Replication - Conflicts
• Conflict: Updates are performed concurrently to the 

same item at different sites.
• Problem: If a replica takes as its value the contents 

of the last update message, weak mutual consistency 
is not maintained

• Solution: Associate unique timestamp with each 
update and each replica.  Replica takes timestamp of 
most recent update that has been applied to it.  
– Update discarded if its timestamp is less than timestamp

of replica
– Weak mutual consistency is supported

65

Conflict Resolution

• No conflict resolution strategy yields 
serializable schedules
– e.g., timestamp algorithm allows lost update

• Conflict resolution strategies:
– Most recent update wins
– Update coming from highest priority site wins
– User provides conflict resolution strategy
– Notify the user

66

Procedural Replication

• Problem: Communication costs of previous 
propagation strategies are high if many 
items are updated
– Ex: How do you propagate quarterly posting of 

interest to duplicate bank records?

• Solution: Replicate stored procedure at 
replica sites.  Invoke the procedure at each 
site to do the propagation



12

67

Summary of Distributed 
Transactions

• The good news: If transactions run at ������� �	�
� ���	��
� , 
all sites use two-phase commit for termination and 
synchronous update replication, then distributed
transactions are globally atomic and serializable.

• The bad news: To improve performance

– applications often do not use ������� �	�
� ���	����
– DBMSs might not participate in two-phase commit

– replication is generally asynchronous update

• Hence, consistent transactions might yield incorrect 
results


