
CSE 373 Analysis of Algorithms Date: September 17, 2021 Solution

to HW1

Total Points: 100

Steven Skiena

Question 1

1-19 [5]
Base case: When we have n = 1 vertex, then we have 0 = n − 1 edges. [1]
Inductive step: Assume for n = k, we have k − 1 edges. To show that for n =
k+ 1, we have k edges. To prove this, note that no matter how Tk (k-vertex
tree) looks like, two things must hold in Tk+1, due to the property of trees:

(1) The k + 1th vertex has to be incident on any one of the vertices of Tk. If
not, the tree will be disconnected! [2]

(2) The k + 1th vertex cannot be incident on more than one vertex of Tk.
Suppose it is incident on two vertices u, v ∈ Tk. What goes wrong?
Remember that since Tk was a tree (and hence connected), there was a path
from u to v in Tk. Now our k + 1th vertex, call it x forms another path (u, x, v)
from u to v. Thus we get a cycle! This cannot happen if Tk+1 is a tree. Thus,
for n = k + 1, we have exactly k − 1 + 1 = k edges. [2]

Remark: 5 points are distributed for each step and each case.

Question 2

1-21 [4]
Assuming I have 30 books, each having around 600 pages, in total I have
about 30 × 600 = 9000 pages, which is nowhere close to a million. [2]

Suppose the school library has 20 shelves, each having 100 books, then the
total pages assuming 600 pages per book is 20×100×600 = 1200000
pages.[2]

Remark: 4 points are distributed for each sub-problem. This is just a
sample answer for your reference. We will give credits for any
reasonable assumption and estimation.

Question 3

1-22 [3]
We assume that there are about 40 lines per page and about 10 words per
line. Multiply by 500 pages and we get about 200,000 words. [3]

Remark: This is just a sample answer for your reference. We will give
credits for any reasonable assumption and estimation.

Question 4

1-24 [3]
The population of US is approximately 300 million and there are
approximately 50, 000 people per city or town. Therefore the answer is 300,
000, 000/50, 000 = 6, 000. [3]

Remark: This is just a sample answer for your reference. We will
give credits for any reasonable assumption and estimation.

Problem 5

2-8 [2]

(a). True. 2n+1 = 2 · 2n = O(2n) [1]
(b). False. 22n = 4n [1]

Problem 6

2-9 [16]
(a). Θ
(b). Ω
(c). Ω
(d). Ω
(e). Ω
(f). Θ
(g). Ω
(h). O

Remark: 2 points for each correct answer.

Problem 7

2-26 [9]
The functions from lowest to highest order:

Problem 8

2-28 [7]
(a). True
(b). False
(c). True
(d). False
(e). True
(f). True
(g). False

Remark: 1 point for each correct answer.

Problem 9

2-29 [3]
(a). Ω [1]
(b). O [1]
(c). Ω [1]

Remark: 1 point for each correct answer.

Problem 10

2-30 [5]
(a) Yes. O(n2) worst case means that on no input will it take more time than
that, so of course it can take O(n) on some inputs.
(b) Yes. O(n2) worst-case means that on no input will it take more time than
that. It is possible that all inputs can be done in O(n), which still follows this
upper bound.
(c) Yes. Although the worst case is Θ(n2), this does not mean all cases are
Θ(n2)
(d) No. Θ(n2) worst case means there exists some input which takes time,
and no input takes more than O(n2) time.
(e) Yes. Since both the even and odd functions are Θ(n2).

Remark: 1 point for each correct answer.

Problem 11

2-31 [4]
(a) No.
(b) Yes. Note that log 3n = n log 3 and log 2n = n log 2. log 2 and log 3 are
constants.
(c) Yes.
(d) Yes.

Remark: 1 point for each correct answer.

Problem 12

3-3 [6]

typedef struct list {
it em type item ;
struct list ∗ next ;

} l i s t ;

void r e v e r s e l i s t (l i s t ∗∗ l){
l i s t ∗p = NULL;
l i s t ∗q = ∗ l ;
l i s t ∗ r ;
while (q != NULL){

r = q −> nex t ;
q −> nex t = p ;
p = q ;
q = r ;

}
∗ l = q ;

}

Remark: 6 points for completely correct. 4 points for correctly
reversing the list with minor errors.

Problem 13

3-11 [8]
Note that your query space is {1, ..., n}. So you can just use a bit array or
integer array to indicate A[i] = 1 if i is in the array, otherwise A[i] = 0. To insert i
you just need to make A[i] = 1 if it is not already so. Similarly for deletion you
make A[i] = 0. Search i is just i if A[i] = 1, else not present. Hence they are all
O(1). Pseudocode is presented below:

int s e a r c h (int A[n] , i){
i f (i < 1 o r i > n)

return e r r o r ;
e l s e {

i f (A[i] = = 1)
return YES;

e l s e
return NO;

}
}
void i n s e r t (int A[n] , i){

i f (i < 1 o r i > n)
return e r r o r ;

e l s e {
A[i] = 1 ;

}
}
void d e l e t e (int A[n] , i){

i f (i < 1 o r i > n)
return e r r o r ;

e l s e {
A[i] = 0 ;

}
}

Remark: propose the array data structure - 2 points; search in O(1) -
2 points; insertion in O(1) - 2 points; deletion in O(1) - 2 points.

Problem 14

3-25 [10]
Using any kind of balanced binary search tree to store the bins, because it
supports insertion, deletion and search in O(log n) time. The keys of the bins
are their free spaces.

(a) We try to put the objects one by one. We search in the tree for the bins
which has the smallest amount of extra room and the extra room is sufficient
to hold the object. If such bin exists, we put objects in it and update our tree; if
not, we use a new bin and insert it to the tree. Pseudocode is presented
below: [5]

int bestfit(node, w) {
if (w == 0) return 1;
if (node == NULL) return 0;
if (node->space == w)

node->space = 0;
Adjust the tree to be the balanced binary search tree;

else if (node->space < w) {
if (!bestfit(node’s right child, w)) {

Create a new node and set its space to 1 − w;
Insert the new node to the tree and adjust it to be balanced.
return 1;

}
}
else {

if (!bestfit(node’s left child, w)) // All its left descendents can’t hold w. {
node->space = node->space - w;
Adjust the tree to be the balanced binary search tree;
return 1;

}
}

}
int main() {

Node *root = new Node;
root->space = 1;
root->left = NULL;
root->right = NULL;
for i = 1 to n {

bestfit(root, w[i]);
}
return the number of nodes of the tree;

}
(b) We try to put the objects one by one. We search in the tree for the bins

which has the largest amount of extra room. If such bin exists and is sufficient
to hold the object, we put objects in it and update our tree; otherwise, we use
a new bin and insert it to the tree. Pseudocode is presented below: [5]

int worstfit(node, w) {
if (w == 0) return 1;
if (node == NULL) return 0;
if (!worstfit(node’s right child, w)) {

Create a new node and set its space to 1 − w;
Insert the new node to the tree and adjust it to be balanced.
return 1;

}
}
int main() {

Node *root = new Node;
root->space = 1;
root->left = NULL;
root->right = NULL;
for i = 1 to n {

bestfit(root, w[i]);
}
return the number of nodes of the tree;

}
Note: This is an NP-Complete problem. Neither best-fit nor worst-fit can

always give you the optimal solution.

Problem 15

3-26 [15]
(a) In this question we can take any amount of preprocessing time, can only
use O(n2) space, and answer the range minimum queries in O(1) time. Just
use a n × n matrix where position (i, j) stores the minimum of xi, ..., xj . [5]

(b) In this question we can take any amount of preprocessing time, but we
can only use O(n) space, and the range minimum queries should take O(log
n) time.

Let min(i, j) = min(xi, ..., xj).
Build a binary tree in the following manner: the root of the tree is min(1, n) the
left child of the root is min(1, ⌊n/2⌋) and the right child of the root is min(⌊n/2⌋
+ 1, n). We do this recursively, that is, if a node in the tree denotes
min(i, j) then its left child is min(i, ⌊(i+j)/2⌋) and the right child is min(⌊(i+j)/2⌋
+ 1, j). The leaves of the tree are x1, ..., xn.

See figure below.

Figure 1: Segment tree
Now that we have stored our values, we answer the queries in the

following way.
// qs - query start index, qe - query end index
int RMQ(node, qs, qe) {

if range of node is within qs and qe
return value in node

else if range of node is completely outside qs and qe
return error

else
return min(RMQ(node’s left child, qs, qe),

RMQ(node’s right child, qs, qe))
}

Since the algorithm only stores n elements, the tree uses O(n) space. Since
the tree is the balanced binary tree, and the height of the tree is O(log n), the
search time is O(log n). [10]

